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Abstract: Whenever scientific problems aren’t well understood in their physical properties or cannot 

be solved analytically, the approach of design of experiments (DoE) is a powerful alternative. Yet, many 

DoE approaches are mathematically derived and underly assumptions and restrictions which might be 

hard or even impossible to be met in practice. Therefore, numerous research gaps regarding the practical 

implementation of DoE test plans remain. 

One typical requirement is that the experimental design has to be orthogonal. This condition demands 

that the investigated factors be set exactly to the given factor levels, which is usually impossible. The 

question arises, how crucial the impact of a particular deviation from the ideal orthogonal design is. 

Until now, this has only been assessed qualitatively, but not quantitatively. Different metrics known in 

literature could be utilized to measure the non-orthogonality of a test plan, which are presented in this 

paper. The consequences of non-orthogonality are evaluated on the basis of two central quantities of a 

DoE test plan: First, the power, which shows how likely an existing effect is to be identified. Second, 

the accuracy of the estimated model parameters resulting from the regression model developed from 

the test results. The scope of this paper is the assessment of these two quantities for typical deviations 

from a perfectly orthogonal full factorial test plan, allowing a transfer between theoretical requirements 

and practical use. In the long term, the results can be utilized to make test plans more efficient by 

suggesting which cost-reducing types of non-orthogonality still produce satisfying results. In order to 

achieve this goal, a parameter study for two hypothetical two- and three-dimensional systems is 

performed in a Monte Carlo simulation. For both the orthogonal and non-orthogonal test plans, linear 

regression and significance analysis is applied. The changes in test power and regression accuracy allow 

to assess, how crucial the different types of non-orthogonality are. Also, the results are compared with 

two deliberately chosen non-orthogonality measures, to see which of them serves best in predicting the 

practical value of a DoE test plan. 

 

 

1. INTRODUCTION 
 

Gaining empirical evidence from experimental data is one of the core constituents of scientific research, 

be it in natural science or in social sciences. By planning, conducting, observing and evaluating 

experiments on the system of interest, new insights into the system’s properties and its dependency on 

influencing parameters are gained. It is therefore of universal interest to optimize the design of such 

experiments. Arguably the most prominent pioneer of defining and formalizing basic principles towards 

optimized experiments is R. A. Fisher, according to whose primary publication this subject area is 

labeled Design of Experiments (DoE) [1]. In this sense, the term DoE refers to the deliberate planning 

of experiments under consideration of the subsequent evaluation by using statistical methods. The aim 

of this approach is to either maximize the quality of the results (e.g. the detectability or accuracy of 

influences) or minimize the effort (e.g. the cost, expenditure of time or global warming potential) for a 

particular use case. Another possible aim, combined of these two fundamental ideas, is an efficient 

experimental design, striving to optimize the ratio between quality and effort. 

The power of DoE is based on a set of fundamental principles developed by Fisher, e.g. randomization, 

factorial designs or blocking [1-7]. Among these, the factorial designs stand out in particular. They 

involve the simultaneous, systematic modification of influencing factors on all of their possible values. 

Before that, the approach of modifying only one factor at a time (OFAT) was predominant, leading to 
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inefficient test plans which ignore possible interactions [3,4]. Factorial designs have been adapted and 

extended by numerous authors, leading to plentiful different test plans. Some common examples are 

Plackett-Burmann designs, central composite designs, and Box-Behnken designs [2-5,7]. 

However, one of the DoE principles is rarely discussed due to its highly mathematical foundation: 

orthogonality of the conducted test plan. Orthogonality guarantees both the absence of correlation 

between the parameter estimates as well as a minimum standard error of the regression model 

coefficients [8,9]. Perfect orthogonality, however, is unachievable in practical experiments. For 

example, random deviations in the setting of the influencing factors, the systematic offset of an 

influencing factor in one or more factor combinations, or a completely left out factor combination may 

be encountered in actual experiments. The reason for this are either timely, monetary or physical 

constraints. The question arises, how such imperfectness regarding the test plan orthogonality affects 

the quality of the test results. This question has been tackled in research only qualitatively [3-7] or for 

simple example cases without consideration of the detectability of effects [2]. A profound quantitative 

analysis in the face of practical cases of application is therefore necessary. 

In the face of ever-increasing time and cost pressure, the opposite question may be asked as well: how 

high of a deviation from an orthogonal design is admissible, given certain demands on the quality of 

the test result? Perspectively, the answer to these question leads from general orthogonal to efficient 

test plans, which are optimal for the individual use case. Therefore, this paper aims to  

(i) present an introduction into the concept of test plan (non-)orthogonality; 

(ii) give an overview over possible non-orthogonality measures; 

(iii) define and simulate realistic scenarios of deviations from perfect orthogonality and assess the 

consequences on the quality of the test results. 

Since this paper merely constitutes a fundamental work, only linear effects are considered. Therefore, 

two-stage full factorial test plans are used as a basis. Results are generated exclusively simulatively by 

using the Monte Carlo method. In the following, the theoretic background – including hypothesis testing 

and regression analysis – is explained in Section 2. Section 3 follows with a focus on (non-) 

orthogonality, before Section 4 defines a parameter study and presents its results. 

 

2. THEORETIC BACKGROUND 
 

This section serves to give a brief overview over the basic terms used in following sections and the 

scope of systems covered in this paper. Subsequently, it gives the necessary background on hypothesis 

testing and DoE evaluation. 

 

2.1 System definition 

 

DoE serves as a method to systematically configure and evaluating experimental studies, ultimately 

aiming to mathematically describe a system better than before. A linear system’s output 𝑦  with 

interactions only between two factors – as governed in this paper – can be described by the equation 

 

𝑦 = 𝑐0 + ∑ 𝑐𝑖𝑥𝑖

𝑚

𝑖=1

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

+ 𝜀, (1) 

where 𝑥𝑖 is the 𝑖-th of the 𝑚 input variables, 𝑐𝑖 is the coefficient of the 𝑖-th parameters influence, 𝑐0 is 

the intercept (i.e., the system output in the origin of the parameter space and therefore the global mean 

output), 𝑐𝑖𝑗 is the coefficient of the interaction between the 𝑖-th and the 𝑗-th input variable and 𝜀 is the 

error term. 

The sole purpose of any experiment and therefore DoE is to find out  

a) which of the considered parameters has an influence on the output variable, and, if applicable, 

b) how high this influence is by implementing a regression analysis. 

The theoretical background for the answer to these two questions is presented in Section 2.2 and Section 

2.3, respectively. 
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2.2 Hypothesis testing 

 

The first of the two goals mentioned in the previous section is accomplished on the basis of hypothesis 

testing. For each influence and interaction, two complementary hypotheses are formulated: 

    𝐻0:  the null hypothesis, which states that the parameter does have no influence on the output; 

    𝐻1:  the alternative hypothesis, stating that is does have an influence on the output. 

This idea is applied to the system from eq. (1): the output variable is seen as a stochastic variable due 

to the unexplainable influence of the random error 𝜀. For this reason, the output 𝑦 itself is a stochastic 

variable. For each of the input variables 𝑥𝑖, the null hypothesis is that the mean output �̅� does not change 

when 𝑥𝑖 changes from one level to another. The alternative hypothesis is that it does, no matter in which 

direction. Defining �̅�𝑖+ as the mean output on the higher level of parameter 𝑥𝑖 and �̅�𝑖− as the mean 

output on the lower level (see Figure 1) allows to formalize these hypotheses: 

 𝐻0:   �̅� ≠ 𝑓(𝑥𝑖) (2) 

 𝐻1:   �̅� = 𝑓(𝑥𝑖) (3) 

Since 𝑦 is a stochastic variable, a difference in the output, Δ𝑦, on two levels of 𝑥𝑖 is not necessarily due 

to an influence of 𝑥𝑖 on the mean output �̅�, but could also be due to chance (i.e., the variance 𝜎2). 

Falsely drawing the conclusion that 𝑥𝑖  has an influence on 𝑦 – even though it actually doesn’t – is called 

a type I error or false positive. The risk of such an error can never be completely eliminated, since any 

change in the output could be due to chance. A sufficiently high difference Δ𝑦 though is highly unlikely 

to be from chance. Therefore, inputs with high influence – leading to higher output differences Δ𝑦 – 

and repeated experiments both make it easier to detect an influence through the experimental data. 

To formalize the risk of falsely attributing an influence to a parameter 𝑥𝑖 , the highest admissible 

probability of a type I error is defined before the experiment. The according value, 𝛼, is called the 

significance level (see Figure 1).  

 

Figure 1: Probability density functions of an output quantity 𝒚 with mean �̅�, when the 𝒊-th 

parameter is on the low (−, blue) or high (+, green) level. The null hypothesis, 𝑯𝟎, is that the  

change of the 𝒊-th parameter from low to high level doesn’t systematically affect the mean 

output �̅�. For a demanded significance level 𝜶, this is assumed as long as the mean �̅�𝒊+ is so close 

to �̅�𝒊− that it doesn’t touch the orange area. This is not the case here. Hence, the null hypothesis 

is rejected and the effect of parameter 𝒊 is significant (alternative hypothesis 𝑯𝟏). The turquoise 

area shows the type II error probability 𝜷; the complementary area under the green 

distribution is the test power 𝟏 − 𝜷. 
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The probability to observe a certain output difference Δ𝑦, although 𝐻0 holds, is called the 𝑝-value. An 

effect is said to be statistically significant, if it’s 𝑝-value does not exceed the imposed limit 𝛼 and the 

null hypothesis 𝐻0 is therefore rejected. This is equivalent to saying that the risk of falsely assuming an 

influence is equal to 𝑝. The other possible error an experiment might yield is falsely denying an effect 

although it actually exists. This is called a type II error or false negative. The probability of committing 

such a mistake is denoted 𝛽. Naturally, this value increases when 𝛼 is decreased, since a lower risk of 

a false positive result (i.e., a lower 𝛼) demands the effect to be more clearly visible. Effects below that 

limit, even though systematical, will then be rejected as non-significant, yielding a higher share of false 

negatives (𝛽). Other than 𝛼, 𝛽 cannot be set beforehands, since it depends on both 𝛼 and the effect size 

Δ𝑦. Rather, it is calculated after the experiment. Its complementary, (1 − 𝛽), is called the test power: 

the chance of correctly detecting an existing influence. The test power can be used as a quality measure 

when comparing different test plans.  

 

2.3 Regression analysis 

 

The second of the two goals mentioned in Section 2.1 is to estimate the model coefficients 𝑐𝑖 of the 

system (cf. eq. (1)). This purpose is usually served by applying multivariate linear regression with the 

ordinary least squares (OLS) method. The reason for this is that under the Gauss-Markov theorem – 

which is assumed to hold here [8,9] –, OLS delivers the best linear unbiased estimator. The problem 

solved by multivariate regression is to find an estimate for the coefficients 𝑐𝑖 of a problem of the form 

 

𝑦 = 𝑐0 + ∑ 𝑐𝑖𝑧𝑖

𝑘

𝑖=1

+ 𝜀   =
𝑧0=1

   ∑ 𝑐𝑖𝑧𝑖

𝑘

𝑖=0

+ 𝜀, (4) 

where 𝑐𝑖 are coefficients for the 𝑘 input variables 𝑧𝑖 and 𝜀 is the error term. The coefficient 𝑐0 is the 

mean output. Therefore, a total of 𝑝 = 𝑘 + 1 coefficients are to be estimated. As can be seen from the 

similarity between eqs. (1) and (4), the DoE problem can be transformed by assigning the 𝑚 system 

input quantities 𝑥𝑖 and the derived quantities (e.g., the interactions 𝑥𝑖𝑥𝑗) to the OLS input variables 𝑧𝑖. 

A more convenient representation of eq. (4) in matrix form is obtained when defining the constant 𝑧0 =
1 as part of the inputs 𝑧𝑖: 

 𝒚 = 𝒁𝒄 + 𝒆. (5) 

Here, 𝒚  is a (𝑛 × 1)  column vector, containing the observations of the output from 𝑛  conducted 

experiments (with 𝑛 > 𝑝), 𝒄 is the (𝑝 × 1) column vector of coefficients and 𝒆 is the (𝑛 × 1) row 

vector of residuals. 𝒁 is the (𝑛 × 𝑝) data matrix, containing (𝑛 × 1) column vectors 𝒛𝒊 with the 𝑖-th 

parameters value in each experiment; 𝒛𝟎 is a vector of 1’s. The OLS estimate of the coefficients, �̂�, is 

then computed via 

 �̂� = 𝒁𝑳
−𝟏𝒚, (6) 

with 𝒁𝑳
−𝟏 being the (𝑝 × 𝑛) pseudoinverse (or generalized left inverse) of 𝒁. It is defined through 

 𝒁𝑳
−𝟏 = 𝑴−𝟏𝒁𝑻 = (𝒁𝑻𝒁)

−𝟏
𝒁𝑻, (7) 

where [∙]𝑻 denotes a transposed matrix and [∙]−𝟏 denotes a matrix inverse. The pseudoinverse exists if 

and only if the number of observed different parameter combinations 𝑛 is greater than the number of 

coefficients in the system model 𝑘. 

With the estimated outputs �̂� = 𝒁�̂�, the residuals �̂� can be calculated as 

 �̂� = 𝒚 − �̂� = 𝒚 − 𝒁�̂�. (8) 

It must be noted that the true errors 𝒆 remain unknown, yet the residuals �̂� are utilized as an estimate 

for them. The unknown error variance 𝜎2 can be estimated from the residuals with 

 
�̂�2 =

�̂�𝑇�̂�

𝑛 − 𝑝
 , (9) 

where the denominator (𝑛 − 𝑝) marks the statistical degrees of freedom. The square root of �̂�2, �̂�, is 

the standard error of the regression. To increase the accuracy of the estimated coefficients, their 

variances have to be decreased. The variances of the estimated coefficients depend on the system-based 
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variance 𝜎2 and the inverse of the moment matrix 𝑴. Therefore, two ways of increasing the estimation 

accuracy are possible: On the one hand, one can reduce the overall variance 𝜎2, which ultimately means 

to address the sources of the errors 𝜀 , e.g. inaccurate measurement or neglected influences. Such 

considerations lie without the scope of this paper. On the other hand, one can aim to decrease the inverse 

of the moment matrix 𝑴, which can only be achieved by manipulations of the data matrix 𝒁. This 

connects back to the previous section, as the data matrix contains the factor combinations which are set 

in the test plan. Therefore, the fundamentals of the OLS presented here give a mathematic reason for 

using DoE methods to optimize test plan. 

For further evaluation of the conducted experiments, the so-called t statistic of each estimated 

coefficient is calculated. This is done by dividing each parameters OLS estimate through its standard 

deviation [9]. From the t statistic, the 𝑝-value as defined in Section 2.2 can be calculated by applying 

the cumulative distribution function of Student’s t-distribution. 

 

3. FACTORIAL TEST PLANS & ORTHOGONALITY 
 

This section focusses on the demand of orthogonality for test plans, and how deviations from perfect 

orthogonality can be measured. To begin with, a short introduction to the considered test plans is given. 

Afterwards, orthogonality and a selection of potential non-orthogonality measures are introduced.  

 

3.1 Full-factorial test plans 

 

The scope of this paper are full-factorial test plans or designs, which are obtained by considering all 

possible parameter combinations on the chosen levels. For linear dependencies to be found, two levels 

per factor are sufficient. With 𝑘 factors, this yields 2𝑘 parameter combinations. Therefore, such test 

plans are also referred to as 2𝑘  designs and are a common choice. For non-linear relationships, 3𝑘 

designs or central composite designs (CCDs) are used [10]. 

The levels in a 2𝑘 design are chosen to be the minimum and maximum value of each parameter, in order 

to have the highest chance of detecting an influence (cf. Section 2.2). The parameters are usually 

normalized, yielding a unit free representation with “−1” being the lower level and “+1” being the 

upper level of each parameter, respectively. An exemplary 22  design – i.e., a 2𝑘  design with two 

parameters – is depicted in Figure 2.  

 

Figure 2: Graphic representation of a 𝟐𝟐 test plan. The graphs show the parameter 

configurations (circles) of two parameters 𝒙𝟏 and 𝒙𝟐 on two load levels each. The load levels are 

normalized to −𝟏 and +𝟏. If this normalization is taken as given, the simplified graph on the 

right is equivalent. 

 

An equivalent tabular representation, referred to as design matrix, is possible. Such a matrix can be used 

as foundation to connect the test planning to the evaluation. This connection is performed by extending 

the table with the columns for the additional quantities needed in multivariate linear regression (cf. 

Section 2.3). The constant term 𝑧0 on level +1 is mandatory. In the case of a 22 design, the interaction 

term of the two inputs 𝑧3 = 𝑥1𝑥2  has to be added as well. This yields the matrix of independent 

variables as given in Table 1, which coincides with the data matrix 𝒁 from eq. (5). It should be noted 

that it is common to replicate test runs by adding repeated rows to the matrices shown in Table 1. 

(−1, +1) 

+1 

+1 

−1 

−1 

(−1, −1) 

(+1, +1) 

(+1, −1) 

𝑥1 

𝑥2 

𝑥1 

𝑥2 
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Table 1: Design matrix with no. of test runs (left) and matrix of independent variables (right) 

for the considered 𝟐𝟐 test design without repetitions. While the design matrix contains all 

relevant information for the conduction of the experiments, the matrix of independent variables 

contains the information relevant for the evaluation of the experiments. 

 

 

3.2 The concept of orthogonality 

 

Orthogonality in the sense used in DoE originates from the idea that if the true fundamental influences 

𝑥1, … , 𝑥𝑚 are considered, they are uncorrelated by definition. Possible correlation is important only 

when the interaction terms 𝑥𝑖𝑥𝑗 are derived. This is why, as Figure 2 shows, the parameter axes are 

depicted orthogonally. This might seem trivial, yet only test plan orthogonality ensures that this 

theoretical orthogonality is not mitigated by the placement of experiments in the parameter space. In 

order to explain this principle in more detail, two extreme exemplary cases should be considered: 

1. The heaviest violation of this idea would be a choice of experiments for which the parameters 

are linearly dependent (i.e., at least of them can be completely described by one or more other 

parameters). In this case, regression analysis is impossible, since there is no data which allows 

to decide whether an observed influence has to be accredited to one or another parameter. The 

equivalent mathematical reason can be derived from Section 2.3: the design matrix, 𝑋, and 

therefore also the data matrix 𝑍 would have no have full column rank. This makes the inversion 

of 𝒁𝑻𝒁 impossible (cf. eq. (7)). Designing a test plan in a way that the chosen values of the 

input quantities are linearly dependent could therefore also be labeled as perfect non-

orthogonality. 

2. In the opposite – ideal – case, the chosen parameter values perfectly implement the theoretical 

orthogonality to the experiments conducted for every parameter. This situation might be 

referred to as perfect orthogonality. Then, OLS is possible and leads to minimum confidence 

bounds �̂� on the estimated coefficients [3]. 

From these two examples, it can be seen that it is not only necessary to avoid linear dependency (i.e., 

perfect non-orthogonality), but also beneficial to aim for perfect orthogonality, as Fisher originally 

recommended [1].  

While perfect non-orthogonality is impossible to evaluate, orthogonality over the whole test plan is 

impossible to ensure. In any practical conduction, deviations from the planned parameter values will 

occur. These deviations might be neglected in the evaluation, but should actually be considered to get 

the most out of the data. It is therefore not enough to consider orthogonality as qualitative (i.e., yes or 

no) measure. In between these two extremes, a wide range of different degrees of non-orthogonality 

exists, which is highly relevant for conscious and efficient DoE. 

 

3.3 Measuring non-orthogonality 

 

For the detection of (non-)orthogonality with mathematical measures, the design matrix 𝑿 and the data 

matrix 𝒁 need to be studied. Although the elements of 𝑿 refer to the planned parameter values and the 

elements of 𝒁 refer to the real parameter values from the experiment, in the following, it will be assumed 

that both matrices contain the real parameter values to simplify the explanations. A non-exhaustive 

selection of methods and parameters to quantify non-orthogonality will be given and two parameters 

are chosen due to their characteristics for application in the parameter study. The initially considered 

quantities are: 

▪ matrix orthogonality [2,3], 

▪ column orthogonality [9], 

Run 𝑥1 (𝑧1) 𝑥2 (𝑧2) 

 

1 (𝑧0) 𝑥1 (𝑧1) 𝑥2 (𝑧2) 𝑥1𝑥2 (𝑧3) 

1 −1 −1 +1 −1 −1 +1 

2 −1 +1 +1 −1 +1 −1 

3 +1 −1 +1 +1 −1 −1 

4 +1 +1 +1 +1 +1 +1 
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▪ multicollinearity [11,12], 

▪ variance inflation factor [13], 

▪ reciprocal condition number [14], 

▪ parameter correlation [9,11-13], 

▪ the A-optimality measure 𝐴2 [15,16], and 

▪ the D-optimality measure 𝐷 [15,16]. 

From these, some are difficult to apply due to analytic constraints, like e.g. matrix orthogonality. Others 

only offer a binary measure on whether a test plan is orthogonal or not, like e.g. column orthogonality. 

Another important aspect is whether the different measures are able to summarize the degree of non-

orthogonality in a single number. This is especially helpful when analyzing systems of different size, 

or systems with many independent variables. Also, a single number is more qualified for practical 

application in future use cases. Last but not least, the codomain of the considered quantities is relevant. 

Each non-orthogonality measure is usually bounded on at least one side – that of maximum non-

orthogonality or that of perfect orthogonality. Additionally, it can further simplify the interpretation of 

obtained values if the codomain is also bounded on the other end at a maximum degree of non-

orthogonality. 

According to these specifications, the two last mentioned quantities 𝐴2 and 𝐷 are chosen. They are both 

known for their use in the concepts of A-optimality and D-optimality and are calculated from the 

correlation matrix 𝑹𝒁 of the matrix of independent variables [9], 

 𝑹𝒁 = 𝐶𝑜𝑟𝑟(𝒁𝒊,𝒋>𝟏). (10) 

Note that the elements of 𝑹𝒁 based on the first column of 𝒁, 𝒛𝟎, are not defined. Therefore, the first 

column 𝒛𝟎  is usually omitted when computing the correlation matrix based on eq. (29). With the 

elements 𝑟𝑖𝑗 of 𝑹𝒁, 𝐴2 and 𝐷 are obtained via 

 
𝐴2 = ∑ 𝑟𝑖𝑗

2

𝑚

𝑖<𝑗

 , (11) 

 𝐷 = det(𝑹𝒁) = det(𝐶𝑜𝑟𝑟(𝒁))  ∈ [0,1]. (12) 

While 𝐴2 = 0 if and only if the design matrix is orthogonal, 𝐷 is 1 in this case [15]. On the other end 

of the scale, 𝐷 is bound to zero, while 𝐴2 might increase to values higher than 1. 

 

4. PARAMETER STUDY 
 

To study the effects of non-orthogonality on test results, different scenarios of non-orthogonality in two 

exemplary systems are considered in a parameter study. The power and the accuracy of the model 

coefficients found per regression are calculated as results for each scenario. To additionally measure 

non-orthogonality, the 𝐴2 and 𝐷 as chosen in Section 3.3 are used. This parameter study serves as a 

preparatory screening measure to provide a profound basis for a future in-depth study. The overall 

simulation method, the considered non-orthogonality scenarios, the results for each system, and the 

summarized key findings are presented in the following. 

 

4.1 Simulation procedure 

 

The simulation procedure is shown graphically in Figure 3. For each scenario of non-orthogonality 

considered as well as for the perfectly orthogonal case, the manipulated non-orthogonal test plan is 

derived. The initially simulated orthogonal test plan is used as reference for comparison. Each single 

experiment is conducted 3 times for the two-dimensional and 2 times for the three-dimensional system, 

resulting in a total of 12 and 16 parameter combinations, respectively, for the orthogonal case. The 

results are then statistically evaluated using regression analysis as defined in Section 2.3. This process 

is repeated using the Monte Carlo method with 100,000 simulations. The mean and variance as well as 

the resulting power (𝛼 = 0.05) of each model coefficient is computed. The results of the perfectly 

orthogonal as well as the different non-orthogonal test plans are compared. 

 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Figure 3: Procedure of the conducted simulation. For the perfectly orthogonal case as well as 

for each considered case of non-orthogonality, a Monte Carlo simulation is performed. In each 

iteration, the virtual experiments according to the test plan for the given scenario are 

conducted. The results are evaluated using OLS. After 100,000 iterations, the power and the 

average accuracy of each coefficient is calculated. 

4.2 Considered systems and cases of non-orthogonality 

 

The two exemplary systems are linear systems with two and three input variables 𝑥1, 𝑥2(, 𝑥3) and both 

with one output quantity 𝑦. The system definition according to eq. (1) therefore reduces to  

 𝑦 = 𝑐0 +  𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐12𝑥1𝑥2 + 𝑐13𝑥1𝑥3 + 𝑐23𝑥2𝑥3 + 𝜀, (3) 

 𝑦 = 𝑐0 +  𝑐1𝑥1 +  𝑐2𝑥2 + 𝑐12𝑥1𝑥2 + 𝜀. (4) 

According to the dimension of the input, the systems will be referred to as two-dimensional and three-

dimensional in the following. Their model coefficients, the error standard deviation 𝜎 and the derived 

maximum output 𝑦𝑚𝑎𝑥  (without error 𝜀) are given in Table 2. The coefficients for all inputs and 

interactions are set to equal levels. This might be an idealization, but is necessary to avoid an additional 

effect due to different parameter influences which interfere with the non-orthogonality. 

 

Table 2: Coefficients, error standard deviation and maximum mean output for both systems 

 

The considered sources and influences of non-orthogonality, which are examined consecutively, are: 

(a) A systematic shift of a parameter away from its planned level. This serves to simulate a scenario 

in which a parameter level is not (or only with high effort) realizable with the system or was 

implemented wrongly by accident. Therefore, the fourth parameter combination with 𝑥2 = +1 

in the orthogonal case is changed to 𝑥2 = {+0.9, 0, −0.9} (denoted (a1), (a2) and (a3) in the 

following). These manipulations are shown in Figure 4 for the case of two input parameters. 

(b) The removal of a single parameter combination. This represent the case that this particular 

experiment has to be omitted due to physical or timely constraints. Since the influence of each 

parameter is identical, it doesn’t matter which parameter combination is omitted. This 

manipulation in presented in Figure 5 on the left. 

(c) An additional repetition of a single parameter combination. This simulates the case that the 

experimenter wants to yield additional information by simply repeating an experiment. It 

should be noted that this is no non-orthogonality per definition, but adds imbalance to the test 

Inputs 𝑐0 𝑐1 𝑐2 𝑐3 𝑐12 𝑐13 𝑐23 𝑐123 𝜎 𝑦𝑚𝑎𝑥 
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plan and serves to study this effect separately. As for the removal of a parameter combination, 

it doesn’t matter which one is omitted. Figure 5 shows this scenario in the center. 

(d) A random, normally distributed scattering 𝜎𝑥  is applied to the data matrix, moving every 

parameter combination slightly away from its perfectly orthogonal position. One possible test 

plan originating from this manipulation is shown in Figure 5 on the right. This scenario 

represents the ubiquitous uncertainty in the setting of the parameter levels, which might either 

be caused by a less cost-intensive test setup, a less time-intensive test process or physical 

constraints. The standard deviation of the scattering, 𝜎𝑥 = 0.2, is assumed to be known. 

It is assumed that no more than one source of non-orthogonality appears simultaneously. Therefore, the 

mentioned scenarios are studied separately. This is permissible for screening test plans in a DoE context, 

as they serve to filter out the most relevant influences to prepare more thorough studies.  

 

Figure 4: Graphic representation of the 𝟐𝟐 test plan when the fourth parameter combination is 

shifted away from its orthogonal position (+𝟏, +𝟏) along the 𝒙𝟐 axis towards (+𝟏, +𝟎. 𝟗) (left), 

(+𝟏, 𝟎) (center), or (+𝟏, −𝟎. 𝟗) (right), to implement different degrees of non-orthogonality. 

 

 

Figure 5: Graphic representation of the 𝟐𝟐 test plan when the fourth parameter combination is 

omitted (left), repeated (center); or when all parameter combinations are superimposed with a 

normally distributed scattering around their orthogonal position (right). 

 

 

4.3 Results 

 

In the following, the results of both considered systems are presented and discussed in separate sections. 

The loss in test power and coefficient accuracy due to the non-orthogonal scenarios is presented and 

discussed in terms of practical application. In the end, the orthogonality measures 𝐴2  and 𝐷  are 

assessed. 

 

System with two input variables 

 

Table 4 presents the results of the parameter study with the system defined by eq. (4) in terms of the 

detectability (power) and the accuracy (estimation error) of the coefficients. In nearly every case, the 

systems general mean 𝑐0 is guaranteed to be found. Only in the most extreme parameter shift (Scenario 

(a3)), or when a parameter combination is omitted (Scenario (b)) does the power of the intercept 
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decrease. Examining the results in terms of the main influences 𝑥1 and 𝑥2, it can be seen that the gradual 

increase of non-orthogonality by shifting a parameter combination along the axis of 𝑥2 decreases the 

power for the according coefficient, as one would expect (Scenarios (a1)-(a3)). Yet in addition, the 

detectability of the first component 𝑥1 also decreases drastically, albeit with lower intensity. The same 

applies for the interaction 𝑥12. This shows that non-orthogonality, even if it is limited to one parameter, 

corrupts the whole test plan. 

The interaction itself is completely undetectable if one of the parameter combinations is omitted 

(Scenario (b)). This is the expected results, since any system with 3 fundamentally different parameter 

combinations – even if they are repeated – but 4 coefficients is underdetermined. Coefficient estimation 

results in this case are not reasonable; even worse, the power suggests that they are when it comes to 

the constant term 𝑐0. Although computational workarounds for an underdetermined system exist (e.g. 

ridge regression [9]), this emphasizes how necessary a sufficient number of different parameter 

combinations is. 

Scenario (c) shows that the studied test design can still be improved by solely repeating a single 

parameter combination in each repetition, leading to 15 instead of 12 experiments and a power of 92 % 

instead of 86 % per parameter. This indicates that the positive effect of the increased number of 

experiments is greater than the negative effect of the non-orthogonality added to the test plan. 

Last but not least, a normally distributed offset added to each parameter level (Scenario (d)) seems not 

to deteriorate the parameter detectability or accuracy. This is an interesting result, as in real-world 

applications, the experimenter will not be able to set the parameters to the exact levels defined by the 

theoretical test design. They will rather be scattered near their optimal position. The variance of this 

scattering depends on the system, the experimenter and especially the setup used. The last point is 

important when considering the cost of an experiment, where the experimenter might have to decide 

between more expensive (but more exact) or less expensive (and also less exact) hardware. In this 

mindset, the result of the last scenario suggests that deviations at the given level are negligible, 

indicating that this kind of deviation should be assessed in further studies. 

While the coefficient estimation accuracy more or less limits to a high and a low level, the power is 

more continuous. The power of the two independent variables and their interaction can be linearly 

predicted by 𝐴2 with a 𝑅2 between 93 % and 98 %. 𝐷 shows even higher linear correlation with 𝑅2 

between 95 % and 99 %. This indicates that both quantities are able to measure non-orthogonality in 

the given case. However, further studies are needed to assess how 𝐴2 and 𝐷 behave for the different 

deviations from orthogonality to obtain a comprehensive relationship. 

 

Table 4: Results of the test of the two-dimensional system with 3 repetitions. The first row shows 

the orthogonal reference case. The following rows show the scenarios described in Section 4.2: a 

parameter shift in 3 variations (a1-a3), the omission (b) and the repetition (c) of a parameter 

combination as well as a random scattering of parameters around their orthogonal levels (d). 

The columns show the non-orthogonality measure 𝑨𝟐 and 𝑫, the power (𝟏 − 𝜷) and the 

estimates mean deviation from the real values for each parameter. 

 

System with three input variables 

 

The power of the coefficients in the three-dimensional system defined in eq. (3) are shown in Table 5. 

The estimation errors are equivalent to those in the two-dimensional system and are therefore omitted 

here. The results regarding the general mean 𝑐0 are also similar to the previous case: Its power decreases 

Scenario 
Non-orthogonality Power (1 − 𝛽) [%] Coefficient estimation error [%] 

𝐴2 𝐷 𝑐0 𝑐1 𝑐2 𝑐12 𝑐0 𝑐1 𝑐2 𝑐12 

orthogonal 0 1 100.0 85.9 85.9 85.8 0 -0.1 0.1 0.2 

(a1) 0.004 0.996 100.0 85.7 84.0 83.8 0 0 0 0 

(a2) 0.388 0.529 100.0 69.8 48.6 48.6 0 0.1 0.2 0 

(a3) 0.762 0.005 10.4 5.6 5.5 5.5 -0.4 -1.0 -1.2 -1.2 

(b) 0.750 0 97.4 4.2 4.2 0 -33.4 -100.2 -100.2 -100.0 

(c) 0.083 0.926 100.0 92.0 91.8 92.1 0 -0.1 -0.1 0.1 

(d) 0.038 0.963 100.0 85.6 85.5 86.1 -0.3 -0.1 -0.1 -0.1 
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drastically in the most radical shift of the second component in one parameter combination (Scenario 

(a3)). Yet, the power of 𝑐0 is about twice as high as for the two-dimensional system (19.6 % instead of 

10.4 %). This is probably due to the greater total number of experiments in the bigger system (16 instead 

of 12). Assessing the three variants of Scenario (a) together, it seems that the findings from the two-

dimensional system are repeated: Not only the power of the coefficients connected to 𝑥2 (i.e., 𝑐2, 𝑐12, 

𝑐23, 𝑐123; shaded grey in Table 5) decreases gradually, but also the power of every other parameter. 

Yet, a new insight arises from the three-dimensional system, as the power for the coefficients depending 

on 𝑥2 decreases faster than that of the other coefficients. This can best be seen in Scenario (a2), where 

the power of the first mentioned is approximately 76 %, while that of the latter is 88 %. 

The results of Scenario (b) mirror what was already seen in the two-dimensional system. The repetition 

of one of the fundamental parameter combinations, Scenario (c), increases the power of all parameters 

from approximately 94 % to 96 %. This means that the positive effect of an increased number of 

experiments is small here. It has to be assessed in further studies if this power increase could be greater 

if a less non-orthogonal arrangement of the repeated parameter combination is beneficial.  

The last scenario, where a normally distributed noise has been applied to the parameter levels, shows a 

slightly decreased power for all parameters (93 % instead of 94 %). This effect is clearer here than in 

the case of the two-dimensional system. However, the power loss is still small. If the cost or duration 

of an experiment depends on how exact the parameter levels are reached, an appropriate amount of such 

scattering may be permitted to make the test more efficient. It has to be further assessed how different 

amounts of noise applied to the parameter levels affect the resulting test power. 

When regressing the power of the different coefficients on either 𝐴2  or 𝐷 , the results show a 𝑅2 

between 76 % and 81 % in both cases, which is less than in the two-dimensional system. Even more 

than for the two-dimensional system, it has to be studied if 𝐴2  and 𝐷  correlate better with non-

orthogonality if only a single source of it is present. 

 

Table 5: Results of the test of the three-dimensional system with 2 repetitions. The first row 

shows the orthogonal reference case. The following rows show the scenarios described in Section 

4.2: a parameter shift in 3 variations (a1-a3), the omission (b) and the repetition (c) of a 

parameter combination as well as a random scattering of parameters around their orthogonal 

levels (d). The columns show the non-orthogonality measures 𝑨𝟐 and 𝑫 and the power (𝟏 − 𝜷) 

for each parameter. The columns of coefficients connected to 𝒙𝟐 are shaded grey. 

 

Key findings 

 

The simulation results can be summarized in the following key findings:  

• the estimation accuracy showed no more than 1.2 % error in the different non-orthogonality 

scenarios, as long as the test design is consistent; 

• the estimation error was not found to be related to the degree of non-orthogonality; 

• the power of the coefficients was found to be related to the degree of non-orthogonality 

• small and medium offsets as well as a normally distributed scattering of parameter levels yield 

surprisingly small power losses; 

• additional non-orthogonal replications show less benefit than expected, emphasizing the 

practical relevance of test plan orthogonality; 

• the 𝐴2 and 𝐷 values, two optimality measures, were found to be linearly related to the power 

and therefore qualify as non-orthogonality measures. 

Scenario 
Non-orthogonality Power (1 − 𝛽) [%] 

𝐴2 𝐷 𝑐0 𝑐1 𝑐2 𝑐3 𝑐12 𝑐13 𝑐23 𝑐123 

orthogonal 0 1 100.0 93.7 93.7 93.7 93.7 93.7 93.7 93.7 

(a1) 0.006 0.994 100.0 93.6 93.2 93.7 93.0 93.7 93.1 93.0 

(a2) 0.379 0.458 100.0 87.9 75.5 87.8 75.5 88.0 75.5 75.7 

(a3) 0.781 0.004 19.6 6.5 6.4 6.5 6.3 6.5 6.4 6.4 

(b) 0.583 0 99.7 4.4 4.5 4.5 4.4 4.4 4.5 0.0 

(c) 0.210 0.850 100.0 95.9 96.1 96.0 96.0 96.0 96.0 96.1 

(d) 0.255 0.774 100.0 92.9 92.8 92.9 92.9 92.6 92.8 92.6 
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5. CONCLUSION 
 

In this paper, the basic principles of hypothesis testing, linear regression analysis and DoE as well as 

their relation to one another have been explained. The requirement of orthogonality in test design has 

been illustrated. Different methods and quantities to measure deviations from perfectly orthogonal test 

plans – which will always be present in application – have been presented. Test power – i.e., 

detectability of existing influences – and estimation accuracy have been defined as evaluation criteria 

to assess the quality of a test design. Both quantities have been examined in a screening parameter study 

which implements common sources of non-orthogonality in test plans. These sources have been 

explained and realized in two systems with two and three input variables, respectively. The simulation 

has been conducted using the Monte Carlo method. The results have been presented, discussed and 

compared to two different non-orthogonality measure. 

Although the systems considered in this paper were quite basic, they were already able to help assess 

the fundamental meaning of test plan (non-)orthogonality. Also, first hints towards more cost- or time-

efficient test design in practical applications were found. As a follow-up, an in-depth study with several 

extensions is suggested. For example, different coefficients for the considered parameters as well as for 

their interactions should be considered. More generalized insights could be found analyzing the 𝑝-value 

instead of the power. Also, more variations of the considered non-orthogonal scenarios are suggested. 

Such further examinations should be considered in the pursuit of efficient test plans. 
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