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Abstract: Human error is regarded as the largest contributor to plant safety. Even with careful selection 
and training human performance can vary between operators and even within operators. Despite 
decades of advancement Human reliability analysis (HRA) primarily relies on experts to perform 
subjective analyses of tasks and subtasks to estimate performance shaping factors (PSFs). These PSFs 
are then used to estimate human error probabilities (HEP). The subjective analysis is also prone to error, 
bias, and requires the experts to accurately understand the task complexity and time constraints. During 
operations the conditions can be highly dynamic and the conditions may not match those envisioned 
during the HRA. Dynamic HRA aims at estimating HEPs on-the-fly based on dynamically estimated 
PSFs. Here we describe the development of a cognitive modeling architecture for dynamic HRA and 
the use of Rancor for model development and validation. 
 
 
1.  INTRODUCTION 
 
Nuclear power plants are among the most complex systems built by humans. Automation and control 
systems are improving but plants are still highly dependent on skilled and knowledgeable operators to 
monitor plant health, operate plant systems, and detect, diagnose, and respond to abnormal events. Key 
to the safe operation of plants is probability safety analysis (PSA) which aims at estimating the causes 
and frequencies of faults. Because human operators are critical components in these engineered systems 
we must understand and be able to estimate human performance to conduct valid PSA. Adding to the 
challenge of undertaking this research is the reality that psychological research in human error is 
incredibly difficult. As human error is, by definition, an unintentional act, the development of 
experiments which can reliably control specific performance shaping factors (PSFs) and elicit a 
consistent unintentional error is a large obstacle to empirical work in this field and would require 
thousands of repetitions.  
 
1.1.  Cognitive Modeling 
 
Here we develop a model based dynamic HRA method to estimate human error probabilities using 
integrated modeling of plants and computational cognitive modeling to capture the specific nuances of 
human decision-making and error in these situations. Cognitive modeling is a computational method 
for representing a mechanistic model of what is known of human cognition in a manner which allows 
the model to perform in a way like that of a human participant. Cognitive modeling has not been a broad 
topic of interest for HRA, generally, but there are significant advantages to using cognitive modeling 
rather than the other traditional methods. One critical advantage of cognitive modeling is the ability to 
represent the functions of human cognition and decision making more closely. Currently HRA analysts 
make subjective determinations about the potential for human error and the impacts of various PSFs. 
These subjective determinations are then aggregated to form an HEP for the task or subtask. The process 
is time consuming and labor intensive as it requires manually decomposing and rating tasks. Utilizing 
a cognitive model coupled to plant models that can provide a basis for external PSFs like time-pressure 
and complexity allows analysts to run the virtual human operator through tasks many times and collect 
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general performance data that is more aligned with known operations of decision making, thus making 
the HRA more grounded in the reality of human performance than subjective estimates. Cognitive 
modeling can also serve to simulate many of the different mental capabilities that humans possess. For 
example, the full ACT-R (Adaptive Control of Thought—Rational) implementation can simulate 
memory, attention, visual perception, motor functions, and more. Some modeling applications may 
require only some of these functions, but they are there if needed. 
 
Using cognitive modeling to explore human error is a somewhat novel application of cognitive models. 
Many applications of cognitive modeling study specific tasks or application spaces such as process 
control microworlds [1] or cybersecurity detection [2]. As such, human error was a component of the 
overall process in that an unsuccessful run made a mistake or incorrect judgment somewhere in the 
model. Some efforts have been made to establish and capture performance effects in cognitive modeling 
because of fatigue [3, 4]. These efforts are valuable to this project to provide a means of modeling the 
impacts of fatigue on human performance. By defining and formalizing dynamic PSFs and their impacts 
on cognitive processing we can more readily evaluate the probability of human error occurrence. This 
information could be used to redesign operations, invest in additional technologies, processes, and 
resources to make them more resilient to human error. 
 
 While HRA is the primary discipline or term being used here, the true goal of this effort is a more 
accurate accounting and modeling of human error. Specifically, cognitive modeling enables a greater 
understanding of the various likelihoods as well as the impact of the numerous factors which impact 
our decision-making. Aspects of human cognition and error have been captured conceptually [5, 6, 7] 
but in capturing this more specific information system, designers can make decisions around how to 
make systems more resilient to human error as well as highlight more fragile operating circumstances.  
 
1.2.  Full-Scope vs. Reduced Order Models 
 
Significant effort has been put into the development of high-fidelity thermohydraulic modeling for 
nuclear power and process control generally. Plants utilize full-scope simulators for engineering and 
training purposes. While not perfect, they tend to accurately represent the physical configuration and 
control systems of plants with a high degree of fidelity. These models are complex and can require 
several years to fully develop and validate. While the complexity provides higher fidelity it also 
increases the difficulty of understanding how the simulators function from a technical perspective and 
modifying the models has a steep learning curve that requires learning boutique development 
environments. Full-scope simulator models also contain several thousand or even tens of thousands of 
parameters. Much time and effort is required to find parameters of interest and the complexity and shear 
number and interaction of parameters increases the difficulty of coupling models to other models or 
hardware in the loop processes.  
 
High-fidelity full-scope nuclear power plant simulator models can be challenging to use for a variety of 
reasons. First, they can be expensive to develop and maintain. Second, they can require a lot of 
computing resources to run, which can make them difficult to use for real-time training or for large-
scale studies. Finally, they can be complex to use, requiring a deep understanding of the nuclear power 
plant system being simulated. 
 
Yet another disadvantage of full-scope simulators are also not optimized for speed, and even with 
modern multi-core workstations conducting Monte Carlo simulations with 10s of thousands or 100s of 
thousands of runs is not logistically feasible. Obtaining full-scope simulator models with source code 
can also be challenging, and even when used for academic research purposes the full-scope simulators 
may come with restrictions on use and restrictions on sharing derived products. Despite these challenges 
full-scope simulators are valuable feats of technological achievement and their roles in engineering, 
training, and safety should not be overlooked. However, for many tasks simpler models and tools such 
as the Rancor Microworld Nuclear Power Plant Simulator (Rancor) can over high value solutions across 
a variety of problem domains. 
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Reduced order models (ROMs) are simplified engineering models that validate particular aspects (e.g. 
steady state performance) against physical systems or higher fidelity models. They can then be utilized 
within their validated envelopes for gaining insights into engineered systems. ROMs address the 
complexity and coupling disadvantages of full-scope models due to their simplified nature. In the 
human factors domain an analogous problem exists with full-scope simulators. The simulators represent 
all of the sub-systems and components in physical plants and licensed operators go through years of 
training to operate these plants competently. Licensed operators are a finite and expensive commodity 
for laboratory human reliability studies to the extent that obtaining statistically useful error probability 
rates is not feasible.  
 
1.3.  The Rancor Nuclear Power Plant Microworld Simulator 
 
Reduced-order models are particularly beneficial for integrative nuclear power engineering because 
they allow for the simulation of complex systems while reducing the computational burden. Here we 
utilize the Rancor Microworld.  
 
The Rancor was jointly developed by Idaho National Laboratory and the University of Idaho to 
investigate attention and situation awareness with novice operator. It has subsequently been used to 
design and validate the concept of operations, procedures, and interface design of an integrated energy 
system for nuclear power. A shortcoming of the Rancor was that the simulation model was only 
accessible through a graphical user interface. Here we describe how the simulation model of Rancor 
has been extracted and made accessible to a variety of platforms and applications by modularizing the 
model to a .NET core library that can be utilized from .NET compatible environments including Visual 
Studio and Unity3d.  
 
The model has also been ported to Python with the ability to load initial conditions, and trigger faults. 
Integrating it with the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER) 
will enable dynamic human reliability simulations. The fidelity of Rancor is limited compared to full-
scope simulators or even simplified educational/training simulators. However, the tradeoff is 
performance, with yet-to-be-optimized code running 100x the speed of full-scope simulators. 
Furthermore, the simplicity and flexibility of Rancor is favorable to proof-of-concept testing for 
HUNTER. Dynamic human reliability simulation fundamentally requires a model with a deterministic 
fault tree, the ability to specify the probability of faults and accept human control actions, and the ability 
to conduct enough simulation runs to capture the fault tree.  
 
The Rancor python model meets these specifications. In this manner the Rancor model can capture 
theoretical principles of dynamic human reliability analysis (DHRA) ahead of more lengthy and 
complex integration with higher fidelity models that more precisely capture the temporal and failure 
dynamics of nuclear power systems. 
 
2.  DYNAMIC HRA COGNITIVE MODELING ARCHITECTURE 
 
Operators are critical to safe and reliable plant operations. Human reliability analysis has developed 
means of estimating human error rates based on PSFs. Here we aim to develop an cognitive modeling 
architecture of human operators that can dynamically model human errors based on conditional factors 
like time pressure and situation complexity. 
 
Operators of nuclear power plants are tasked with monitoring plant conditions during normal operations 
and identifying and diagnosing abnormal plant conditions. Operators must have a deep understanding 
of how plant systems function and interact with one another. Nuclear power plants have thousands of 
indications that operators must use to determine the current state of the plant. Interpreting these 
indications is also dependent on the current objectives and state of the plant. For example, during startup 
many parameters would be considered outside normal operating conditions. Operators spend a great 
deal of time training to learn how to interpret various normal and abnormal plant conditions and develop 
automated responses to particular events. For example, after a reactor trip an operator will check and 
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verify a handful of other parameters within a few seconds without any additional prompting or 
referencing of procedures. 
 
A barrier to modeling in general is the “Black Box Problem.” Models can be trained to provide the 
appropriate responses to a set of inputs but understanding how and why the models yield their trained 
responses is not always easy. Models can get the right answer for the wrong reasons, which can lead to 
non-generalizability when they encounter new conditions. Here our goal is to use cognitive modeling 
as a backbone for our operator model. A key distinction is that the cognitive model is mechanistic. It 
processes information in a manner that is consistent with our understanding of cognitive science. The 
cognitive science is based off of a corpus of human performance data and neuro-imaging.  
 
Perhaps the key challenge for this current work is complexity scaling. Cognitive modeling primarily 
exists in the domain of basic research as a tool for hypothesis driven modeling for understanding 
particular aspects of cognition such as language processing, sensation and perception, decision-making, 
memory, etcetera. To develop models, human participants conduct hundreds to thousands of short 
stimulus/response trials with a high degree of external control. These tasks could be described as “toy 
problems” where the parameter space and decision space are relatively simple compared to a main 
control room of a nuclear power plant. 
 
Here we describe a cognitive modeling architecture for nuclear process control. The architecture uses 
ACT-R’s declarative memory processing and the relevant parameters related to that model within the 
PyIBL library.  The architecture scaffolds declarative memory with a heuristic control loop based on 
our experience with how operators perform monitoring and control tasks in a nuclear control room. 
During steady-state operations operators are said to “walk the boards.” This describes physically 
traversing the control room and scanning indications to gain situational awareness of the current state 
and direction of the plant. Main control rooms contain thousands of indications, but operators do not 
divide their attention between indications equally. Some indicators provide higher informational value 
compared to others. This pattern of attention has been observed across dozens of operators, operating 
both digital and analog systems, during normal and abnormal conditions (see Figure 1).  
 

 
Figure 1. Heat map of an operator eye-tracking in a hybrid control room with digital and analog 
indications. 
 
 
Another key aspect of the model structure is the notion of operator archetypes. A critical component of 
nuclear power operations and critical infrastructure is that operators are highly trained and exhibit a 
high level of expertise in the relevant tasks. To reflect this in the cognitive model, archetypes will be 
constructed to represent a reactor operator, trainee operator, and senior operator, as examples. These 
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archetypes will also contain the core parameters for the cognitive model like utility, threshold, and more 
which then pass through the PSF module to the cognitive model, as shown in Figure 2. These agent 
archetypes will simplify model performance by allowing the selection of specific agent types to explore 
error likelihoods across these known expertise and training differences. The agent archetypes can be 
serialized and packaged for reuse in other cognitive model instances. 
 

 
Figure 2. Cognitive Model Architecture 
 
Operators are also explicitly trained to use redundant indications while operating. For example, if the 
reactor scrams, operators will routinely check reactivity and control rod positions within a few seconds 
of a trip. They are also conditioned to investigate indications that are inconsistent with their experience 
or mental model of the plant. Operators could be described as building a high-level chunked 
representation of the plant. For example, when debriefed operators can describe plant evolutions with a 
surprising amount of detail where many of the details are likely filled in from their experience with the 
plant and not direct recollection of events. 
 
The cognitive modeling architecture we envision is capable of scanning non-orthogonal plant 
parameters to maintain a high-level representation of the current state of the plant. This high-level 
representation is available for retrieving decisions related to specific alarm conditions. For example, if 
the reactor is online and an alarm trips, an action could be required. However, if the reactor is offline 
no action could be required. In addition, alarm prioritization may be required. In some circumstances a 
particular alarm could warrant a particular action, unless a more critical alarm is also annunciating. 
 
2.1.  Cognitive Model Framework Selection 
 
Many different cognitive architectures have been developed, generally stemming from the ACT-R 
framework [9], and have been applied in many different instances or applications. ACT-R is one of the 
original cognitive architectures and is also considered one of the most thorough systems, with modules 
for motor cognition and perception. However, this leads to ACT-R being a relatively complex and hefty 
architecture to use and may not be completely suitable for rapid exploration of different cognitive 
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modeling applications [10]. ACT-R has a significant learning curve, and more research is needed to 
better understand the capabilities and whether the components are necessary for our use case. 
Additionally, there are some concerns that the original software. As our model is focused on decision-
making in an unstructured task there is not as much of a need for the motor or sensory modules for the 
purposes of this effort, so the focus is on the memory modules and action execution. 
  
In response to ACT-R’s popularity and complexity there was increased interest in modeling dynamic 
decision-making processes. As discussed, much of ACT-R is external to this core cognitive process 
however the modules which capture aspects of memory and how decision-making relies on past 
experience are extremely relevant to this goal. This led to the creation of a Python module which 
contains an implementation of the declarative memory model from ACT-R but enables rapid 
development of models and decision-making experiments by those not already familiar with LISP and 
ACT-R [10]. has specific benefits in the way it handles memory aspects and how memories are encoded. 
Traditionally, models are trained on a set-aside data set to teach the model what to do or, in this case, 
what the model knows. This can be a time-consuming process and, in some cases, may be impossible 
due to an absence of human performance data sets in process control and nuclear. PyACTUp 
specifically includes a method for defining memory objects as needed. This sidesteps the need to train 
up memories with the data sets and allows research teams to define the key memory concepts that the 
model will require to execute the decision-making tasks. This makes it a good candidate for initial 
model development and testing.  
 
The structure of the Instance-based Learning Theory (IBLT) and the subsequent modeling library 
(PyIBL) [10, 11, 1] was selected as a good candidate for this application. IBLT has been used to model 
many different aspects of dynamic decision making in a variety of mission critical and high-risk 
industries [12, 2, 1] and has also been coupled with microworld environments to explore specific 
processes or systems. Microworld usage has also been a focus of human performance and HRA research 
at the Idaho National Laboratory in recent years, and has proven to be an incredibly valuable resource 
to designing, evaluating, and testing specific conditions or applications of nuclear power operations and 
operator performance [13, 14, 15, 16, 17, 18]. As such, the implementation of an IBLT-based cognitive 
architecture could enable the integration of some microworld instantiations which have already shown 
promise in nuclear power and HRA.  
 
Many of the aspects of IBLT are captured in Gonzalez’s initial description of the architecture [11]. 
PyIBL uses PyACTUp’s memory model [9] which captures specific calculations such as memory decay 
and retrieval probabilities. The memory model stores experience and the ‘world state’ representations 
along with their utility. The IBLT model can then explore if specific world state parameters match any 
instance in the memory store and execute the decision appropriately. The model will allow for partial 
matching and blending of specific instances and parameter sets to maximize utility while enabling 
researchers to explore imperfect data or unique instances.  
 
IBLT is conceptualized as an agent, and multiple agent instances or agent types can be used to capture 
specific agent-based characteristics such as variations in training or experience. This will provide a 
means for representing training and experience PSFs as these agent types will necessarily have separate 
memory stores which reflect those traits. Fundamentally, many cognitive models perform decision 
calculations based on a final assessment of matching and decision values compared to a defined utility 
function. This will enable research teams to explore different utility functions for specific applications 
or circumstances, which will develop additional depth in the model’s functionality.  
 
2.2.  Initial Cognitive Modeling Development 
 
Preliminary efforts examined alarm to response mappings with PyACTup declarative memory 
models. The simplest one-to-one alarm to response mappings were easy to train even with moderate 
levels of accuracy (as low as 45%) during training. We also found that manipulating decision 
accuracy in the training dataset and the number of training repetitions can be used to control the 
performance of the model (model experience and training PSFs). However, as the parameter space 
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increases where multiple parameter states encode the appropriate response the number of training 
repetitions grows exponentially. A model with 5 actionable responses encoded in 5 alarms with 5 
distractor alarms required on the order of 1,000,000 training repetitions per actionable alarm to yield 
accurate retrieval responses.  
 
For this reason, we found it desirable to use multiple hierarchical declarative memory models. One 
model is dedicated to the high-level (overview) awareness of the plant. And other second tier models 
are dedicated to specific sub-tasks that involved looking at subsets of model parameters with an 
overall awareness of the plant. For example, to effectively control steam generator (SG) level only a 
small subset of plant parameters are needed. A smaller declarative memory model can be built around 
this parameter space to effectively control SG level and respond to SG alarms. In the current 
preliminary model, the alarms are explicitly coded to trigger these second-tier declarative memory 
models. In essence, the alarms trigger an orienting response to address the alarm. In future models this 
could likely be replaced by another cognitive memory model that determines which second tier model 
should be ran given the current state and alarm space. 
 
Nuclear power operations are highly proceduralized, and one of the most critical tasks of an operator 
is to identify conditions that require operator intervention and matching the conditions to the 
appropriate action (oftentimes this is entry into the appropriate procedure after carrying out 
“immediate actions” from memory). In the cognitive architecture, alarms trigger declarative memory 
models trained to determine the appropriate response to the alarm. 
 
 
2.3.  Continuous Parameter Discretization 
 
Another key challenge to the use of cognitive modeling is that many of the indications used by 
operators are continuous parameters like temperatures, pressures, flows, and levels that are constantly 
changing over time. However, cognitive modeling frameworks like ACT-R are developed to 
recognize un-ranked discrete states. Here we devise discretization maps to transform continuous 
variables from the Rancor Microworld [18] environment to discrete states that can be used to train 
declarative memory modules. The discretization is based on their operational relevance to the plant 
(as determined by the developer of the Rancor Microworld model who is also the cognitive modeler; 
See Table 1). For instance, steam generator level is discretized as unknown (N/A), low (< 40%), 
normal (40% - 60%), or high (>60%). In addition, the derivative of plant parameters is discretized as 
unknown (N/A), decreasing, stable, or increasing. Table 1 lists additional discretization schemes for 
Rancor parameter types. Ideally, these discrete states would be learned in an unsupervised manner. 
However, here the goal is to build the architecture and then use the architecture as a scaffold for future 
refinements.  
 
Table 1. Rancor Microworld Parameter Discretization Schemes 
Parameter Type  Discretization 
Alarm   N/A, False, True 
Reactivity N/A, Offline (0%), Online (0% - 100%), Over-Power (100%-102.5%), Over 

Trip Threshold (>102.5%) 
Pump State  N/A, Off, On 
SG Level  N/A, Low (<40%), Normal (40%-60%), High (60%) 
Valve   N/A, Closed (0%), Open (>0%) 
Latched   N/A, Not Latched, Latched 
 
 
2.4.  Hierarchical Cognitive Modeling 
 
PyIBL (agent-based instance-based learning model that uses PyACTup) has been used to build a two 
layer hierarchical model capable of identifying plant mode and responses to control steam generator 
levels. The plant mode identification is encoded by six plant parameters and 3 distractor parameters. 
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The parameters are defined as known or unknown. The model is trained by randomly generating 
synthetic data across the parameter space with a defined accuracy rate or 90% correct identification. 
 
It has been found that increasing the number of distractor variables and states significantly increases 
the number of repetitions required to train the model. This has an interesting theoretical implication 
that much of operating is learning what parameters are relevant in the given context and what 
parameters can be safely ignored. 
 
The second layer of the model learned the appropriate responses to manually maintain SG levels in 
the Rancor Microworld as shown in Table 2. 
 
This two-stage cognitive modelling architecture proves the concept that declarative memory models 
can be trained to recognize plant conditions and to select appropriate actions. The model also 
demonstrates that the architecture is scalable by training additional models for specific plant and 
control circumstances.  
 
Table 2 Parameters and responses needed to manually control SG levels in Rancor 
plant       alarm       alarm       SG A        SG B        Δ SG A      Δ SG B      response            comments 
mode        high sg     low sg      level       level       level       level 
---------------------------------------------------------------------------------------------------------------------
--- 
Shutdown    *           *           *           *           *           *           None 
*           *           *           *           *           *           *           determine plant     low SA 
                                                                                    mode 
Online/     *           *           normal      *           ↑           *           ↓CV A               ahead of 
alarm 
Startup 
Online/     *           *           high        *           ↑           *           ↓CV A               after alarm  
Startup 
Online/     *           *           high        *           ~           *           ↓CV A               way after 
alarm  
Startup 
Online/     *           *           *           normal      *           ↑           ↓CV B               ahead of 
alarm 
Startup 
Online/     *           *           *           high        *           ↑           ↓CV B               after alarm  
Startup 
Online/     *           *           *           high        *           ~           ↓CV B               way after 
alarm  
Startup 
Online/     *           *           normal      *           ↓           *           ↑CV A               ahead of 
alarm 
Startup 
Online/     *           *           low         *           ↓           *           ↑CV A               after alarm  
Startup 
Online/     *           *           low         *           ~           *           ↑CV A               way after 
alarm  
Startup 
Online/     *           *           *           normal      *           ↓           ↑CV B               ahead of 
alarm 
Startup 
Online/     *           *           *           low         *           ↓           ↑CV B               after alarm  
Startup 
Online/     *           *           *           low         *           ~           ↑CV B               way after 
alarm  
Startup 
Online/     True        *           None        None        None        None        investigate high    low SA  
Startup 
Online/     *           True        None        None        None        None        investigate low     low SA  
Startup 

 
 
3.  CONCLUSIONS AND NEXT STEPS 
 
 
The functionality of PyIBL/PyACTup to learn discretized states from the Rancor Microworld has been 
proven. From here we need to fully train declarative models and link them together in a common model 
framework. We have also validated that it is possible to serialize PyACTup memory instances to Python 
pickle files and deserialize them back to Python objects. This will allow virtual operators to be saved 
and loaded for Monte-Carlo testing. As a proof-of-concept exercise we plan on linking the operator 
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model to manually control SG levels. Another interesting finding from the modeling thus far is that 
situational awareness can roughly be inferred by the operator’s current awareness of the parameter space 
and their response (see the comments column of Table 2). When the operator is paying attention to the 
parameters, they should be able to form control actions ahead of setpoint alarm thresholds being 
reached.  
 
An end goal of this work is to tie cognitive modeling to the HUNTER model. HUNTER is designed to 
represent and carry-out procedures in a manner consistent with human operators. To reach this goal we 
must first build a cognitive model that is capable of monitoring plant parameters and forming responses 
to changing conditions and dynamic performance shaping factors in a manner consistent with human 
operators. To reach this goal we are using the reduced order Rancor Microworld Nuclear Power Plant 
Simulator. The simulator represents the major systems of a pressurized water reactor but in a simplistic 
fashion. The simulator has alarms and abnormal operating procedures modeled after real nuclear power 
plant operations. Validation comparisons between novice and expert operators have been conducted 
with the Rancor Microworld and we a large volume of simulator and operator logs to available to aid 
in training and validating cognitive models. For these reasons the Rancor Microworld is being used to 
develop a proof-of-concept for the cognitive modeling architecture. The system complexity is a 
magnitude order greater than paradigms typically used by ACT-R experiments but is still simple enough 
that the training and model spaces can be deconstructed to understand how the model is functioning.  
To be applicable as a HRA tool for nuclear power we would like to use cognitive modeling for specific 
full-scale simulators that contain thousands of parameters and at least an order of magnitude more 
complex than Rancor. An outstanding challenge is to determine 1) if and how cognitive models can be 
trained in an automated fashion, or 2) how the findings from the cognitive modeling can be generalized 
to traditional HRA analysis. One steppingstone to fully dynamic integrated cognitive model HRA could 
be using cognitive modeling to better understand how PSFs can be integrated to produce HEPs. A 
cognitive model with PSF implementation could allow analysts to explore different levels of PSFs and 
determine if there are ‘tipping points’ where the error is increased dramatically at a certain level of PSF 
impact, and similarly when error likelihood flattens out. As most human performance follows a 
logarithmic form it is possible that these will be seen.  
 
There remain some large challenges in this effort as well. As discussed throughout this report, there are 
known behavioral changes with the presence of PSFs, however there is a deficit of examples of how 
these affect core cognitive parameters that can be instantiated within a cognitive model’s parameters. 
Much of the research on fatigue and other impacts on cognitive modeling is completed in a trial-and-
error fashion as modelers adjust parameters on the fly and compare to known psychological research 
studies on the factors of impact to see when the model roughly aligns with performance shown in the 
research. Then it is assumed that the model which most closely approximates real world performance 
contains the most likely parameter manipulations. While this has been completed for fatigue, it remains 
to be completed for stress and other PSFs. This is a challenge but also a future opportunity to explore 
existing psychological research on human performance and work to replicate that performance in the 
cognitive model.  
 
In conclusion, the initial drive for this research was to better understand and quantify the probabilities 
of human error in a way which more closely aligns with what is known about cognitive performance. 
Many other HRA methods use expert ratings or subjective analyst determinations to identify the 
probabilities, however many are not well grounded in known psychological principles and thus do not 
demonstrate the levels of ecological validity and realistic performance that is important in these critical 
infrastructure domains. It is our contention that an HRA method which utilizes a mechanistic model of 
cognition relying on known and demonstrated human performance decrements is the best path forward 
for HRA research. 
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