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Abstract: Prognostics and health management (PHM) has become a key instrument in the reliability 

community. Great efforts have gone into estimating systems’ remaining useful life (RUL) by taking 

advantage of monitoring data and data-driven models (DDMs). The latter have gained significant 

attention since they are model-independent and do not require previous knowledge of the system under 

study. This is known as black-box behavior. However, DDMs developed for PHM frameworks are 

commonly tested on simulated or experimental data sets, which do not present the characteristics and 

intricacies of data collected from monitoring sensor networks in real systems. Furthermore, the black-

box behavior hinders DDMs’ interpretability, and thus suffers trustworthiness, for example in 

maintenance decision-making processes. To address this, physics-informed models have been 

implemented through hybrid models, which present significant improvements in accuracy and 

interpretability. Particularly, physics-informed neural networks (PINNs) have been proposed in deep 

learning (DL) to both solve and discover a system’s governing partial differential equation (PDE). This 

paper presents an implementation of a PINN-RUL model to a case study from a real complex 

engineering system (CES). The system consists of a vapor recovery unit (VRU) at an offshore oil 

production platform. Challenges when creating RUL labels based on maintenance logs are discussed. 

Results show that a trained PINN-RUL model successfully allows the interpretation of a real system’s 

degradation dynamics through a latent variable.  

 

 

1.  INTRODUCTION 
 

Prognostics and health management (PHM) has become one of the main research fields in the reliability 

community. As part of preventive maintenance techniques, PHM seeks to build end-to-end frameworks 

capable of extracting, analyzing, and processing sensor monitoring data to train diagnostics and 

prognostics models. These assessment models are then used to enhance maintenance policies based on 

an active monitoring of the assets [1]. Figure 1 illustrates an example of a PHM framework with its four 

principal stages: data acquisition, data preprocessing, diagnostics and prognostics model training, and 

maintenance decision making [2]. 

 

 
 

Figure 1: Example of a PHM framework. 
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The principal stage in any PHM framework consists of finding representative models to assess a 

system’s state of health for diagnostics and prognostics tasks. There are  mainly three types of models 

used to this end [3]: physics-based, data-driven, and hybrid models. Due to the great advances in data-

driven models (DDMs), such as machine learning (ML) and deep learning (DL) techniques, and the 

lack of degradation physics-based models for complex engineering systems (CESs), most research 

works in PHM have focused on developing and adapting DMMs to PHM [4]. Hybrid methods, on the 

other hand, cover a wide range of possible techniques, where several statistical models and DDMs can 

be combined to obtain more accurate predictions [5], or physics models can be introduced to aid and 

guide the DDMs during the training process [6], [7]. In this regard, physics-informed neural networks 

(PINNs) have lately been introduced as an alternative to model, solve, and discover partial differential 

equations (PDEs) through regular  neural networks (NNs) [8]. This results in networks which are 

cheaper to train in terms of computational costs and that are forced to follow boundary and initial 

conditions through a penalization function during the training process. 

 

Applications of DDMs to PHM frameworks range from vibration-based structural damage localization 

and quantification [9], to degradation and fault detection in rotational elements [10]. In prognostics, 

most efforts have gone into estimating a system’s remaining useful life (RUL). Examples of these are 

adaptation of convolutional neural networks (CNNs) [11], long-short term memory (LSTM) cells [12], 

and self-attention mechanisms [13]. However, there are several challenges that need to be addressed 

before implementing DL models to real scenarios and, therefore, their deployment in the industry is still 

rare and limited [14].  

 

Current challenges in DL applications to PHM are thoroughly presented in [14]. Here, it is discussed 

that most DL techniques lack interpretability within their structure, therefore relying on post-hoc (post-

model) interpretability tools rather than intrinsic (in-model) interpretability. Post-model interpretability 

involves methods that analyze models after the training process [15]. Examples of these are LIME 

(Local Interpretable Model-Agnostic Explanations) [15] and SHAP (SHapley Additive exPlanations) 

values [16]. Relying on external tools to gain model interpretation hinders the transparency and trust 

that users may have on the model’s predictions [17], and is thus undesired. Another challenge identified 

in PHM is that most of these DL models are trained and validated using benchmark datasets generated 

in simulated or controlled experimental setups [2], [18]. As such, it is likely that the developed DL 

frameworks will present poor performance when adapted to real-world scenarios.  

 

To address these challenges, we have previously presented a PINN framework for RUL estimation [19]. 

However, the framework was tested on the C-MAPSS data set [20], which although provides a good 

benchmark to compare models, it does not present the intricacies and challenges that can be found in 

sensor monitoring data collected from real CESs such as noise, missing values, and other 

inconsistencies [2], [21]. Further, there is a gap in the literature on how to create reliable RUL labels 

for prognostics tasks. Real CESs rarely present multiple failures in short periods of time and the sensor 

data collected are not automatically labeled. The lack of discussion on how to create RUL labels also 

comes as consequence of using benchmark datasets to validate PHM frameworks, since they are often 

provided with predetermined and well-defined RUL labels. The importance of data preprocessing in 

PHM and the most relevant steps to create degradation (i.e., classification) labels are presented in [2]. 

Nevertheless, using this methodology to generate robust and reliable RUL labels when analyzing data 

acquired from real CESs remains a challenge. 

 

This paper seeks to validate the PINN-RUL framework [19] on a real case study consisting of a vapor 

recovery unit (VRU) located at an offshore oil production platform. The framework establishes a link 

between the system’s recorded sensor data behavior and degradation processes through an adaptation 

of PINNs, estimating the RUL and providing visualization tools through a latent variable. A methology 

to create RUL from maitenance records is presented. 

 

The contributions of this paper are the following: 

1) This is the first implementation of PINNs for RUL estimation in a real CESs. This is a further 

validation of the work presented in [19]. 
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2) We present an analysis on the RUL labels generation process based on maintenance and failure 

records. This is an extension of the work presented in [2]. 

3) We discuss how this framework can be trained in a semi-supervised manner, which is advantageous 

when analyzing real CESs with few failure events. 

The remainder of this paper is structured as follows. Section 2 is dedicated to the case study description. 

Section 3 describes the PINN-RUL framework and the RUL label generation based on maintenance 

logs. Section 4 presents the main results for the prognostics model. Finally, conclusions are presented 

in Section 5. 

 

2. VAPOR RECOVERY UNIT DATASET 
 

The vapor recovery unit (VRU) is located at an offshore oil production platform. The VRU is a complex 

multi-component system responsible of recompressing hydrocarbons separated from the oil stream 

during the primary processing stages. The main components integrating the VRU system are two 

scrubbers, two heat exchangers, an electric motor, and a two-stage screw compressor. Figure 2 shows 

a sketch of the layout of the system. 

 

The VRU unit is equipped with a sensor network comprised of 189 sensors of different kinds such as 

flowmeters, thermocouples, pressure gauges, and accelerometers. Sensor data logs are registered at a 

sampling interval of 15 sec. from 1 January 2019, until 18 February 2020. The sensor network is 

composed of multiple redundant sensors and thus, many variables are highly correlated. The collected 

data comes from a real-world operational environment; therefore, it presents noise contamination and 

missing data logs, among other defects. Along with the sensor readings, a separate file is provided with 

information regarding the stoppages of the system. Here, for each time the system was stopped, a label 

and an observation describing the cause of the shutdown are registered. Thus, the failure times for each 

of the components are available through the maintenance logs, as well as every time the system was 

paused or shut down for external reasons.  

 

A detailed description of the system and the preprocessing of the data can be found in [2], which 

considers temporal and statistical analysis for feature selection, outlier detection and removal, as well 

as training and test set separation. 

 

 

 

Figure 2: Simplified Diagram of Vapor Recovery Unit. 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

3. RUL LABELS AND PINN FRAMEWORK 

  
This section provides details on the RUL label generation process based on maintenance logs and the 

PINN-RUL framework. 

 

3.1 RUL Label Generation 

  

The proposed RUL label generation process for components in a multi-component system follows a 

similar philosophy as the one presented in [2]. Maintenance logs are used to identify stoppage times 

related to failures. In this case, the mechanical failures associated to the scrubber component are 

considered. The failure times determine where a time window is considered to create the RUL labels. 

 

Formally, the RUL labels are created as follows. Let 𝑆 be a multi-component system composed of 𝑁 

components. Each component is then denoted as 𝐶𝑖, with 𝑖 = {1, … , 𝑁}, which has a set of failure modes 

𝐹𝑀𝑗
𝑖  with 𝑗 = {1, … , 𝑛𝑖}, where 𝑛𝑖  is the number of possible failure modes for the 𝑖-th component. 

Finally, let 𝑡𝑖
𝑗
 denote the time at which the system was stopped due to failure mode 𝑗  at the 𝑖 -th 

component, and 𝑡𝑆
𝑝

 as the time at which the system is stopped or paused for any reason that is not one 

of the known failure modes.  

 

When a component 𝐶𝑖 fails at failure time 𝑡𝑖
𝑗
, it can be assumed that this corresponds to 𝑅𝑈𝐿𝑖 = 0. 

Starting from here, a time window Δ 𝑡𝑤 can be define in which the RUL of the component will decrease 

linearly in time [11]. That is, at time 𝑡𝑗
𝑗

− Δ𝑡𝑤  the component has a 𝑅𝑈𝐿𝑖 = Δ𝑡𝑤  label. Figure 3 

illustrates an example of this methodology for a time-window Δ 𝑡𝑤 = 1400min. Setting a defined time 

window before the failure event is critical to obtain robust RUL labels. Indeed, if all the monitoring 

sensor data between one failure and the next were used, it is likely that the data will be contaminated 

with other non-failure events (e.g., maintenance, pauses, emergency shutdowns). By defining Δ𝑡𝑤, the 

generated labels are then directly linked to the failure mode of the component and are defined based on 

the failure 𝐹𝑀𝑗
𝑖 of the component and not the entire system. 

 

 
 

As it is discussed in the literature [11], when defining RUL labels based on time-to-failure one could 

choose to use a linear RUL label until the failure event, or select a start of degradation point from where 

the RUL decreases linearly in time. Figure 3 shows an example for both approaches, where the red line 

illustrates the linear RUL decrement while the blue line is the adjusted RUL when the start of 

degradation point is selected at 800 min. before the failure. That is, it is assumed that the RUL is constant 

until 800 min. before the failure, which indicates the start of the degradation process. 

 

 
Figure 3: Example of RUL label generation. 
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For this case study, the selected time window is set for 24 hrs. (i.e., Δ𝑡𝑤 = 1440 min.) to create the 

RUL labels for the scrubber component. It is important to ensure that no other pauses or stoppages 

overlap with the selected time window. That is, 𝑡𝑆
𝑝

∉ (𝑡𝑖
𝑗

− Δ𝑡𝑤; 𝑡𝑖
𝑗
). 

 

3.2 PINN-RUL framework 

 

The PINN-based framework is illustrated in Figure 4 [19]. The framework consists of three stages, each 

represented by a NN. The first stage maps the operational conditions (OC, i.e., sensor values) and the 

time 𝑡 into a two-dimensional latent variable 𝑥. The time variable represents how far into the future the 

RUL estimation is made. For instance, for 𝑡 = 0 the prediction would correspond to the RUL at the 

time the sensor values were obtained. On the other hand, if 𝑡 = 10 min. the estimated RUL would 

correspond to a prediction 10 min. in the future starting from the time at which the OC were observed. 

That is, the framework allows to use current operational conditions to predict RUL values at future 

instances in time.  

 

 
The framework’s second stage is the most similar to other DL frameworks implemented for RUL 

estimation. Here, the output 𝑥 from the first stage and time 𝑡 are used as input values to the second NN 

that outputs the system’s RUL. The time is considered in this stage so that automatic differentiation 

[22] can be used to obtain the exact derivative of RUL w.r.t time (𝜕𝑅𝑈𝐿/𝜕𝑡), which is then used as the 

left-hand side of the PDE penalization function. The third stage of the framework corresponds to the 

dynamic NN as defined in [8] and is used as the right-hand side of the PDE penalization. This NN takes 

𝑥 and the derivative 𝜕𝑅𝑈𝐿/𝜕𝑥 as input values, and thus the PDE penalization 𝑓 is defined as: 

 

𝑓 ≔
𝜕𝑅𝑈𝐿

𝜕𝑡
− 𝑁 (𝑥,

𝜕𝑅𝑈𝐿

𝜕𝑥
 ) = 0 (1) 

 

where 𝑁 corresponds to the output of the dynamic NN. Notice that the dynamic NN does not need any 

labels to be trained and could potentially be trained in an unsupervised manner. As usual, the training 

loss for the second stage (i.e., the RUL) corresponds to the mean squared error defined as: 

 

 
Figure 4: Physics-informed neural network RUL framework. 
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𝑀𝑆𝐸 =
1

𝑀
∑ (𝑅𝑈𝐿𝑖 − 𝑦𝑖)2

𝑀

𝑖=1
(2) 

 

where 𝑀  is the number of training samples, 𝑦𝑖  is the RUL label, and 𝑅𝑈𝐿𝑖  is the corresponding 

prediction from the second stage. The cost function can then be defined as: 

 

𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆𝑓2 (3) 

 

where 𝜆 is the penalization weight. 

 

4. RESULTS AND DISCUSSION  
 

In this section, results are presented for the PINN-RUL models trained on the VRU system’s scrubber 

component. A 10-fold cross validation is implemented for the selection of the main hyperparameters, 

namely: number of layers and neurons in each NN, activation functions, PDE penalization weigh, and 

learning rate. More details on the hyperparameters selection can be found in [19]. Models are trained 

using Python 3.7 using the Tensorflow 2.0 library [23]. An Intel i7-9700K CPU and a 24GB Titan RTX 

GPU are used as hardware. The average training of a model takes an average of 36.1 min. The long 

training times are mostly due to the size of the training data set, corresponding to 2M data points. 

 

Once the hyperparameters are selected, 10 different models are trained, which yield an average RMSE 

of 2.18 hrs. for the training set, and 2.19 hrs. for the test set. Figure 5 shows the latent variable 2D 

representation for one of the trained models, which is color mapped with the corresponding label (left) 

and estimated (right) RUL value. A transition from concentrated high RUL values (healthy) to disperse 

low (degraded) RUL values is observed. On the one hand, the dispersion of low RUL values could 

correspond to different failure mechanisms. In the case of the VRU’s scrubber, information on the 

failure mechanism is not available, but it is likely that more than one failure mode is at play. 

  

 
 

  

  
Figure 5: Latent variable RUL mapping for the VRU Scrubber. 
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On the other hand, having high RUL values concentrated in a small area can be interpreted as the system 

behaving consistently when is in a healthy state. Figure 5 also shows that the model smooths the 

transition from high RUL values to low RUL values labels. When evaluating the test set, Figure 5 shows 

that the latent variable mapping follows a similar pattern as the train set. As such, the latent variable 

map gives an accurate assessment of relative position of a new incoming data with respect to the training 

set, which in turn provides interpretability on the system’s state of health. 

 

The obtained results are important since they show that it is possible to obtain RUL estimation based 

on big machinery data from a real CES. The implementation of PINNs also provides the latent space 

representation, which can make an important difference in the decision-making process by offering 

more transparency and trust on the obtained RUL estimation. Indeed, an online implementation of this 

model would yield a simultaneous RUL value and its location on the latent space. If the RUL values 

does not correlate with the latent variable’s color map, it is likely to be an inaccurate prediction. Further, 

as it is presented in [19], health state classifiers can be trained by selecting a RUL threshold. 

 

One of the advantages of the PINN-RUL framework is that it does not require all training data to be 

labeled. Indeed, although RUL labels are needed to train the RUL NN (second stage in Figure 4) and, 

therefore, the entire framework, unlabeled data points can still be used to feed the penalization function 

𝑓 in Equation 3. This implies that a model can be trained in a semi-supervised way in the case that 

labels are not available (e.g., the system does not present failures), or the RUL labels are not reliable. 

The latter is important when considering the proposed methodology to create the RUL labels in Section 

3.1.  Considering a time window only before the failure event to create the RUL labels can result in 

most of the data set not been used to train the model, particularly when Δ𝑡𝑤 is small or there are few 

failure events registered in the available data. Thus, feeding unlabeled data to the penalization function 

during the training process can add valuable information to the trained model, especially for the healthy 

state of the system (i.e., high RUL values).  

 

It should be noted that the RUL label generation methodology is limited by the number of failures 

registered in the maintenance logs, as well as the quality of the registered data. Ideally maintenance 

logs should contain exact time of failure and accurate descriptions on the failure mechanisms that caused 

each failure. Furthermore, the selected time window Δ𝑡𝑤 will depend on the system and component 

under study. It is well known that DDMs models tend to perform worse for high RUL values than for 

low RUL values. This can be due to overrepresentation of the low RUL labels, since all equipment fail, 

but not all have long operational times before the next failure. This is a factor that needs to be considered 

when choosing the Δ𝑡𝑤 value, since high values would likely result in an underperformance of the 

model. 

 

The model’s interpretability provided by the latent variable 𝑥 in Figure 5 can be considered as intrinsic 

since it comes as a result from the model constraint (i.e., PINN penalization function) imposed during 

the model training [17]. Interpretability is an ongoing challenge in the ML and artificial intelligence 

(AI) community and not just in PHM where it has been identified as one of the most important 

challenges to deploy DDM-PHM frameworks in real systems [14]. Hence, it is important that new 

proposed DL-PHM frameworks give means to bring in more transparency and understanding of their 

predictions, and the presented PINN-RUL takes a step forward in that direction.   

 

5. CONCLUSIONS 
 

This paper presents and validates an adapted PINN framework for RUL estimation of a VRU system. 

The generation of RUL labels based on maintenance logs is also presented. The trained models provide 

an intrinsic interpretation of the system’s state of health through a latent variable. Future work should 

consider aggregating the model’s results to the decision-making process (i.e., maintenance policy 

design) by creating metrics and elements to incorporate the RUL estimation and the diagnostic latent 

variable. Additionally, new Bayesian physics-informed neural networks (B-PINN) [24] could become 

an important tool to quantify the model’s uncertainty.  
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