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Abstract: Fault tree analysis is a technique widely used in risk and reliability analysis of complex 

engineering systems given its deductive nature and relatively simple interpretation. In a fault tree, events 

are usually represented by a binary variable that indicates whether an event occurs or not, traditionally 

associated with the values 1 and 0, respectively. Different events are linked together using logical gates, 

modelling the dependencies that a subsystem or system may have over its basic components. In this 

study, quantum computing is leveraged to propose a novel approach to encode a traditional fault tree 

into a quantum algorithm. This quantum fault tree method uses quantum bits to represent basic events, 

effectively encoding the original fault tree into a quantum circuit. The execution of the resulting 

quantum circuit represents a full simulation of the fault tree, and multiple executions can be utilized to 

compute the failure probability of the whole system. The proposed approach is tested on a case study 

portraying a dynamic positioning system. Results verify that the quantum-based proposed approach is 

able to effectively obtain the dynamic positioning failure probability through simulation, opening 

promising opportunities for future investigations in the area. 

 

 

1.  INTRODUCTION 
 

In recent years, early applications of quantum computing have been explored in different fields, such 

as finance ([1], [2]), medicine ([3], [4]) and material science [5], while promising significant speedups 

in the modeling and simulation processes. These promises are based on the leverage of quantum 

properties such as superposition, entanglement, and interference, which could be harnessed to perform 

certain tasks exponentially faster in terms of computational complexity [6], [7]. For the Reliability and 

Risk fields, early applications have been developed to tackle challenges such as condition-based 

monitoring using quantum neural networks [8] and structural health monitoring using Bayesian 

networks [9], [10]. In this study, a novel approach to embed a fault tree into a quantum circuit is 

introduced and discussed in detail. 

 

Fault tree analysis (FTA) is a method for analyzing the failure probabilities of system states using 

Boolean logic. Fault trees are able to incorporate basic events interdependencies using logic block 

diagrams, including multiple events and gates such as AND/OR gates [11]. A detailed description of 

the concepts and techniques for FTs is presented in [12], [13]. In this paper, a case study of a fault tree 

for the control system of a dynamic positioning (DP) system is presented.  The remaining of this paper 

is organized as follows. Section 2 presents the basic theory behind quantum computing, including the 

concepts of quantum bit and quantum gates. Section 3 introduces the proposed approach to encode a 

fault tree into a quantum algorithm, describing the translation of AND and OR gates into quantum 

circuits. Section 4 presents a case study in which a dynamic positioning system is analyzed using 

quantum fault trees and the results are compared to those obtained by a classical approach. Finally, 

Section 5 presents the concluding remarks of the paper. 
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2.  THEORETICAL BACKGROUND 

 
This section presents an overview of the main principles of quantum computing. In particular, the 

concepts of qubit and quantum gate are explained, drawing parallels to the traditional bit and logical 

gates when appropriate. Then, quantum circuits are presented to the reader as a framework to organize 

quantum operations and perform computation in a gate-based quantum computer or simulator. Finally, 

a brief exposition of the concept of measurement is introduced. These concepts form the required basis 

of knowledge to understand the proposed quantum fault tree approach, which is presented in section 3. 

 

2.1.  Qubits 

 

A quantum bit, or qubit for short, is a generalization of the traditional concept of bit used thoroughly in 

modern computation. While both the bit and qubit represent two-states systems, the former is limited 

to only express one of two deterministic states at a time (either 0 or 1). The qubit, instead, can leverage 

the quantum property known as superposition to represent a linear combination of two mutually 

exclusive basis states, encoding a much more flexible representation. Mathematically, the qubit is an 

object residing in a two-dimensional Hilbert space, characterized by two complex parameters, as it is 

shown in equation (1): 
 

 |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (1) 
 

where the notation |𝜓⟩ is known as the ket notation and it is used in quantum mechanics to represent a 

vector [14]. In particular, |0⟩  and |1⟩  are the two basis vectors [1   0]𝑇  and [0   1]𝑇 , respectively. 

Additionally, 𝛼 and 𝛽 are complex numbers encoding probability amplitudes for each basis state, and 

therefore must fulfill the property shown in Equation (2): 
 

 |𝛼|2 + |𝛽|2 = 1 (2) 

 

It is often useful to represent a qubit in a graphical manner to visually interpret the operations that are 

performed to it. For this, a naïve approach would be to initially consider a 4-dimensional space, given 

that a qubit is fully characterized by two complex coefficients, each with two degrees of freedom. 

Nevertheless, it is possible to show that only two real-valued parameters are required to fully represent 

a qubit [14]. To see this, let us first write the expression for a qubit in its polar form, as shown in 

Equation (3): 
 

 |𝜓⟩ = 𝑟0𝑒𝑖𝜙0|0⟩ + 𝑟1𝑒𝑖𝜙1|1⟩ (3) 

  

where the four required parameters are identified as {𝑟0, 𝑟1, 𝜙0, 𝜙1}, consisting of two amplitudes and 

two phases. Nonetheless, using Equation (2) it is possible to replace, without loss of generality, the 

parameters 𝑟0  and 𝑟1  by a single parameter 𝜃  using 𝑟0 = cos 𝜃/2 and 𝑟1 = sin 𝜃/2  (the use of the 

factor 1/2 will become evident later). Additionally, it is known that a quantum bit is not physically 

altered if amplified by a complex number of arbitrary phase but unitary norm [14]. Therefore, applying 

the new representation for the amplitudes 𝑟0 and 𝑟1, and multiplying the expression by 𝑒−𝑖𝜙0, equation 

(3) can be reduced to the expression portrayed in Equation (4): 
 

 
|𝜓⟩ = cos

𝜃

2
|0⟩ + sin

𝜃

2
𝑒𝑖(𝜙1−𝜙0)|1⟩ (4) 

 

Finally, denoting 𝜙 = 𝜙1 − 𝜙0, the aforementioned expression is further reduced to: 
 

 
|𝜓⟩ = cos

𝜃

2
|0⟩ + sin

𝜃

2
𝑒𝑖𝜙|1⟩ (5) 
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where the representation of a qubit has been modified to show that only two real parameters, 𝜙 and 𝜃, 

are necessary to fully characterize it. Since these two parameters are often interpreted as angles, the 

qubit can also be understood as a surface point in a unitary sphere, where 𝜃 and 𝜙 are the polar and 

azimuthal angles, respectively. This sphere is called the Bloch Sphere, and it is shown in Figure 1. it is 

evident from Figure 1that the factor 1/2 in the angle 𝜃 is needed to ensure that the state |1⟩ is obtained 

when 𝜃 = 𝜋. 
 

 
 

Figure 1: Graphical representation of a qubit using the Bloch Sphere. Note how, for the cases where 𝜽 = 𝟎 

and 𝜽 = 𝝅, the qubit coincides with the basis states |𝟎⟩ and |𝟏⟩ respectively, as expected from Equation (5). 

Another special case is 𝜽 = 𝝅/𝟐,  where the qubit occupies the equatorial zone of the Bloch sphere, 

representing a state of perfect superposition in which the probability of both basis states is the same and 

equal to 𝒑|𝟎⟩ = 𝒑|𝟏⟩ = 𝟎. 𝟓. 

While more flexible than traditional bits, single qubits on their own cannot offer any significant 

computational advantage. It is in the interaction between different qubits where properties such as 

entanglement and interference arise and the advantages of quantum computing start to become relevant. 

𝑁-qubit systems have the same representational power than 𝑁-bit systems: they can encode a total of 

2𝑁 possible states. The differentiating feature is that quantum systems composed of multiple qubits can 

encode, in the general case, all those states at the same time assigning different probability amplitudes 

to each of them. Mathematically, the state of a multiqubit system is computed from the individual 

qubit’s states using the outer product, as shown in Equation (6): 

 

 |𝛹⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ … ⊗ |𝜓𝑁−1⟩ ⊗ |𝜓𝑁⟩ (6) 

 

As an example, let us consider the case where 𝑁 = 2, i.e., the multiqubit system is composed by two 

qubits: |𝜓1⟩ =  𝛼1|0⟩ + 𝛽1|1⟩ and |𝜓2⟩ = 𝛼2|0⟩ + 𝛽2|1⟩. The resulting state after performing the outer 

product operation is shown in Equation (7), where the definition for the ket vectors |0⟩ and |1⟩ has been 

used: 

 

 |𝛹⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ 

= (𝛼1 [
1
0

] + 𝛽1 [
0
1

]) ⊗ (𝛼2 [
1
0

] + 𝛽2 [
0
1

]) 

= [
𝛼1

𝛽1
] ⊗ [

𝛼2

𝛽2
] 

= [
𝛼1 [

𝛼2

𝛽2
]

𝛽1 [
𝛼2

𝛽2
]
] 

= [

𝛼1𝛼2

𝛼1𝛽2

𝛽1𝛼2

𝛽1𝛽2

] 

(7) 
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The resulting state can be further divided into a new set of basis vectors for a 4-dimensional Hilbert 

space, as depicted in Equation (8): 

 

 

|𝛹⟩ = [

𝛼1𝛼2

𝛼1𝛽2

𝛽1𝛼2

𝛽1𝛽2

] 

= 𝛼1𝛼2 [

1
0
0
0

] + 𝛼1𝛽2 [

0
1
0
0

] + 𝛽1𝛼2 [

0
0
1
0

] + 𝛽1𝛽2 [

0
0
0
1

] 

= 𝛼1𝛼2|00⟩ + 𝛼1𝛽2|01⟩ + 𝛽1𝛼2|10⟩ + 𝛽1𝛽2|11⟩ 

(8) 

 

where the basis vectors for the 4-dimensional Hilbert space have been also expressed in ket notation. 

As it can be seen, this multiqubit system is now able to encode four distinct probability amplitudes and, 

therefore, they must also fulfill the normalization condition described in Equation (2). 
 

2.2.  Quantum Gates 

 

Quantum computation is based on the sequential modification of qubit states to perform a certain 

computational task. In gate-based computers, this modification is carried out by applying unitary 

matrices known as quantum gates to a single or multiple qubits. In this section, an overview of the 

quantum gates used for the proposed quantum fault trees is presented. For the sake of completeness, the 

Hadamard gate is included in the discussion even though it is not used in the case study presented in 

this work.  

 
2.2.1 NOT Gate 

 

The quantum NOT gate, also known as Pauli-X gate, is a single qubit gate that inverts the probability 

of both basis states. Mathematically, it is represented by the following matrix: 

 

 
𝑁𝑂𝑇 =  [

0 1
1 0

] (9) 

 

2.2.2 Hadamard Gate 

 

While the Hadamard gate is not used in the context of Quantum Fault Trees for the case study 

considered in this paper, it is presented here for the sake of completeness as it is one of the fundamental 

quantum computing gates. The Hadamard gate is also a single qubit gate whose main use is to induce a 

perfect superposition state in a qubit that was originally prepared to be in the |0⟩ state. In matrix form, 

the Hadamard gate is represented as: 

 

 
𝐻 =

1

√2
 [

1 1
1 −1

] (10) 

 

 

2.2.3 Controlled-NOT (CX) Gate 

 

While the Pauli-X and Hadamard gates are single qubit gates, the CX gate is a two-qubit gate, meaning 

that it operates over two qubits, generating quantum entanglement between them. The effect of the CX 

gate applied over a two-qubit system is the following: if the control qubit is in the |1⟩ state, then a NOT 

gate is applied over the controlled qubit; otherwise, the gate has no effect. Mathematically, the CX gate 

is represented by the following matrix: 
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𝐶𝑋 = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ] (11) 

 

While the traditional CX gate only has one control qubit, extensions to 𝑁 control qubits can be easily 

formulated. A special case is formed when 𝑁 = 2,  called the Toffoli Gate. As it will be shown in 

Section 3, the CX gate and its extensions gate are instrumental for generating the translation of the 

logical gates AND and OR into quantum circuits, allowing the encoding of fault trees into quantum 

computers. 
 

2.2.4 Y-Rotational Gate 

 

The aforementioned gates are non-parametric gates, meaning that they do not receive user-defined 

parameters to change the quantum state of the system. Rotational gates instead use external parameters 

to alter the probability amplitudes of the qubits within the system. The Y-Rotational gate, in particular, 

can be understood as executing a rotation with angle 𝜉 radians with respect to the Y-axis in the Bloch 

Sphere (Figure 1). This rotation effectively changes the probability amplitudes, augmenting the 

likelihood of measuring a |0⟩ or |1⟩ state, depending on the initial state and the angle 𝜉. Rotational gates 

represent a powerful way of interacting with quantum circuits, and they are the cornerstone of quantum 

machine learning methods such as Quantum Neural Networks [15]. As it will be seen in Section 3, the 

Y-rotational gate will be used to encode event-specific failure probabilities into the qubits of a system. 

The matrix representation of the Y-rotational gate is shown in Equation (12): 

 

𝑅𝑦(𝜉) =  [
𝑐𝑜𝑠 

𝜉

2
−𝑠𝑖𝑛 

𝜉

2

𝑠𝑖𝑛 
𝜉

2
𝑐𝑜𝑠 

𝜉

2

], (12) 

 

2.3.  Quantum Circuits 

 

A quantum circuit can be defined as the ordered set of operations applied to a multi-qubit system. They 

represent the main approach to design algorithms in gate-based quantum computers. Every quantum 

circuit consists of at least three main steps. First, there is an initialization step, in which all the qubits 

are set into a specific state, usually the |0⟩ state. Secondly, operations described as quantum gates are 

applied to the multi-qubit system in an orderly fashion, altering the probability amplitudes of the system, 

entangling different set of qubits. Finally, a measurement process is performed, collapsing the 

superposed quantum state of the system into one possible state according to the final probability 

amplitudes that were encoded into the circuit. This measurement process is a destructive operation in 

the sense that is irreversible: after a measurement is performed, the circuit ends as there is no way of 

reconfiguring the quantum states other than starting the circuit again. Due to the stochastic nature of the 

quantum system, each time the circuit is executed, the values recorded in the classical register will be 

different according to the underlying distribution specified by the probability amplitudes. Therefore, it 

is common practice to execute the circuit multiple times to obtain meaningful results 

 

3.  PROPOSED APPROACH FOR QUANTUM FAULT TREES 
 

3.1.  General Overview of Fault Trees 

 

The quantum-based fault tree structure follows the same rules as a conventional fault tree, which are 

based on the application of logical gates to a set of basic events.  After constructing a fault tree for a 

given system, a quantitative evaluation process is performed to compute the failure probability of the 
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TOP event. Here, the equations for the conventional fault tree gates are presented, using as an example 

the simplified two event fault tree depicted in Figure 2. 

 

 
Figure 2: A simplified fault tree with only two basic events, A and B. The final failure probability of the 

system will depend on the relationship between A and B, represented by the logical gate G. 
AND gate: 

The system failure probability can be computed as: 

 𝑃𝑓 = 𝑃𝐴 ⋅ 𝑃𝐵 (13) 

where it is assumed that events A and B are independent. 

 

OR gate: 

For the OR gate, the system failure probability can be computed using De Morgan’s theorem by 

inverting the gate, as shown in equation (14): 

 𝑃𝑓 = 1 − (1 − 𝑃𝐴) ⋅ (1 − 𝑃𝐵) (14) 

 

NAND gate: 

Using the complement rule of probability, the system failure probability can be computed as:  

 𝑃𝑓 = 1 − 𝑃𝐴 ⋅ 𝑃𝐵 (15) 

NOR gate: 

In a similar fashion as with the NAND gate, the system failure probability for the NOR gate is computed 

as: 

 𝑃𝑓 = (1 − 𝑃𝐴) ⋅ (1 − 𝑃𝐵) (16) 

For more complex fault trees, a similar process is performed in an iterative manner, starting from the 

bottom of the tree, and computing the failure probability of each subsystem. Then, the subsystem itself 

is considered as a basic event for higher level subsystems, until the TOP event is reached, and its 

probability is computed. A numerical example of this traditional approach is presented in Section 4 as 

the baseline to which que proposed Quantum Fault Tree will be compared against. 

 

3.2.  Quantum Logical Gates 

 

The encoding of fault trees into a quantum circuit requires the translation of logical gates into their 

quantum equivalents. In this section, circuits corresponding to the application of an AND and OR 

logical gates over an arbitrary number of basic basics are presented and experimentally tested.  

 
3.2.1 Quantum AND Gate 

The quantum AND gate for two inputs can be constructed using the Toffoli gate, as it is shown in Figure 

3(a). Note how 𝑞𝑎 and 𝑞𝑏 are the control qubits and 𝑞𝑐 is the controlled qubit, which registers the result 

of the gate. Following the rules of the Toffoli gate, only when both 𝑞𝑎 and 𝑞𝑏 are in the |1⟩ state, a NOT 

gate will be applied over 𝑞𝑐. If 𝑞𝑐 is initialized to be in the |0⟩ state, then the Toffoli gate replicates 

exactly the truth table of a logical AND gate. 

 

To extend the quantum AND gate for an arbitrary number of inputs, an N-Controlled NOT gate can be 

applied in a very similar fashion to the Toffoli gate: a NOT gate will be applied over 𝑞𝑐 only if 𝑞1, 

𝑞2,…, 𝑞𝑁 are in the |1⟩ state, changing 𝑞𝑐 from the original |0⟩ state to the desired |1⟩ state. A circuit 

implementing this behavior for three inputs is depicted in Figure 3(b). 

  ste   a   re
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(a) Quantum AND gate with two inputs, 𝒒𝟎 and 

𝒒𝟏, registering the output in 𝒒𝟐. 
(b) Extension of the quantum AND gate for three 

inputs: 𝒒𝟎, 𝒒𝟏 and 𝒒𝟐. 

Figure 3: Quantum AND gates with varying number of inputs. Note how in both (a) and (b) a Controlled-

NOT sequence is used to determine the value of the output. 

3.2.2 Quantum OR Gate 

The quantum OR gate can be designed using De Morgan’s theore  that  nd cates that a NAND gate is 

equivalent to an OR gate with inverted inputs. A NAND gate can be easily generated by inverting the 

output of the previously defined AND gate. The result is portrayed in Figure 4(a) as a circuit diagram 

for the case of two inputs. Note how NOT gates are applied two times to the inputs: once to invert them, 

before the application of the Toffoli gate, and once more after to return them to its original state. The 

output, instead, is only inverted once to transform the AND gate into a NAND gate. In a similar fashion 

as with the quantum AND gate, an extension of the OR gate is formulated by replacing the Toffoli gate 

by the more general N-controlled NOT gate, as depicted in Figure 4(b) for the case where three inputs 

are required.  

 

  

(a) Quantum OR gate with two inputs, 𝒒𝟎 and 𝒒𝟏, 

registering the output in 𝒒𝟐. 
(b) Extension of the quantum OR gate for three 

inputs: 𝒒𝟎, 𝒒𝟏 and 𝒒𝟐. 

Figure 4: Quantum OR gates with varying number of inputs. Note how in both (a) and (b) NOT gates are 

used before the Controlled-NOT sequence to invert the original AND gate, according to De Morgan’s law. 

After the Controlled-NOT gate, another set of NOT gate is applied over the inputs to return them to their 

original state. 

With quantum versions of the AND and OR gates designed, the encoding of a fault tree into a quantum 

circuit is explained in what follows. 

 

3.3.  Quantum Fault Trees 

 

The proposed approach to encode a fault tree into a quantum circuit is comprised of the following set 

of steps: 

1. Construct a quantum circuit with 𝑁 + 𝑀 qubits, where 𝑁 is the number of basic events in the 

fault tree and 𝑀 is the number of quantum AND and OR gates that are required in the circuit. 

2. Identify each basic event with a qubit. The basis states |0⟩ and |1⟩ will represent operational 

and failure states, respectively.  
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3. Apply a Y-Rotational gate to every basic event qubit to encode the failure probability of the 

event into the probability amplitudes of the qubit. Equation (17) [10] provides the angle 

required in the rotational gate to encode a failure probability 𝑝|1⟩: 

 
𝜉 = 2 ⋅  tan−1 (√

𝑝|1⟩

1 − 𝑝|1⟩
) (17) 

4. Starting from the bottom of the tree, encode each logical gate into the circuit using the quantum 

sub-circuits defined in Section 3.2. It is important to note that as the TOP event in the fault tree 

is reached, new gates will use the result from previous sub-systems as basic events. 

5. Execute the circuit and record the measurement for every qubit into the classical register. This 

bitstring encodes a simulated scenario of the system, where each bit indicates whether that basic 

event, subsystem or system failed or not. The execution is repeated 𝐾 times to obtain multiple 

scenarios from which conclusions can be drawn. 

 

Next, a case study depicting the fault tree of a dynamic positioning system and its translation into a 

quantum circuit is presented. 

 

4.  CASE STUDY: DYNAMIC POSITIONING SYSTEM 
 

4.1.  Description of the system 

 

The case study considered in this paper presents the corresponding fault tree for the control system of 

a dynamic positioning (DP) system. As Figure 5 shows, the DP system controller can fail due to power 

blackout or a generalized failure in the computer system.  These two subsystems are presented in the 

DP fault tree using an OR gate to indicate that both need to be in working condition for the DP system 

to operate correctly. The DP system has a redundant computer system with one unit in standby in case 

the main computer fails.  That can be seen in the left side of the fault tree with two events named 

“Co p ter R1 fa  t” and “Co p ter R2 fa  t”. When both computer units fail, then the main computer 

system fails; therefore, an AND gate is used to connect these events. Each computer unit can fail due 

to a hardware error, a software error, or a human error. Thus, the interconnection between these basic 

events for each computer is represented by an OR gate. The r ght s de of the fa  t tree’s d agra  dea s 

with the power system failure. For this particular DP system, a triple redundance was implemented, 

consisting of a main power generation unit and two uninterruptible power supplies (UPSs) as standby 

units. If all these three power sources fail, the DP system will fail in consequence. Therefore, in the 

fault tree, the power generation and UPSs failures are connected using an AND gate. Figure 5 presents 

a diagram of the fault tree for the dynamic positioning system. More detail about the control system 

failure model of DP system can be found in [16]. 

 

 
 

Figure 5: Fault tree for the case under study. 
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The failure probabilities for the basic events of the DP system are presented in Table 1 as specified in 

[16]. 

  
Table 1: Annual failure probabilities for the basic events depicted in Figure 5 

Basic Event Annual Failure Probability 

Hardware Error 2.44 × 10−5 

Software Error 8.54 × 10−5 

Human Error 5.68 × 10−1 

Power Generation Unit Failure 3.41 × 10−4 

UPS Failure 3.66 × 10−5 

 

The failure probability of the TOP event (control system failure) is computed to generate a baseline to 

compare the results obtained by proposed quantum fault tree approach. For this, the process starts from 

the bottom of the fault tree by using the rules stablished in Section 3.1 to calculate the s bs ste ’s 

failure probabilities. Given that the computer R1 and computer R2 are equivalent units, the annual 

failure probability is the same and is obtained as follows: 

 

 𝑃𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑅1,2 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − (1 − 2.44 × 10−5) ⋅ (1 − 8.54 × 10−5) ⋅ (1 − 5.68 × 10−1) = 0.568 (18) 

 

Therefore, the computer system annual failure probability can be calculated as: 

 

 𝑃𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 0.568 ⋅ 0.568 = 0.323 (19) 

 

For the power generation branch, the annual failure probability for the power system is computed 

according to: 

 

 𝑃𝑃𝑜𝑤𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 3.41 × 10−4 ⋅ 3.66 × 10−5 ⋅ 3.66 × 10−5 = 4.568 × 10−13 (20) 

 
  na   , the contro  s ste ’s ann a  fa   re probab   t   s: 

 

 𝑃𝑃𝑜𝑤𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − (1 − 0.323) ⋅ (1 − 4.568 × 10−13) = 0.323 (21) 

 
4.2.  Implementation of the Quantum Fault Tree 

 

Following the approach to construct a quantum fault tree described in Section 3.3, the DP system 

requires the implementation of a quantum circuit consisting of 14 qubits (i.e., 9 qubits to represent basic 

events and 5 qubits to implement the outputs of the AND and OR). Figure 6 depicts the quantum circuit 

that results from encoding the DP fault tree into a quantum circuit. 

 

The circuit depicted in Figure 6 is executed 1,000,000 times in a desktop computer with an i5-7300HQ 

CPU and 16 GB of RAM, running Python 3.10.3 and the quantum simulator library Qiskit 0.19.2. The 

total execution time is 4.32 seconds. As previously explained, each execution samples from the 

underlying distribution encoded in the fault tree, effectively generating a simulation of the failure 

process. This simulation is extracted from the quantum circuit as a bitstring, in which each position 

indicates whether the correspondent component or subsystem failed or not, identified with the values 1 

or 0. 
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Figure 6: Dynamic positioning system encoded as a quantum circuit. Note how the probabilities are encoded 

into the qubits representing basic events using rotation-Y gates. The implementation of quantum AND and 

OR gates is executed starting from the bottom of the tree. Finally, the state of the system is identified as the 

result of measuring the last qubit, labelled as “lvl3_control_system_failure”. 

 
4.3.  Results and Discussion 

 

Figure 7 shows all the scenarios in which the DP control system failed, depicted as a histogram. Table 

2 shows the equivalence between each bitstring and the final state of the system. As it can be seen, the 

case where the events “h  an error” occurs for both computers is by far the most common failure 

scenario. Other scenarios are significantly less frequent with differences of around three to four degrees 

of magnitude. This result can be explained by reviewing the probability failures shown in Table 1, 

where clearly human error is the most probable event to occur. As the failure of both computers 

automatically generates the failure of the whole system, human errors in both computers can be 

identified very quickly as a critical event using the proposed approach and, therefore, corrective action 

can be taken. While a similar conclusion can be reached using the traditional approach; for example, 

noticing from Equation (19) and Equation (20) that the failure probability of the computer system is 

much higher than for the power system, the proposed approach offers an alternative technique to 

identify weak points in the system. In this regard, the simulation process provided by the proposed 

quantum fault tree could be useful in quickly identifying hazardous events by analyzing the resulting 

bitstrings and their frequencies. 

 

With respect to the control system failure probability, the total sum of scenarios in which the system 

fails in equal to 323,120. Given that the total number of scenarios simulated is 1,000,000, the failure 

probability of the control system can be numerically estimated to be 0.3231, in very close proximity to 

the one obtained by the traditional approach (in Equation (21)). 
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Figure 7: Frequency of simulated scenarios in logarithmic scale for every bitstring representing a failure 

in the control system. Note how every element contain a 1 in the first position, indicating that the state 

registered for the TOP event of the fault tree was “failed”. 

Table 2: Equivalence between bitstrings shown in Figure 7 and which components are in a failed state. 

Bitstring Failed Components Bitstring Failed Components 

1000100100 Human error in both computers 

(R1 and R2) 

1000110100 Human error in both computers (R1 and 

R2) 

1100100100 Human error in both computers 

(R1 and R2) and failure in UPS 

R1 

1000101100 Human error in both computers (R1 and 

R2) 

1000100110 Human error in both computers 

(R1 and R2) and software error in 

computer R1 

1000001100 Human error in computer R1 and 

hardware error in computer R2 

1000100100 Human error in both computers 

(R1 and R2) 

1000010100 Human error in computer R1 and 

software error in computer R2 

1001100100 Human error in both computers 

(R1 and R2) and failure in power 

generation unit. 

1000100101 Human error in both computers (R1 and 

R2) and hardware error in computer R1 

1000100001 Human error in computer R2 and 

hardware error in computer R1 

1010100100 Failure in UPS R2, human error in both 

computers (R1 and R2) 

 

 

5.  CONCLUDING REMARKS 
 

This paper presents a novel approach to encode fault trees into a quantum computing algorithm to 

perform fault tree analysis and estimate the s ste ’s fa   re probab   t .  or th s, the  ND and OR 

logical gates, commonly used in traditional fault tree analysis, are translated into equivalent quantum 

circuits. Additionally, rotational-Y quantum gates are used to embed failure probabilities into the 

probability amplitudes of quantum states, effectively achieving a one-to-one equivalence between 

qubits and basic events in the fault tree. The proposed approach is tested on a real case study, where the 

fault tree of a dynamic positioning system is presented. 

 

Overall, it is found that the quantum fault tree approach is able to simulate different failure and non-

failure scenarios through the execution of the underlying quantum circuit. From these simulations, 

s   ar  stat st cs s ch as the s ste ’s failure probability can be estimated. Experimental results 
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regarding the case study presented in this paper show that the results obtained using the proposed 

quantum Fault Tree approach match the results obtained through the analytical computation of the DP 

s ste ’s fa  t tree. Moreover, similar to traditional approaches, the collection of scenarios simulated 

using the quantum fault tree can also provide insights into the weak points of the system, allowing 

practitioners to take preventive action and allocate resources where they would be more efficient. As 

one of the main fields of study in the area is the sensitivity analysis of the results with respect to the 

number of circuit executions, scenario simulation based approaches using quantum computing could be 

a powerful alternative to efficiently estimate quantities of interests and understand how uncertainty is 

propagated in models. 

 

Furthermore, it is the authors’ opinion that this first approximation to a quantum-based fault tree model 

shows very promising results considering the relatively small number of qubits currently available in 

quantum simulation software. Nevertheless, the field of quantum computing is rapidly growing, with 

many companies developing both quantum hardware and software, and as such the early exploration of 

these techniques is relevant for the Probabilistic Risk Assessment community to maximize the benefits 

that might extracted when quantum hardware and algorithms provide real-world advantages over 

traditional approaches.  
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