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Abstract 

This study proposes an approach for designing test specifications for a new product with unknown failure modes. This 

approach determines the sample size, and test conditions for reliability testing based on the target reliability, its 

confidence level, and manufacturer’s constraints including the test duration and maximum sample size. The approach 

obtains various use conditions (i.e., stress profiles and frequencies of use by the owners) from the same class of 

devices, such as earlier versions of the product already in use, by relying on customer survey data. Anticipated users 

(customers) applied stresses are summarized by introducing a normalized metric called stress-index (SI). The SI values 

and frequencies of customer use are clustered into various groups. Then, (1) a frequency-accelerated test is designed 

that applies the grouped use stresses to test samples but increases their frequencies, and (2) a stress-accelerated test is 

designed that uses a stress-life model to convert the actual customer use frequencies into higher stress reliability test 

frequencies, such that the same amount of damage as the use condition is accumulated. The number of samples for 

the frequency-accelerated and stress accelerated tests is calculated using the binomial distribution representing 

reliability of the products. A point estimate reliability and its lower bound can be estimated based on the test outcome. 

The application of the approach is illustrated for designing a reliability test plan using a simulated survey dataset for 

a hypothetical electronic device. 

Key Words: test specification, frequency-accelerated test, stress-accelerated test, reliability estimation, user survey. 

Definitions 

Stress An agent that causes damage to the product. 

Stress adjustor A variable that increases or decreases the stress magnitude or stress absorption.  

Stress profile A combination of stresses and stress adjustors. 

1. Introduction 

Manufacturers assess the reliability of their products using laboratory tests to understand whether they meet or 

exceed their minimum reliability requirement. A reliability test follows specifications including sample size, test 

conditions (i.e., stress levels and their frequencies of occurrence), the analytical procedures for assessing reliability, 

and the acceptance criteria (e.g., numerical limits) that are used to evaluate the reliability of a product. If the test results 

of the sample are within the acceptance criteria, the product can be released for mass production. Otherwise, a root 

cause analysis is needed to understand the reason for the poor test results [1, 2].  

Yang [3] divided the reliability demonstration test methods into bogey test (or zero-failure test), life test, and 

degradation test. In a bogey test, the sample size, test time, and level of stresses are predetermined; and the target 

reliability is achieved if no units fail during the test. Yang argued that the reliability cannot be estimated if any samples 

fail in a bogey test. Life test methods include sequential life tests (e.g., step-stress test) and conventional life tests 

(e.g., failure terminated test); the reliability estimate is based on the number of failures. Degradation tests are 

performed on products with performance characteristics that degrade over time, which leads to failure. Reliability can 

be estimated by measuring the performance characteristics at different times during testing.  

Yang [3] developed a degradation model that models a product’s performance characteristics with the Weibull 

distribution and estimates the parameters of the model using Maximum Likelihood Estimation (MLE). He also 



estimated the test cost as a function of test time, number of samples, and cost of measurement. He estimated the 

number of samples and the test time by minimizing the cost function. 

Gerokostopoulos et al. [4] overviewed the methods for determining the sample size for a reliability test. These 

methods were divided into (1) methods that use the theory of confidence interval (known as estimation approach) and 

(2) methods that control the type I and type II errors (known as risk control approach). For a life test, the sample size 

can be determined either analytically or using simulation given the time-to-failure (TTF) distribution.  

Designing an accelerated life test (ALT) requires determining the total number of samples, the appropriate stress 

levels, and the number of samples tested at each stress level. Due to the complexity of simulation approaches, the 

analytical methods can be used for determining the number of samples for ALT. [4, 5]. 

In the risk control approach, the sample size is determined by controlling type I risk (the probability that the 

product meets the reliability requirement but does not pass the demonstration test), type II risk (the probability that 

the product does not meet the reliability requirement but passes the demonstration test), or both [4]. 

Some studies used immature test specifications that were arbitrarily selected without considering the actual use 

conditions. Yang et al. [6] designed an accelerated degradation test for predicting the reliability of smart electricity 

meters (SEMs) using a mix of analytical methods and arbitrary choices for stress levels.  Chang et al. [7] converted 

field use data of automotive headlamps to a laboratory bench test specification using the theory of fatigue damage 

equivalence between time domain and frequency domain data but arbitrarily selected the number of samples.  

In previous work, we discussed designing a user survey and introduced an analytical procedure for assessing 

reliability using user survey and reliability test data [8, 9]. That approach utilized a stress-life model to convert the 

applicable stress profiles of the surveyed and tested devices into the mean usage time (or cycles). The mean usage 

times (or cycles) were then converted into the mean equivalent times (or cycles) under a reference stress profile. 

Assuming the mean equivalent cycles follow a parametric life distribution model, the parameters of the model were 

estimated in a Bayesian analysis.  

This paper describes a procedure for designing test specifications for a new product with unknown failure modes. 

The proposed test design method is an extension of the bogey test [3], but this approach can estimate the reliability 

and its confidence intervals even if failures occur.  The approach determines the sample size, stress levels, and their 

frequencies for reliability testing based on the target reliability, confidence level, manufacturer’s constraints including 

test duration and maximum sample size, and the actual use conditions of similar products collected by user survey. 

The similarity between the reliability of the new product and the similar products depends on the extent to which the 

new product maintains a similar structure, material(s), and components [10]. 

The proposed test design approach uses some of the rules explained in our previous works like scoring the stress 

and stress adjustors and combining them through an additive or multiplicative stress-index (S.I.) model [8, 9]. 

Although our previous work used data about known failure modes, the approach proposed here does not consider a 

specific failure mode for the product. But the stress, stress adjustors, and frequencies of drops are similar to the 

previous studies. 

Two test specifications are designed in this study: (1) a frequency accelerated test, and (2) a stress-accelerated 

test. For both tests, the number of samples is determined by assuming a binomial distribution; and the use stress 

profiles of similar products are grouped through a multiplicative S.I. model as proposed in [8, 9]. The multiplicative 

S.I. model multiplies the quantitative stress and stress adjustors of a stress profile together and delivers an S.I. value 

for each applicable stress profile. The S.I. values and the use frequencies of similar products are grouped using 

clustering methods. For the frequency-accelerated test, the grouped use frequencies are converted to the test 

frequencies and are applied to the samples during the test. In the stress-accelerated test, the grouped use conditions 

are replaced by some accelerated stress profiles which their frequencies are determined using a known stress-life 

model. The accelerated stress profiles are applied to the samples during the test. 

The rest of this paper proceeds as follows. Section 2 explains the process of summarizing the use conditions (S.I. 

values and their frequencies) using three clustering methods. Section 3 describes the method for creating a table of all 



possible stress profiles and their S.I. values. Section 4 presents the method for designing the test specification for a 

frequency-accelerated and a stress-accelerated test. Section 5 illustrates the application of the approach using a 

simulated dataset for an electronic device that is accidentally dropped by users. Section 6 concludes the paper. 

2. Summarize Use Stress Profiles  

Our proposed approach utilizes the use conditions (i.e., the way owners are expected to use the product that leads 

to possible damaging stresses) of similar devices collected by user surveys to determine the test specification. As users 

may have many different use conditions, summarizing them into a small number of use condition groups will simplify 

the reliability test plan.  We considered three clustering methods for this step: (1) K-means clustering, (2) Gaussian 

mixture model (GMM), and (3) SI-cycle graph to group and summarize the use conditions.   

The input data is a set of data points, where each data point has two values: (1) an S.I. (stress-index) value for one 

stress profile and (2) the frequency of occurrence (how frequently a user’s device experienced that stress profile). The 

S.I. value is obtained through an additive or a multiplicative S.I. model which combines all scored stresses and stress 

adjustors of a stress profile [9].  The clustering approach yields a set of clusters, and the centroids of the clusters are 

taken as the grouped use conditions. (That is, there is one grouped use condition for each cluster.)  

2.1. K-Means Clustering 

K-means is a clustering method that allows finding groups of similar use conditions. K-means is computationally 

very efficient compared to the other clustering algorithm, but it does not have any mechanism to handle the 

uncertainties [11, 12]. The K-means algorithm performs clustering as follows. It first specifies K centroids and 

initializes their coordinates randomly. Then, it calculates the distance between the data points and the centroids to 

assigns the data points to their nearest centroids. Finally, it updates the coordinates of each centroid to the mean of the 

data points in the centroid’s cluster. The elbow graph which plots the distortion (i.e., the average of the squared 

distances from the cluster centers) or inertia (i.e., the sum of squared distances of samples to their closest cluster 

center) versus the possible number of clusters is then used to assign K [11]. The centroids (geometric means) of the K 

clusters are known as the grouped use conditions. 

2.2. Gaussian Mixture Model 

The GMM is a clustering technique that uses a probabilistic assignment of data points to clusters and unlike the 

K-means algorithm considers uncertainties in clustering. The GMM algorithm performs clustering as follows. It, first, 

specifies K multivariate Gaussian models (clusters) and initializes their means and variances randomly. Then, it 

calculates the probability density function (PDF) of each data point using the existing Gaussian models and assigns 

the data point to the cluster with the highest PDF value. Finally, it updates the mean and variance of each cluster to 

the mean and variance of all data points assigned to that cluster. The trend of Akaike information criterion (AIC) or 

Bayesian information criterion (BIC) over the number of clusters are then used to determine the number of groups, K, 

representing the number of multivariate models in the GMM. The optimum K is on the elbow of the graph. The 

centroids of the K clusters are known as the grouped use conditions. 

2.3. SI-Cycle Graph 

The SI-cycle graph is a two-dimensional graph that shows the S.I. values on one axis and the frequencies of the 

S.I. values (i.e., frequencies of the stress profiles) on the other axis. The area on the plot is divided into N equal 

elements. Each element contains some data points. The number and shape of the elements are updated based on the 

optimized number of clusters (K) obtained by the K-means and GMM algorithm. The N-K elements with the least 

number of data points on the graph (scarcely occupied elements) are combined with their nearest neighbors. The 

nearest neighbor is defined as the element that has the closest boundary to the data points of the scarcely occupied 

element. This combination reduces the number of elements into K. The centroids of the K clusters are known as the 

grouped use conditions. 

3. Table of Possible Stress Profiles and S.I. Values 



Each cluster’s centroid is associated with an S.I. value and the frequency of its occurrence. We call these S.I. 

values and frequencies the “group S.I. values” and “grouped frequencies.”  The next step in our approach creates a 

table of all possible stress profiles and their corresponding S.I. values. Then, each group S.I. value is compared with 

the entries in the table, and the stress profile associated with the next higher S.I. value in the table is known as the 

“grouped stress profile”.  Thus, this step “translates” each group S.I. value to an appropriate stress profile that can be 

used to specify conditions for the reliability test. 

4. Design Test Specification 

This section designs test specifications for a new product with unknown failure modes. A frequency-accelerated 

and a stress-accelerated reliability test are proposed. Details about the tests and approaches for assigning their 

specification are discussed in Section 4.1 and Section 4.2  

4.1. Design Test Specification for a Frequency-Accelerated Reliability Test 

A frequency-accelerated reliability test applies the group usage stress profiles into the device but accelerates the 

group use frequencies. The test specification is determined based on the manufacturer’s reliability requirements 

including the desired warranty time, reliability level, confidence level, maximum number of units for the test, and test 

duration. The use conditions of similar devices are also needed to determine the test stress profiles and their 

frequencies of occurrence.  

The procedure of designing test specifications for a frequency-accelerated test is shown in Figure 1. The various 

use conditions are grouped into K conditions using the clustering methods discussed in Section 2 and their associated 

stress profiles are estimated using the table of possible stress profiles and S.I. values introduced in Section 3. If the 

manufacturer desires to run the test under a smaller number of stress profiles than K, it may replace some of the stress 

profiles with the harsher profiles in the list of K profiles. This results in a rigorous reliability estimate. When the 

grouped stress profiles are determined, their corresponding frequencies of occurrence are multiplied by the ratio 

between the usage time window that the use frequency was calculated from it (e.g., 1 year) and the test duration (e.g., 

1 week) to determine the frequencies of the stress profiles during the test (i.e., test frequencies). This is mathematically 

shown in Eq. (1). 

Test frequency (
time(or cycle)

test duration
) = usage frequency × (

time (or cycle)

usage time window
) ×

usage time window

test duration
 

Eq. (1) 

 

The number of test samples is determined using Eq. (2), where m is the number of samples, 𝑅𝑙 is the lower-bound 

reliability determined by the manufacturer, 1-α is the confidence level, and l is the desired maximum number of 

failures when the test is complete [13]. 

1-α=∑
𝑚!

𝑖!(𝑚−𝑖)!
(1 − 𝑅𝑙)

𝑖𝑙
𝑖=0 𝑅𝑙

(𝑚−𝑖) Eq. (2) 

 

The reliability test is performed on m samples under the K (or smaller) stress profiles with the test frequencies. 

The test outcome is the number of failed (f) and right-censored (r) samples. If the number of failures is greater than l, 

the actual reliability is less than the target reliability of the manufacturer. The point estimate of reliability is obtained 

from Eq. (3) where �̂� is the point estimate of reliability, f is the number of failed samples when the test is complete, 

and m is the number of tested samples. The lower-bound reliability is calculated using the regularized incomplete Beta 

function, as shown in Eq. (4), where 𝑅𝑙 is the lower-bound reliability, 𝐼𝑅 is the regularized incomplete Beta function, 

m is the total number of tested samples, f is the number of failed samples, and 1 − 𝛼 is the confidence level. 

�̂� = 1 −
𝑓

𝑚
 

Eq. (3) 

 Eq. (4) 

 𝑅𝑙= 𝐼𝑅(𝑚 − 𝑓,  𝑓 + 1) ≤ 𝛼 



 

 

4.2. Design Test Specification for a Stress-Accelerated Reliability Test 

The stress-accelerated reliability test is performed at stress levels higher than the use stress levels. This test 

requires an additional input compared to the frequency-accelerated test which is the underlying stress-life model of 

the class of products. The manufacturer selects some harsher stress profiles (i.e., accelerated stress profiles) than the 

grouped stress profiles to run the test. The stress-life model is then used to convert the frequency of the grouped stress 

profiles into the frequency of the accelerated stress profiles. 

The procedure of designing test specifications for a stress-accelerated test is shown in Figure 2. Similar to the 

frequency-accelerated test, the use conditions are grouped using the clustering methods discussed in Section 2. The 

centroids of the clusters show the group S.I. values and the grouped frequencies. The grouped stress profiles are 

determined using the table of possible stress profiles and S.I. values introduced in Section 3. The manufacturer then 

selects several accelerated stress profiles which are harsher than the grouped stress profiles. The grouped frequencies 

are converted into the equivalent frequencies (frequencies of the accelerated stress profiles) using the underlying 

stress-life model, as shown in Eq. (5), where P is the cumulative density function (CDF), 𝑡𝑠 is the grouped frequency, 

𝑆𝐼𝑠 is the S.I. value of the grouped stress profile, 𝜈𝑎 is the accelerated frequency, and 𝑆𝐼𝑎 is the S.I. value of the 

accelerated stress profile. The accelerated frequencies are then converted into the test frequencies using Eq. (6). 

𝑃(𝑡𝑠, 𝑆𝐼𝑠) = 𝑃(𝜈𝑎, 𝑆𝐼𝑎) Eq. (5) 

Test frequency (
time(or cycle)

test duration
) 

= accelerated frequency × (
time (or cycle)

accelerated time window
) ×

accelerated time window

test duration
 

Eq. (6) 

  

The number of samples for the stress-accelerated test (m) is determined using Eq. (2). Then, the stress-accelerated 

test is performed on m samples under the accelerated stress profiles with their associated test frequencies. The outcome 

of the test is the number of failed (f) and right-censored (r) units. The point estimate reliability and the lower-bound 

reliability are estimated using Eq. (3) and Eq. (4). 
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Figure 1 procedure of designing test specification for a frequency-accelerated test. 



 

 

5. Case Study 

This section illustrates the application of the proposed approach using a simulated user survey dataset for an 

electronic device that is accidentally dropped by users. For this product, the applied stress is a drop during use. Three 

stress adjustors that can describe the relevant quantitative stress levels are (a) the drop height, (b) the type of surface 

on which the device dropped, and (c) the type of user’s activity when the drop occurred. Weather conditions are not 

considered as a significant stress adjustor for this product [9]. The process of simulating the user survey dataset is 

explained in detail in our previous study [9]. The dataset contains 1000 users (24% young, 63% middle-aged, and 13% 

senior users). The fraction of age groups and the height of users in the groups are consistent with the US population 

data [14, 15, 16, 17]. The users dropped their devices under various use conditions (i.e., stress profiles) for many 

different times during their ownership times. The ownership times were randomly drawn from a discrete distribution 

that contained 400 ownership times of 1 year, 300 ownership times of 2 years, 200 ownership times of 3 years, and 

100 ownership times of 4 years. 

The qualitative drop heights in the user survey were knee height, waist height, chest height, and head or higher 

height; the qualitative surface types were soft, semi-soft, semi-hard, and hard surface; and the qualitative activities 

were benign and harsh activity. The stress adjustors were scored between 0 and 100 using the method explained in 

[9]. The quantitative stress adjustors were then combined through a multiplicative S.I. model as shown in Eq. (7) to 

estimate an S.I. value for each stress profile. 

𝑆𝐼 = ∏ 𝑠𝑖

3

𝑖=1
 

Eq. (7) 

5.1. Summarize Use Conditions 

The use conditions were grouped using K-means clustering, GMM, and SI-cycle graph. For K-means clustering, 

the elbow graph, as shown in Figure 3 (a), along with the Kneedle algorithm [18] was used to determine the best 

(minimum) number of clusters (the number of clusters should not be less than the minimum but a manufacturer may 
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Figure 2 procedure of designing test specification for a stress-accelerated test. 



select more). The elbow graph shows the trend of distortion versus the number of clusters. The best number of clusters 

is at the knee point of the elbow graph and the Kneedle algorithm estimates the location of the knee point. Using this 

method, the best number of clusters was estimated as 4. Then, using the K-means algorithm the use conditions were 

divided into 4 clusters, as shown in Figure 3 (b). The centroids of the clusters (i.e., the geometric mean of the S.I. 

values and frequencies) represent the grouped use conditions. 

For GMM, the trend of BIC (or AIC) versus the number of clusters, as shown in Figure 4 (a), along with the 

Kneedle algorithm was used to determine the best number of clusters. This analysis resulted in 4 clusters. The GMM 

was then used to divide the data into 4 clusters, as shown in Figure 4 (b). Each cluster in Figure 4 (b) has three shaded 

parts which show the six-sigma region of the cluster’s Gaussian mixture distribution. 

For the SI-cycle graph, first, the data were arbitrarily divided into 9 identical regions, as shown in Figure 5 (a). 

This resulted in four scarcely occupied regions (i.e., regions 2, 3, 6, and 9 in Figure 5 (a)). These regions were 

combined with their nearest neighbors and the number of regions reduced from 9 to 4, as shown in Figure 5 (b). The 

final number of clusters is consistent with the number of clusters for the K-means and GMM algorithm. 

  

Figure 3 (a) the elbow graph, (b) the result of clustering using the K-means algorithm. 

  

Figure 4 (a) trend of BIC and AIC vs. the number of clusters, (b) the result of clustering using GMM algorithm.  
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Figure 5 (a) SI-cycle graph with arbitrary divisions, (b) SI-cycle graph with 4 clusters. 

Figure 6 compares the grouped use conditions (the centroids of the clusters) obtained by the three methods. The 

centroids were put into 4 groups which are shown by black ellipses in the figure. In 3 out of the 4 groups (i.e., groups 

1, 2, and 3), the centroids estimated by the GMM had the lowest S.I. values. Besides, in all four groups, the GMM 

resulted in the smallest number of drops per year. Therefore, the grouped use conditions obtained by GMM are 

optimistic.  In 3 out of the 4 groups (i.e., groups 1, 2, and 3), the centroids estimated by the SI-cycle graph had the 

highest S.I. values and number of drops per year. Thus, the SI-cycle graph results in pessimistic grouped use 

conditions. The grouped use conditions obtained by K-means are moderate because the S.I. value or/and the number 

of drops estimated by K-means clustering are usually between the values estimated by the other two methods. 

 

Figure 6 The grouped use conditions estimated by K-means clustering, GMM, and SI-cycle graph. 

The pessimistic grouped use conditions obtained by the SI-cycle graph were used to infer the group use stress 

profiles because they resulted in the most rigorous reliability estimate. To infer the grouped stress profiles, we built 

the table of all possible stress profiles and their S.I. values, as shown in Table 1. Because there were four height 

choices (i.e., knee, waist, chest, and head or higher), four surface choices (i.e., soft, semi-soft, semi-hard, and hard), 

and two activity choices (i.e., benign, and harsh) in the user survey, in total there were 32 different possible 

combinations of them ((4
1
) × (4

1
) × (2

1
) = 32).  Each combination is a possible stress profile that may be observed by 

a user in the field. The list of all 32 combinations is shown in Table 1. To calculate the S.I. values in the table, the 

scores for knee, waist, chest, and head (or higher) height were assumed as 25, 50, 75, 100, for soft, semi-soft, semi-

hard, and hard surfaces were assumed as 25, 50, 75, 100, and for benign and harsh activity were assumed as 50 and 

100. The height scores are consistent with the scores used for the middle-aged group in the user survey dataset. As the  

(a) (b) 
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Table 1 Table of all possible stress profiles and their SI values. 

Stress Profile  S.I. Value Stress Profile  S.I. Value 

Knee- soft- benign 31,250 Waist- hard- benign 250,000 

Knee- semisoft- benign 62,500 Waist- semisoft- harsh 250,000 

Knee- soft- harsh 62,500 Head- semisoft- benign 250,000 

Waist- soft- benign 62,500 Head- soft- harsh 250,000 

Knee- semihard- benign 93,750 Chest- semihard- benign 281,250 

Chest- soft- benign 93,750 Chest- hard- benign 375,000 

Knee- hard- benign 125,000 Chest- semisoft- harsh 375,000 

Knee- semisoft- harsh 125,000 Head- semihard- benign 375,000 

Waist- semisoft- benign 125,000 Waist- semihard- harsh 375,500 

Waist- soft- harsh 125,000 Head- hard- benign 500,000 

Head- soft- benign 125,000 Head- semisoft- harsh 500,000 

Knee- semihard- harsh 187,500 Waist- hard- harsh 510,000 

Waist- semihard- benign 187,500 Chest- semihard- harsh 562,500 

Chest- semisoft- benign 187,500 Chest- hard- harsh 750,000 

Chest- soft- harsh 187,500 Head (or higher)- semihard- harsh 750,000 

Knee- hard- harsh 250,000 Head (or higher)- hard- harsh 1,000,000 

middle-aged group has the highest scores in the dataset, these scores result in a rigorous reliability estimate. The scores 

associated with the stress adjustors of the 32 stress profiles were combined through a multiplicative S.I model, Eq. 

(7), to find the S.I. values in Table 1. In Table 1, there are some stress profiles with similar S.I. values. It is assumed 

that the device is equally damaged under the stress profiles with the same S.I. value. 

We compared each group S.I. value with all S.I. values in Table 1 and selected the stress profile with the next 

higher S.I. value as the grouped stress profile. For instance, in Figure 7, the next higher S.I. value to the S.I. value of 

centroid 1 was 562,500 which belonged to a drop from chest height on a semihard surface during a harsh activity. The 

other grouped stress profiles were estimated using the same scenario and were listed in Table 2. In the cases where 

the next higher S.I. value belongs to several stress profiles, each of them can be selected as the grouped stress profile 

because it is assumed that the device is equally damaged under all those stress profiles. The grouped stress profiles 

along with the grouped frequencies are used in Section 5.2 and Section 5.3 to design the test specification for a 

frequency-accelerated and a stress-accelerated test. 

Table 2 The grouped stress profiles. 

Centroid No. 

in Figure 7 
Grouped stress profile 

Grouped 

Frequency of Use 

1 Chest- semihard- harsh 6 drops in 1 year 

2 Chest- hard- benign 

Chest- semisoft- harsh 

Head- semihard- benign 

Waist- semihard- harsh 

6 drops in 1 year 

3 Knee- hard- benign 

Knee- semisoft- harsh 

Waist- semisoft- benign 

Waist- soft- harsh 

Head- soft- benign 

6 drops in 1 year 

4 Knee- hard- benign 

Knee- semisoft- harsh 

Waist- semisoft- benign 

Waist- soft- harsh 

Head- soft- benign 

49 drops in 1 year 



  

Figure 7 The grouped use conditions and all possible S.I. values. 

5.2.  Design Test Specification for a Frequency-Accelerated Reliability Test 

A frequency-accelerated test requires three elements which are (1) the group use stress profiles, (2) the test 

frequencies, and (3) the number of test samples (or the allowed number of failures if the maximum number of samples 

has been decided by the manufacturer). The first element was determined in Section 5.1 and listed in Table 2. The test 

frequencies were calculated using Eq. (1) and by assuming the test duration of 1 week. These frequencies are 6, 6, 6, 

and 49 drops in one week for the grouped stress profile 1 to 4 listed in Table 2, respectively. 

It was assumed that the manufacturer wanted to achieve at least 95% reliability with 90% confidence after 1 year 

of warranty, and the maximum number of test samples was 100. By substituting these values in Eq. (2), the allowed 

number of failures was estimated as 2 samples. If the number of failures after completing the frequency-accelerated 

test is less than 2, the product meets the target reliability. Otherwise, a root cause analysis is needed to understand and 

resolve the reason for out-of-specification. For instance, if the number of failures is 3, the point estimate reliability is 

97% and the lower-bound reliability is 93.44% which is less than the minimum desired reliability of the manufacturer. 

Therefore, a root cause analysis should be conducted to understand the reason for out-of-specification and appropriate 

actions should be performed to improve the product’s reliability. 

5.3. Design Test Specification for a Stress-Accelerated Reliability Test 

A stress-accelerated test requires three elements which are (1) the accelerated stress profiles, (2) the equivalent 

frequencies (i.e., the frequencies of the accelerated stress profiles), and (3) the number of test samples (or the allowed 

number of failures if the maximum number of samples has been decided by the manufacturer). The accelerated stress 

profiles are harsher than the grouped stress profiles and are decided by the manufacturer. For instance, the accelerated 

stress profiles for this case study can be the profiles shown in Table 3. These accelerated stress profiles have at least 

one harsher stress adjustor than their corresponding grouped stress profiles listed in Table 2.  

The next step is to calculate the equivalent frequencies for the accelerated stress profiles such that the accelerated 

test conditions cause the same amount of damage as the grouped use conditions. To calculate the equivalent 

frequencies, the underlying stress-life model of the class of products is needed. An inverse power law (IPL) stress-life 

model with known parameters was assumed. This model is shown in Eq. (8), where N and SI represent the frequency 

of drops and the S.I. value, respectively. The Eq. (9) was obtained from the ratio between the frequency of an 

accelerated stress profile and the frequency of a grouped stress profile where ν and 𝑆𝐼𝑎 are the equivalent frequency 

and the S.I. value of the accelerated stress profile, and d and 𝑆𝐼𝑎 are the frequency and S.I. value of the grouped stress 

profile. The 𝑆𝐼𝑎 and 𝑆𝐼𝑠 were calculated using Eq. (7). These frequencies are smaller than the grouped frequencies and 

thus reduce the testing time. The test frequencies were estimated using Eq. (6) and are listed in Table 3. The allowed 

number of failures, the point estimate reliability, and the lower-bound reliability for the stress- accelerated test are 

estimated using the same equations and the same scenario explained for the frequency accelerated test. 

Chest- semihard- harsh 

1 

2 

3 4 



 

𝑁 = 300. 𝑆𝐼−1.2 Eq. (8) 

ν = 𝑑. (
𝑆𝐼𝑠

𝑆𝐼𝑎
)1.2 Eq. (9) 

Table 3 The test conditions of the stress-accelerated test. 

Centroid No. 

in Figure 7 

and Table 2 

Accelerated Stress 

Profile 
Test Frequency  

1 Head- hard- harsh 3 drops in 1 week 

2 Head- hard- benign 4 drops in 1 week 

3 Chest- hard- harsh 1 drop in 1 week 

4 Chest- hard- benign 13 drops in 1 week 

6. Conclusions 

This study showed that the reliability test specification of a new product with unknown failure modes can be 

designed based on the usage conditions of similar products collected using a reliability-informed user survey. A test 

specification that is based on the user data allows revealing the failure modes observed in the field. The user survey 

is a cost-effective and quick way to collect the use conditions. A frequency-accelerated and a stress-accelerated test 

were proposed which determined the test specification including the test stress profiles, their frequencies, and the 

allowed number of failures based on the manufacturer’s reliability requirements including the warranty time, desired 

reliability, its confidence level, test duration, and the maximum number of test samples. The various use conditions 

collected by the user survey data were grouped through the K-means clustering, GMM, and SI-cycle graph and were 

used to determine the test frequencies and the test stress profiles. The stress-accelerated test required an additional 

input compared to the frequency-accelerated test but delivered a shorter testing time. The process of designing test 

specifications was illustrated using a simulated dataset for an electronic device that was accidentally dropped by users 

in the field. Our case study showed that the SI-cycle graph resulted in the most pessimistic grouped use conditions 

and thus delivered the most rigorous test specification and reliability estimate. 
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