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Abstract: The Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER) was 
previously developed as a simplified test case for dynamic human reliability analysis (HRA). HUNTER 
1 paired a dynamicized version of the SPAR-H HRA method that autocalculated the effects of 
performance shaping factors (PSFs), an implementation of the GOMS-HRA method to compute time 
for modeled human tasks, and an interface between the RAVEN modeling environment and RELAP5 
thermo-hydraulics code. In this manner, a simple implementation of a virtual operator was coupled to 
a virtual plant model. To mature this framework, HUNTER 2 has been initiated. HUNTER 2 seeks to 
scale the earlier proof-of-concept demonstration into a software toolkit that can be deployed to support 
industry needs for dynamic HRA. 
 
 
1.  INTRODUCTION 
 
Human reliability analysis (HRA) is the study of human error, specifically how to identify sources and 
contributors of human error and how to quantify that error [1]. Within the U.S. Department of Energy’s 
Light Water Reactor Sustainability Program, the Risk-Informed Systems Analysis (RISA) Pathway 
sponsors a number of HRA-related projects that aim to create better tools to support industry risk 
assessment needs. One such project is the Human Unimodel for Nuclear Technology to Enhance 
Reliability (HUNTER) project [2]. HUNTER is a framework to support the dynamic modeling of 
human error in conjunction with other (primarily hardware system) modeling tools. HUNTER creates 
a virtual operator or, potentially, a human digital twin [3] as a human operations counterpart to plant 
hardware modeling and simulation. The name HUNTER is meant as a counterpart to the various animal-
named modeling tools developed at Idaho National Laboratory (INL), such as Risk Analysis Virtual 
Code ENvironment (RAVEN) [4] and Multiphysics Object-Oriented Simulation Environment 
(MOOSE) [5]. These tool names playfully combine to become tools like RAVEN-HUNTER or 
MOOSE-HUNTER.* 
 
The theoretical underpinnings of HUNTER were developed previously [2]. We refer to these earliest 
efforts as HUNTER 1. However, as part of constructing the first principles for HUNTER, little effort 
was devoted to making HUNTER a software tool that could be integrated into industry efforts. It 
remained a research framework for dynamic HRA efforts, but these efforts did not combine into a single 
solution. As the HUNTER project continues, the main goals are now twofold: 
 
• Create a usable and adaptable standalone software tool for dynamic HRA, and 
• Develop example applications and use cases to meet industry HRA needs. 
 
This paper addresses the first goal, namely the development of the HUNTER software, here named 
HUNTER 2 to disambiguate it from the earlier efforts. The disparate elements of the HUNTER 1 
framework have now been formalized and implemented as an executable Python library. The initial 

 
* While a literal “hunter” is usually antithetical to the longevity of the animals with which it associates, the 
HUNTER framework here is meant to complement the capabilities of the animal modeling methods and thereby 
ensure their long lifespan. 
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version is a fully functional proof of concept, including a graphical user interface (GUI) to simplify the 
process of model building and editing. These refinements go hand in hand with the planned 
development of additional use cases and accident scenario models. As additional scenarios are modeled, 
new software features and modeling functions will be included to facilitate a greater utility of HUNTER 
for a wide range of applications. 
 
2.  BENEFITS OF HUNTER AS A DYNAMIC H.R.A. FRAMEWORK 
 
Historically, HRA was developed as a worksheet solution, suitable for supporting static probabilistic 
risk assessments (PRAs). Static HRAs and PRAs review a particular snapshot of possible outcomes, 
but they do not model a dynamic, open-ended event progression. The shifting event progression—the 
defining characteristic of dynamic HRAs and PRAs—allows modeling of the range of activities and 
outcomes as well as the consideration of a variety of what-if scenarios that would prove onerous to 
perform manually with static methods. Dynamic HRA can also be used to model scenarios for which 
there is minimal operational experience in order to explore what outcomes may emerge because of 
different human responses. This capability is especially useful for emerging areas of interest in risk 
modeling, such as severe accidents, HRA for human interactions with advanced technologies like digital 
and automated human-system interfaces, balance-of-plant activities beyond the main control room, and 
specialized areas like flexible equipment use and physical security modeling. As work on developing 
sample analyses in HUNTER continues, it is important to demonstrate the additional risk insights 
afforded by dynamic modeling that would not be possible with conventional static methods. An easy-
to-use software tool that can help bring new risk insights is essential for industry as it supports new risk 
requirements. 
 
An additional benefit of dynamic HRA is that the tool can be used beyond simply producing a 
quantitative output of the human error probability (HEP). Dynamic HRA can provide qualitative 
insights into the types of activities plant personnel will perform in novel contexts. For example, dynamic 
HRA might reveal that certain courses of action elicit a large workload in plant personnel, suggesting 
the need for alternate, less mentally demanding pathways to ensure positive outcomes. Dynamic HRA 
can also provide other quantitative measures like time-on-task estimates that aren’t readily available in 
existing static methods.  
 
Dynamic HRA—and, by extension, HUNTER—will succeed as risk tools only if they provide true 
benefits to the risk analysts who use them. Dynamic HRA offers the potential to provide deeper 
modeling fidelity; opportunities for exploring the ranges of human performance; the ability to 
extrapolate HRA to new scenarios, technologies, and domains; and the prospect to model output types 
beyond HEPs. However, dynamic HRA does not accomplish these advantages over static HRA without 
costs. Dynamic HRA can be considerably more complex to set up and model. As such, HUNTER strives 
to strike a balance by creating a uniquely simple and adaptable software tool that may be readily used 
by risk analysts to model phenomena of interest. 
 
3.  PREVIOUS HUNTER EFFORTS 
 
3.1  HUNTER 1 Framework 
 
The HUNTER framework is an approach to dynamically model human cognition and actions as well 
as incorporate these respective elements into a PRA framework [2]. Many researchers [6-8] have 
emphasized the importance of simulation and human performance modeling in HRA. The HUNTER 
framework was developed to overcome some challenges with existing static HRA and to more 
realistically and accurately evaluate human-induced risks in nuclear power plants (NPPs). It was also 
conceived to offer a simple-to-use modeling approach that builds on well-established static HRA 
approaches while adding new dynamic modeling features. During the brief tenure of the HUNTER 
project, there have been several efforts to model varieties of human behaviors, produce an error rate 
over a denominator of repeated trials, dynamically compute performance shaping factor (PSF) levels to 
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arrive at HEPs for any given point in time, and present the decision points that operators make while 
engaging with the plant. 
 
The original HUNTER project was not intended to produce a standalone HRA method but rather a 
framework that combines a variety of methods and tools required for dynamic HRA. Figure 1 shows 
the original HUNTER 1 framework. There are two important considerations in this early model of 
HUNTER. First, the HUNTER framework was designed to interact with other dynamic risk analysis 
tools like RAVEN [4]. As the HRA counterpart to RAVEN, HUNTER was used to quantify HEPs for 
operator actions in a station blackout scenario based on time-dependent plant response data and operator 
actions [2]. Second, the existing HUNTER framework has considered three major concepts—cognitive 
models, PSFs, and data sources—for analyzing dynamic operator actions. In the HUNTER 1 efforts, 
the Goals, Operators, Methods, and Selection rules (GOMS) – HRA [9], the Standardized Plant 
Analysis Risk-HRA (SPAR-H) autocalculation [10], and dynamic dependency [11] approaches were 
developed to implement the concepts within the HUNTER framework. These are described in the next 
subsections. 

 

 
Figure 1: The Original HUNTER 1 Framework  

3.2. GOMS-HRA 
 
GOMS-HRA [9] was developed to provide cognition-based time and HEP information for dynamic 
HRA calculation in the HUNTER framework. It is theoretically derived from the GOMS method, which 
has been used to model proceduralized activities and evaluate user interactions with human-computer 
interfaces in human factors research [12]. As a predictive method, GOMS-HRA is well-equipped to 
simulate human actions under specific circumstances in a scenario. The basic approach of GOMS-HRA 
consists of three steps: (1) breaking human actions into a series of task-level primitives, (2) allocating 
time and error values to each task-level primitive, then (3) predicting human actions or task durations. 
 
In GOMS-HRA, human actions are broken into task-level primitives, consisting of the most elemental 
types of human activities. GOMS-HRA uses six types of task-level primitives defined in the Systematic 
Human Error Reduction and Prediction Approach (SHERPA) [13]. The following are the SHERPA 
error types: 

 
• Actions (A)—Performing required physical actions on the control boards (AC) or in the field (AF) 
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• Checking (C)—Looking for required information on the control boards (CC) or in the field (CF) 

• Retrieval (R)—Obtaining required information on the control boards (RC) or in the field (RF) 

• Instruction Communication (I)—Producing verbal or written instructions (IP) or receiving verbal or 
written instructions (IR) 

• Selection (S)—Selecting or setting a value on the control boards (SC) or in the field (SF) 

• Decisions (D)—Making a decision based on procedures (DP) or without available procedures (DW) 

This GOMS-HRA taxonomy is captured in a cognitive model, as depicted in Figure 2 [14], with an 
added element for time spent in waiting (W). This figure shows how tasks are aligned to stages of 
information processing, beginning with sensation and perception, progressing to cognition, and 
culminating in behavioral actions. Note that items like Instructions (IR and IP) can be either verbal (e.g., 
communication between shift supervisor and reactor operator) or written (e.g., use of printed operating 
procedures). 
 
 

 
 

Figure 2: GOMS-HRA Cognitive Model  

The GOMS-HRA primitives are treated at different levels of analysis, from Procedure-Level Primitives 
that readily map to operating procedures to Task-Level Primitives, which represent generic task types. 
The Task-Level Primitives include nominal error rates and nominal time-on-task estimates. The time 
information includes the statistical distribution, mean, standard deviation, 5th and 95th percentile, 
which have been derived from the time data collected through experiments using actual operators in the 
Human Systems Simulation Laboratory (HSSL) at INL [15]. 
 
3.3  SPAR-H Autocalculation 
 
The earlier HUNTER work investigated how to adapt the existing static SPAR-H to a dynamic 
framework. The SPAR-H Method [16] is an easy-to-use HRA method developed by INL and published 
by the U.S. Nuclear Regulatory Commission. The approach focuses on the quantification of HEPs on 
the basis of PSF multipliers. SPAR-H has been widely used by both industry and regulators in its 
intended area of supporting PRAs for NPPs, but it is also finding use in other industries, such as oil and 
gas [17]. In traditional static HRA approaches like SPAR-H, human actions are manually reviewed by 
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human reliability analysts using tools like the Electric Power Research Institute’s HRA Calculator. 
Specifically, for the HEP calculation, the analysts need to allocate a nominal HEP (i.e., a default error 
rate that serves as the starting value for HRA quantification) for a human failure event (HFE) or a 
smaller task-unit, rate a variety of PSF levels representing contextual impacts, and then modify the 
nominal HEP by applying the multiplier values for PSFs. In contrast, in the dynamic HRA version, the 
multiplier is calculated automatically without analyst inputs. In this case, the Complexity PSF multiplier 
is derived entirely from plant parameters. The details on the SPAR-H autocalculation approach are well 
described in [18]. The basic form of the equation for the Complexity PSF is found below: 
 

Normalized Complexity = 1.26754 x LOOP + 1.26743 x LODG + 1.26753 x LOB – 
0.00025 x temperature – 0.00507 x power + 1.65116 

(1) 

 
where LOOP represents a Boolean (i.e., true or false) variable for loss of offsite power, LODG 
represents a Boolean variable for loss of diesel generator, and LOB represents a Boolean variable for 
loss of battery. The temperature and power parameters represent plant parameters. The equation is 
generated dynamically in response to the evolving scenario and is normalized to the multiplier range 
found in the static form of SPAR-H. The autocalculated PSF is multiplied by the nominal HEP for the 
Task-Level Primitive provided by a lookup table in GOMS-HRA. 
 
3.4  Dynamic Dependency 
 
Dependency analysis in HRA is a method of adjusting the failure probability of a given action by 
considering the impact of the action preceding it. Normally, dependency increases the overall HEP, 
representing the notion that error begets error. Thus, dependency plays an important role in reasonably 
accounting for human actions in the context of PRAs and prevents PRA results from being estimated 
too optimistically based on the HRA results. Dependency analysis has been known to significantly 
affect the overall result of PRAs. If the results of dependency analyses are inaccurate, they could prove 
unconvincing for explaining human errors in the context of PRA. In other words, risk metrics such as 
core damage frequency can be significantly underestimated in cut sets or sequences containing multiple 
HFEs if dependency is not considered. 
 
One of the major benefits of transitioning from static to dynamic HRA is that dynamic HRA makes it 
possible to model operator actions over time as well as straightforwardly analyze dependencies between 
these actions. Existing static HRA methods mostly do not consider human performance changes over 
time or during the event progression, nor do they provide a truly dynamic account of human actions 
[19]. Accordingly, human reliability analysts have mostly performed dependency analysis by relying 
on static PRA and HRA information. Dynamic HRA, on the other hand, considers human actions 
dynamically and models types of activities and events, even where the human role is not clearly 
understood or predicted (i.e., unexampled events such as severe accidents). Furthermore, a dynamic 
simulation represents a sequence of operator actions, which make it easier to identify dependency 
candidates with contextual impacts. The authors previously considered how to treat dependency in 
dynamic HRA. Boring [11] conceptually suggested PSF lag and linger effects as an option to treat 
dependence between operator actions. PSF lag indicates that the effect of the PSF on performance does 
not immediately psychologically or physically appear, while PSF linger means that the influence of 
PSFs on previous operator actions is unfinished after the actions, resulting in residual effects on the 
next operator actions. Park et al. [19] validated the effects on the basis of experimental data and applied 
the concept to the dynamic dependency analysis.  
 
4.  EXPANDED HUNTER FRAMEWORK 
 
As noted, the original HUNTER 1 framework was a collection of dynamic HRA tools that were not 
contained in a single software application. Intrinsic to the earliest conceptualizations of HUNTER was 
the idea that some aspects of the modeling could be exchanged for different modules. For example, 
while the initial framework focused on making the SPAR-H PSFs dynamic [18], there was an 
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acknowledgment that more comprehensive or nuanced PSF treatments should also be possible in 
HUNTER. In other words, while the initial proof-of-concept demonstration may focus on simplified 
parts of dynamic HRA, this simplification should not prove the limiting factor of HUNTER, and there 
should be opportunities to support more comprehensive modeling. 
 
The process of translating HUNTER from a collection of research models into a standalone, integrated 
software tool necessitated the central goal of adaptability. As a result, HUNTER 2 incorporates a 
flexible, modular, and scalable software architecture. This trio of concepts refers to the underlying 
objectives for HUNTER deployment. The three concepts overlap somewhat but are not fully 
interchangeable: 
 
• Flexible—aligns with the ability of the HUNTER software to model a variety of applications. Most 

conventional HRA, for example, models reactor operator crews in main control rooms. This type 
of HRA is well understood and may not immediately benefit from the added functionality of 
dynamic HRA. However, the ability to create a human digital twin model that can be used for both 
main control room and balance-of-plant activities gives HUNTER the plasticity to model a diverse 
range of scenarios. Importantly, the value of HUNTER for industry may reside foremost in its 
ability to model emerging scenarios that are not well understood or for which there is no modeling 
precedence in conventional HRA. 

• Modular—refers to the notion that parts of HUNTER can be interchanged. Modularity means that 
the part of the software code for modeling PSFs, for example, could be exchanged for another 
module. The PSF code, currently anchored in SPAR-H, could be switched for a different 
methodological treatment of PSFs. The emphasis in HUNTER becomes specifying how the module 
will communicate with the rest of the software, while providing fully functional default modules 
that can be used for the most common modeling applications. 

• Scalable—means functions and features can be added on to the base software. For example, a 
cognitive modeling architecture might be added to the basic HUNTER model to influence decision 
outcomes during scenario runs. Scalability may mean that more complex modules may be used for 
certain analyses to increase modeling fidelity (often at the cost of modeling efficiency). Scalability 
also means that some features may be excluded. For example, if particular modeling scenarios do 
not have information to drive some HUNTER features, these features may be toggled off when 
needed. Similarly, if a detailed analysis is not warranted such as during screening, some 
comprehensive HUNTER features may be disabled to facilitate expedient analysis. 

The adaptability objectives of flexibility, modularity, and scalability are influenced by a variety of 
modeling considerations. Most notably: 
 
• Knowledge—our understanding of particular phenomena, specifically psychological aspects of 

operations in given contexts, will drive how modeling is deployed in HUNTER. Certain modeling 
approaches may be well validated through practice, while other modeling approaches are more 
theoretical (i.e., are earlier in development with less well-understood phenomena). The analyst 
deploying HUNTER may opt for well-understood models for novel contexts to gain higher 
confidence in the results, or they may use less mature modeling for exploratory purposes to 
understand the range of possible phenomena rather than the most common course of action. 

• Fidelity—the degree to which the modeling should accurately reflect human performance may 
shape how features are instantiated. For example, a severe accident modeling scenario may need to 
deploy a higher fidelity decision-making algorithm given the importance of operator expertise in 
navigating such contexts. This contrasts with more routine operations, which closely follow written 
procedures and may not require the same level of decision-making by operators. The former may 
require a sophisticated cognitive modeling architecture that can weigh goals and tradeoffs. In 
contrast, the latter may simply deploy a procedural script for the operator modeling component. 
Both should be possible in HUNTER (i.e., modeling flexibility), but they will affect which modules 
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Table 1: HUNTER Objectives and Modeling Considerations 
 

OBJECTIVES 
MODELING CONSIDERATIONS 

Knowledge Fidelity Efficiency Purpose 

Flexibility 

Novel modeling 
scenarios mean less 

knowledge about 
performance 

outcomes. This may 
require generalizing 

known models, 
incorporating new 

modules that 
incorporate more 

known aspects of the 
modeling scenarios, or 

developing new 
features necessary to 
represent modeling 

nuances. 

Some modeling 
contexts need less 

fidelity, while others—
particularly risk-

significant scenarios—
may require more 

detailed fidelity. The 
model should adjust 

according to the 
demands for fidelity. 

Some modules may not 
be necessary for all 

contexts, while richer 
modules may be 

required for higher 
fidelity, and these 

modules may be turned 
on or off for particular 

analyses. 

As with fidelity, some 
analyses may have 

different requirements. 
A dynamic HRA that’s 
part of a larger PRA 

may need to emphasize 
computational 

efficiency, requiring 
simpler models. 
Modules may be 

optimized for speed 
with a reasonable 
approximation of 

operator performance, 
allowing quicker 

computation times 
when running the 

models. 

The outputs of the 
dynamic modeling may 

vary—from 
autocalculated HEPs, to 

time required by 
human personnel, to 

the evolution of 
performance shaping 
factors. HRA may, in 

other words, be used 
for different purposes, 

and the software 
should accommodate 

these different 
purposes. 

Modularity 

Scalability 

 

are selected (i.e., modeling modularity) and which features are invoked during simulation runs (i.e., 
modeling scalability). 

• Efficiency—this consideration comprises how quickly the model may be set up and how quickly 
simulations may be run. Unless model building is automated by the PRA and other tools already at 
the analysts’ disposal, the simulation model must be built for each scenario. The model 
development time is driven by constraints such as the amount of time to complete the model, which 
is a direct reflection of the urgency of the analysis. For example, rapid-response modeling required 
after an incident may have a much shorter development timeline than a more routine version update 
of existing models over a multiyear timeline. This urgency may drive the need for a simpler model. 
On the other end of the equation, a simulation that is part of an extensive, multi-scenario analysis, 
such as in support of a whole plant PRA, may focus on the execution time of the model. HFEs in 
the PRA that are deemed of low risk significance may not warrant the luxury of waiting for a richly 
modeled scenario to complete. Instead, simple and quick modeling may suffice for such purposes. 

• Purpose—specifies how the analysis will be used. While the purpose shapes some of the other 
modeling considerations, it is most useful as a concept to define the output of the analysis. For 
example, conventionally, HRA is used to calculate HEPs. Individual HEPs may then be substituted 
into an overall risk model to see the effect of human performance on the outcome of an event 
sequence. As noted in [20], there remain some challenges with aligning dynamically calculated 
HEPs to those produced by static HRA methods. This stems from the unit of analysis, whereby 
most static HRA looks at the whole sequence of actions wrapped as an HFE, while dynamic HRA 
typically considers actions at the step or task level. The aggregation from step to HFE is not clearly 
understood, and calculated HEPs at the step or task must undergo some further conversion to 
achieve comparability with HEPs for HFEs. Further, there remain other outputs that may prove just 
as informative to HRA and have not been the purview of conventional HRA methods. For example, 
dynamic HRA can calculate time estimates for particular tasks. Often, the criterion for success or 
failure is not the overt commission of an error but the timing-out of an activity expected to be 
completed in a specific time window. With the exception of some early time reliability curves, most 
HRA does not inform how long tasks involving human performers require. HRA may need this 
information as an input to the analysis, but most HRA methods do not provide explicit guidance to 
estimate time durations. The HUNTER framework can readily calculate probabilistic estimates of 
how long tasks take, thus providing a different type of output and purpose for risk analyses. 
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Additionally, HUNTER can provide qualitative outputs, such as the state of dynamically calculated 
PSFs. Such analytic outputs could be informative to a hybrid static-dynamic HRA approach, for 
example, in which dynamic modeling is used to derive insights on operator performance that are 
subsequently used by human analysts to complete the HRA. 

A crosswalk of objectives and modeling considerations for HUNTER may be found in Table 1. 
 
5.  HUNTER SOFTWARE FRAMEWORK 
 
With the inherent adaptability of HUNTER in mind, what are the essential modules of the HUNTER 2 
framework? One critique of the trend to build increasingly complex models of human performance in 
HRA was leveraged by Galyean [21], who suggested that most human performance could be accounted 
for simply by looking at three factors: individual, organization, and environment. 
 
 

 
Figure 3: Conceptual Modules (in Black) and Classes (in Blue) of HUNTER 2 

 

Inherent in Galyean’s three-factor model is the idea of the individual and the context (i.e., organization 
and environment). This characterization may however fail to take proper account of the nature of the 
task the individual is performing, which provides an additional degree of context. This refinement of 
the three-factor model nears the Model of Constraints to Action used in biomechanics [22]. In that 
model, bodily coordination and control are influenced by individual, task, and environment factors. The 
focus of the Model of Constraints to Action is clearly on physical movement, with constraints being 
individual physical capabilities of the organism, the nature of the movement task itself, and 
environmental influences that impinge or encourage that movement. Despite its focus on physical 
movement, the model readily generalizes to all human activities, including both physical actions and 
mental endeavors like decision-making. This basic model and its three factors as shown in Figure 3 
serve as the software pillars for the new implementation of HUNTER, whereby each pillar serves as a 
module in the architecture. Joining the modules in the figure are classes, which are depicted in blue. 
For the present purposes, modules describe the basic elements of human behavior, while classes are the 
functions that enable the modules to work. Put another way, modules represent who (individual), what 
(task), and where (environment). Classes represent how, why, and when activities occur within the 
modules. Modules are the figurative nouns and verbs of HUNTER, while classes are the adjectives and 
adverbs. 
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6.  HUNTER MODULES 
 
The three modules, depicted as corner nodes in black text in Figure 3, are briefly noted at a conceptual 
level here. We use the example of a virtual control room operator model for illustration here, but 
HUNTER is not limited to only this representation of plant personnel. 
 
• Individual Module—this is the representation of the human performing the activity, sometimes 

referred to as a “virtual operator.” It incorporates relevant characteristics of the individual that 
impact that individual’s performance. Such factors could be considered internal PSFs, which are 
the psychological considerations—like internal stress, experience, knowledge, and fitness for 
duty—that the individual brings to the task. These factors may contribute directly to error rates 
(e.g., stress causes poor decision-making) or indirectly (e.g., performance is slowed when fatigued). 
The individual module may, when so configured, include a cognitive model that accounts for crucial 
aspects of performance like decision-making. 

• Task Module—this is the representation of what activity the human is performing. The human 
follows a course of action, whether guided by an operating procedure, a mental schema, or decision-
making, according to emergent stimuli and strategic goals. In the simplest form of the task module, 
the task is represented by a script that mirrors procedures. The task advances step by step, 
responding to a set of if-then queries to plant states. For example, if a high-priority alarm sounds, 
the script will direct a specific response by the virtual operator. In a simple model, the operator’s 
ability to perform that task may be influenced by factors contained in the individual and 
environment modules, but the operator does not deviate from the script. Of course, actual reactor 
operators are not merely automata, and they will weigh in on the suitability of scripts and even 
improvise when appropriate. A richer model of the task would include provisions for skill of the 
craft and acting outside of rote script following. A yet richer model would incorporate tradeoffs and 
decision-making, including decision heuristics indicative of operator expertise. 

• Environment Module—this is the representation of the world in which the human is acting. In this 
sense, the “world” consists of the systems and tools the human uses. It is the virtual world 
counterpart to the virtual operator—the hardware digital twin for the human digital twin—
represented in the individual module. For most NPP modeling, this world model corresponds to a 
plant simulation. The environment may often only encompass the immediate environment and not 
necessarily consider the broader environment such as the natural setting of the plant if that is not 
central to the task at hand. Level 1, 2, and 3 HRAs correspond to modeling scenarios involving 
design-basis plant functioning, plant damage, and impacts beyond the plant, respectively. The level 
of the risk modeling determines whether the environment is modeled at the micro-, meso-, or 
macrolevel. The environment module considers the external PSFs like the availability of 
procedures, the quality of the HMI, and the complexity and difficulty of the plant conditions. These 
may be derived from plant parameters provided by the plant simulation (e.g., [18]). 

 
7.  HUNTER CLASSES 
 
There are four classes of the HUNTER framework illustrated in blue in Figure 3. They are: 
 
• Input Class—the context is set by the scenario at hand. This is shown in Figure 3 as an input (i.e., 

.i.) into each of the modules, representing the influences that feed into the scenario. A preprocessor 
sets the context—the initial configuration for the individual, the task at hand, and the state of the 
plant—in which HUNTER operates. 

• Scheduler Class—the glue that holds the other modules together. In the figure, this is signified by 
the lines of the triangle. It coordinates the interactions between different modules and also paces 
the progression of the event. Modules may complete their calculations at different rates, and the 
scheduler synchronizes the inputs, outputs, and interdependencies to a common time scale. 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

• Processor Class—the processing that occurs at each step of the task, which is depicted by a gear in 
the center of the Figure 3. A step occurs when all modules have completed their modeling refresh 
cycle and exchanged information. For example, the environment has advanced a time step, updating 
plant parameters, which have been perceived by the virtual operator (individual), who has 
responded by activating a virtual switch (task). This task may be driven by a procedure, which must 
meet certain requirements to advance. The processor class determines the point of advancement to 
the next task. The processor may include logical assertions, such as actions predicated on conditions 
met, branching points, and operator decisions. 

• Output Class—the results of each incremental step in the model. Outputs are changes in the state 
of the model, which are logged as activities, parameter states, and human performance logs. The 
output class records the actual outputs, such as the calculated HEPs that allow HUNTER to be used 
as an HRA method. 

 
These classes may be considered the support functions behind driving the model execution. The classes 
are collectively referred to tongue-in-cheek as the “Gatherer” classes. The three HUNTER modules 
combine with the Gatherer classes to form the HUNTER-Gatherer underpinnings of the software. 
 
8.  CONCLUSIONS 
 
This software representation is necessarily simplified, and it should be noted that the modules may 
employ additional classes and supporting tools to accomplish their functionality. For example, if the 
environment module is a full-scope simulator, it needs a software binder or advanced programming 
interface (API) to allow communication between the simulator and HUNTER. This API may be quite 
different between simulators, but the basic conceptual function remains the same, namely to facilitate 
the exchange of information between the environment module and other entities in the HUNTER 
software. Alternately, the API may consist of lookup tables of prescripted runs, inputs from physical 
test loops, or even dummy values, depending on the needs of the risk model. 
 
The adaptability aspects of HUNTER outlined in Section 4 of this paper mean that the specific software 
implementation for each module or class can be changed depending on the modeling requirements. The 
processor class, for example, may have hooks for procedures and decision-making. The default 
configuration deployed at this time does not yet incorporate a decision-making subclass. As such, this 
function is simply turned off in the software, and modeling assumes rote procedure following. The 
HUNTER architecture allows a subclass to be linked and activated as it becomes available and is needed 
by the modeling community. Similarly, HUNTER uses a simplified list of PSFs for proof of concept. 
This does not prevent a more comprehensive model of PSFs to be inserted as a subclass when one is 
developed. This concept of adaptability from simple to complex modeling in HUNTER is accomplished 
through turning functions on or off and by allowing the capability to link to more complex modeling 
tools as needed. 
 
One of the primary advantages of dynamic HRA comes from the ability to consider the range of 
outcomes and trajectories that are possible—something that is difficult and extremely time-consuming 
to be performed manually using current static HRA and PRA tools. The range of outcomes is 
accomplished by the ability to run each modeled scenario multiple times, covering both the bounds of 
expected human performance (i.e., from worst to best performance, and everything in between) and the 
addition of uncertainty to the model. Model runs such as Markov Chain Monte Carlo iterations are 
guided by a combination of the classes. The scheduler class may track not just individual tasks within 
a model run but also overall repeats of model runs. The input class may change conditions slightly (e.g., 
varying the effects of certain PSFs) at the restart of each run. The processor class may direct activities 
along different branch points to see consequences of different simulated operator actions. Finally, the 
output class may log the relevant results from each model run and aggregate them in a meaningful way 
for understanding trends, frequencies of particular operational paths, and significant outcomes. 
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The conceptual framework of HUNTER has been expanded to provide a more adaptable software 
architecture, and the software implementation incorporates many of these key features. But, there 
remains more development to be done on the modules and classes. For example, key features like the 
autocalculation of PSFs, decision-making, and HEP aggregation are not yet fully deployed in this early 
software version. These features will be expanded considerably prior to release of HUNTER as a 
standalone software tool for risk analysis.. 
 
The present version and application of HUNTER must be seen as an early proof of concept, with more 
complete development on the envisioned features still in the future. Nonetheless, the initial deployment 
of HUNTER 2 shows the promise of the software to support dynamic HRA modeling needs in the 
future. Future software development will follow a twofold approach. First, the deficiencies such as a 
lack of software documentation, integration with existing PRA tools, and library of sample analyses 
will continue to be completed to create a vetted and usable tool that supports industry needs. In parallel, 
additional features will be deployed.  
 
Acknowledgements 
 
This work of authorship was prepared as an account of work sponsored by Idaho National Laboratory 
(under Contract DE- AC07-05ID14517), an agency of the U.S. Government. Neither the U.S. 
Government, nor any agency thereof, nor any of their employees makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. 
 
References 
 
[1] Boring, R.L. (2009). Human reliability analysis in cognitive engineering. Frontiers of 

Engineering: Reports on Leading-Edge Engineering from the 2008 Symposium (pp. 103-110). 
Washington, DC: National Academy of Engineering. 

[2] Boring, R., Mandelli, D., Rasmussen, M., Herberger, S., Ulrich, T., Groth, K., & Smith, C. (2016). 
Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the 
Risk-Informed Safety Margin Characterization Toolkit, INL/EXT-16-39015. Idaho Falls: Idaho 
National Laboratory. 

[3] Shengli, W. (2021). Is human digital twin possible? Computer Methods and Programs in 
Biomedicine Update, 1, Article 100014. 

[4] Rabiti, C., Alfonsi, A., Cogliati, J., Mandelli, D., Kinoshita, R., Sen, S.,... Chen, J. (2017). 
RAVEN User Manual. Idaho Falls: Idaho National Laboratory. 

[5] Permann, C.J., Gaston, D.R., Andrš, D., Carlsen, R.W., Kong, F., Lindsay, A.D., Miller, J.M., 
Peterson, J.W., Slaughter, A.E., Stonger, R.H., & Martineau, R.C. (2020). MOOSE: Enabling 
massively parallel multiphysics simulation. SoftwareX, 11, Article 100430. 

[6] Boring, R.L., Joe, J.C., and Mandelli, D. (2015). Human performance modeling for dynamic 
human reliability analysis. Lecture Notes in Computer Science, 9184, 223-234. 

[7] Boring, R.L., Shirley, R.B., Joe, J.C., Mandelli, D., and Smith, C.L. (2014). Simulation and Non-
Simulation Based Human Reliability Analysis Approaches, INL/EXT-14-33903. Idaho Falls: 
Idaho National Laboratory. 

[8] Coyne, K., & Mosleh, A. (2018). Dynamic Probabilistic Risk Assessment Model Validation and 
Application—Experience with ADS-IDAC, Version 2.0. In Advanced Concepts in Nuclear 
Energy Risk Assessment and Management (pp. 45-85): World Scientific. 

[9] Boring, R.L., & Rasmussen, M. (2016). GOMS-HRA: A method for treating subtasks in dynamic 
human reliability analysis. Risk, Reliability and Safety: Innovating Theory and Practice, 
Proceedings of the European Safety and Reliability Conference, pp. 956-963. 

[10] Boring, R.L., Rasmussen, M., Ulrich, T., Ewing, S., & Mandelli, D. (2017). Task and procedure 
level primitives for modeling human error. Advances in Intelligent Systems and Computing, 589, 
30-40.  



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

[11] Boring, R.L. (2015). A dynamic approach to modeling dependence between human failure events. 
Proceedings of the 2015 European Safety and Reliability (ESREL) Conference, pp. 2845-2851. 

[12] Card, S. K., Moran, T. P., & Newell, A. (2018). The Psychology of Human-Computer Interaction: 
CRC Press. 

[13] Torres, Y., Nadeau, S., & Landau, K. (2021). Application of SHERPA (Systematic Human Error 
Reduction and Prediction Approach) as an alternative to predict and prevent human error in 
manual assembly. Congress of the 2021 International Ergonomics Association. 

[14] Boring, R., Ulrich, T., & Rasmussen, M. (2018). Task level errors for human error prediction in 
GOMS-HRA. In Safety and Reliability–Safe Societies in a Changing World (pp. 433-439): CRC 
Press. 

[15] Ulrich, T., Boring, R., L., Ewing, S., & Rasmussen, M. (2017). Operator timing of task level 
primitives for use in computation-based human reliability analysis. Advances in Intelligent 
Systems and Computing, 589, 41-49. 

[16] Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The SPAR-H Human 
Reliability Analysis Method, NUREG/CR-6883. Washington, DC: U.S. Nuclear Regulatory 
Commission. 

[17] Boring, R.L. (2015). Defining human failure events for petroleum applications of human 
reliability analysis. Procedia Manufacturing, 3, 1335-1342. 

[18] Boring, R., Rasmussen, M., Smith, C., Mandelli, D., & Ewing, S. (2017). Dynamicizing the 
SPAR-H method: A simplified approach to computation-based human reliability analysis. 
Proceedings of the 2017 Probabilistic Safety Assessment Conference, 1024-1031. 

[19] Park, J., Boring, R.L., Kim, J. (2019). An identification of PSF lag and linger effects for dynamic 
human reliability analysis: Application of experimental data. IEEE Human-System Interface 
Conference, pp. 12-16. 

[20] Boring, R., Rasmussen, M., Ulrich, T., & Lybeck, N. (2018). Aggregation of autocalculated 
human error probabilities from tasks to human failure events in a dynamic human reliability 
analysis. Proceedings of Probabilistic Safety Assessment and Management. 

[21] Galyean, W. (2006). Orthogonal PSF taxonomy for human reliability analysis. Proceedings of 
the 8th International Conference on Probabilistic Safety Assessment and Management. 

[22] Newell, K.M, van Emmerik, R.E.A., & McDonald, P.V. (1989). Biomechanical constraints and 
action theory. Human Movement Science, 8, 403-409. 

 


