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Abstract: The overall risk management domain is stepping into its 4.0 phase by implementing and 

increasingly relaying on cyber-technological systems. Enhanced computational power provides the 

capability of processing collected databases for prediction and preparation purposes. In fact, early 

warnings can lead to suggestion for proactive strategies, or directly initiate the action of autonomous 

actuators ensuring the required level of system safety. But have we reached the promises of digital risk 

management yet, or will we ever reach them? A traditional view on safety defines it as the absence of 

accidents and incidents. A forward-looking perspective on safety affirms that it involves ensuring that 

"as many things as possible go right". However, in both the views there is an element of uncertainty 

associated to the prediction of future risks and, more subtle, to the capability of possessing all the 

necessary information for such prediction. This uncertainty does not simply disappear once we apply 

advanced Machine Learning (ML) techniques to the infinite series of possible accident scenarios, but it 

can be found behind modelling choices and parameters setting. In a nutshell, "there ain't no such thing 

as a free lunch", i.e., any model claiming superior flexibility usually introduces extra assumptions. This 

contribution will illustrate a case on climate-driven disaster data extracted from the Emergency Events 

Database (EM-DAT) where ML techniques are used to understand natural disaster mortality and 

unravel underlying causes and influential factors that can inform decision-making and be relevant for 

risk reduction efforts. This manuscript may allow to affirm with certain confidence that present risk 

management systems are not even close to a "no-brainer" condition in which the responsibility for 

human and system safety is entirely moved to the machine. However, this shows that such advanced 

techniques are progressively providing a reliable support for critical decision making and guiding 

society towards more risk-informed and safety-responsible planning. 
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1. INTRODUCTION 
 

At the beginning of the 90s, Prof. Diekmann [1] stated the following: "New analysis tools are emerging, 

which have the potential to allow complex risk analyses to be performed simply. These new tools, which 

are underpinned by decision analysis and, lately, expert-systems technology, may lead to powerful, yet 

simple, approaches to the representation of risky problems." Such optimistic prediction on the future of 

risk analysis was also accompanied by the suggestion of a possible interdisciplinary direction. "Future 

approaches to risk analysis will certainly rely more on the advances being made in Artificial Intelligence 

(AI) and cognitive sciences. New computer tools and knowledge-representation schemes will 

unquestionably lead to new techniques, insights and opportunities for risk analysis."  

 

In the same decade (1997), the Russian chess grandmaster Garry Kimovich Kasparov (former World 

Chess Champion, ranked world No. 1 from 1984 until his retirement in 2005) lost a chess game with 
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the chess playing computer Deep Blue by IBM, which was an example of Good Old-Fashioned 

Artificial Intelligence (GOFAI) [2]. On that game, Kasparov later stated the following: "Deep Blue was 

intelligent the way your programmable alarm clock is intelligent [3]. Not that losing to a 10-million-

dollar alarm clock made me feel any better."  

 

In general, risk management has tried to make use of AI, but it has unevenly progressed since the 

mentioned events. It neither respected Diekmann's prediction (methodological gaps are still present [4]), 

nor turned into "programmable-alarm-clock intelligence" thanks to the progressive refinement of 

Machine Learning (ML) models and the increase in available computing power [5]. 

 

This contribution aims to outline what AI, and in particular ML techniques, can bring to risk analysis 

and management by illustrative examples related to  climate-driven events (e.g., storms, floods, drought, 

heatwaves) . ML techniques are used to understand natural disaster mortality and unravel underlying 

causes and influential factors that can inform decision-making and be relevant for risk reduction efforts. 

 

1.1. Machine Learning and Big Data 

 

AI is intelligence demonstrated by machines and it is divided into sub-fields based on technical 

considerations, such as particular goals (e.g., "robotics" or "machine learning"), the use of particular 

tools ("logic" or artificial neural networks), or deep philosophical differences. 

 

This contribution focuses on the sub-field of Machine Learning (ML). ML refers to techniques aiming 

to program computers to learn from experience [6]. ML is known for providing meaning to raw data 

and solving practical problems in a reliable and efficient way. These problems require machine 

assistance since the amount of data and the complexity of the statistical patterns imply that humans 

would not be able to solve them via traditional techniques [7].  

 

ML rely on a collection of examples of some phenomena, to be used for training and finding patterns 

that can help make decisions and predictions for new, unseen information [8]. ML has several practical 

applications in present industrial processes [9], and it may be the key to unlocking the value of safety 

data to perform novel risk management systems. Therefore, a computer may run a ML algorithm to 

assess risks for safety-critical industries (e.g., Oil and Gas). It would allow processing a large amount 

of information in the form of indicators from normal operations and past undesired events (from 

mishaps to major accidents), which would be used for training the algorithm. Due to the subjectivity of 

risk definition [10], risk level cannot be assigned to each event with certainty and a supervised approach 

may be needed. Practical examples of ML adoption in risk management refer to predict system losses 

and possible risks in undesired cases [4]. Among the most used ML algorithm, one can find the 

clustering, used to reveal (in an unsupervised way) meaningful groups within a dataset based on 

underlying patterns or structures [11]. 

 

Increasing attention has been dedicated to monitoring safety barrier performance through indicators, as 

a way to assess and control risk. Indicators may report a series of factors: physical conditions of a plant 

(equipment pressure and temperature), number of failures of an equipment piece, maintenance backlog, 

number of emergency preparedness exercises run, amount of overtime worked, etc. [12]. Øien et al. 

[12], Paltrinieri et al.[13], [14], and Landucci et al. [15] have produced several reviews on risk and 

barrier indicators. They show that definition and collection of risk indicators have become consolidated 

practices in "high-risk" industrial sectors. Such trend towards definition and collection of higher 

numbers of indicators [16] demonstrates the mentioned challenge on big data process for risk level 

assessment.  

 

In recent years, several studies have focused on ML techniques to support natural disaster risk 

management. One widespread approach is the analysis of disaster databases and reports to extract 

relevant information and support risk-informed decision-making [17]. An exhaustive overview of ML 

applied to natural risk management may be found in [18], [19]. However, most of these investigations 

focus on illustrating the potential and effectiveness of their approaches. Still, little attention has been 
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paid to the role of ML and whether its extensive use will lead to a condition where the responsibility 

for human safety is entirely moved to the machine. This study attempts to bridge this knowledge gap 

by illustrating an example of ML for natural disaster risk management and evaluating the need for 

human knowledge to interpret and contextualize the results. 

 

1.2. Climate-driven natural disasters  

 

Data analysis of climate hazards can aid risk management by shedding light on disaster characteristics, 

challenges, differences amongst regions, and similar events. Climate hazard management denotes the 

systematic actions focused on reducing the negative effects of disasters [20].  

 

Mitigation measures contribute to climate hazard management by minimizing, monitoring, and 

reducing the probability of severe consequences, the corresponding avoidable impacts, and the 

unfortunate outcomes of natural hazards [21]. The risk for individuals inflicted by climate disasters 

differs based on societal vulnerability and exposure, and environmental conditions [22]. Climate change 

has forced more than 20 million people to move from their homes each year [23]. The development 

level of a country might affect the consequences of a natural disaster. It is often remarked how those 

living in poverty are hardest hit despite being the least responsible for climate change. 

 

The increasing frequency of natural hazards led to greater attention worldwide devoted to mapping and 

reducing natural risks [24], unraveling and explaining potential impacts on societies. Vulnerability in 

this context can be a risk factor, but also an outcome: disaster exposure may lead to poverty causing 

damage to assets and livelihoods [25]. Besides, larger climate-driven disasters often cause extensive 

property damages and a high number of fatalities. Research has shown that natural disaster-related 

damages and mortality have increased in the past decades [23], [26]. 

 

Further research is needed to develop systematic approaches on disaster causes and impacts to improve 

responses, anticipation capacity, design risk prevention and mitigating interventions prior to or 

following major climate hazards. The International Disaster Database (EM-DAT) developed by the 

Centre for Research on the Epidemiology of Disasters (CRED) gathers data on natural disasters and 

maps them into different classification categories, impacts, and causes.  

 

The study focuses on these climate-driven disasters in terms of societal impact, both on populations and 

properties, as they can be of relevance for industrial systems as well. EM-DAT is analyzed by using 

ML algorithm to investigate potential clusters of countries that show commonalities and subsequently 

can drive to common natural risk management mitigations.  

 

2. EXAMPLE OF ML-BASED FOR RISK MANAGEMENT 
 

2.1. EM-DAT database 

 

The EM-DAT database was created following the 1980's investigation by CRED. The study was carried 

out to serve the purposes of humanitarian action at national and international levels. The initiative aimed 

to rationalize decision-making for disaster preparedness, as well as provide an objective base to assess 

vulnerability and set priorities.  

 

The database is compiled from various sources, including United Nations agencies, non-governmental 

organizations, insurance companies, research institutes, and press agencies, e.g., United Nations 

Department of Humanitarian Affairs (UN-DHA), European Union Humanitarian Office (ECHO), 

International Federation of the Red Cross and Red Crescent, the Office of Foreign Disaster Assistance 

(OFDA-USAID), International Committee of the Red Cross and Red Croissant (ICRCRC, 

Switzerland), International Decade for Natural Disaster Reduction (IDNDR) [27].  

 

Currently, EM-DAT collects more than 25000 disasters between 1900 - 2020. All the events in the EM-

DAT database fulfill one or more of these entry criteria [27]:  
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- Deaths (10 or more people deaths) 

- Affected (100 or more people affected, injuries or homeless) 

- Declaration/Appeal (declaration by the country of a state of emergency and/or appeal for 

international assistance) 

 

The reported incidents worldwide involve 189 countries, distributed as follows:  

- About 15000 accidents are related to natural impacts (e.g., drought, extreme temperature, flood, 

landslide, storm, wildfire, etc.),  

- About 10000 accidents refer to technological impacts (i.e., industrial, transport, and 

miscellaneous impacts). 

Technological events have not been considered in this study, and attention has been directed toward 

natural disasters. More specifically, only climate-driven disasters are examined (e.g., storms, floods, 

droughts, heatwaves). Other types of natural disasters (e.g., geophysical, biological, and extra-

terrestrial) have been excluded from the analysis. 

 

The database incorporates 43 parameters (e.g., location, date, damage, fatalities, disaster type, origin, 

reconstruction cost, insured damage, appeal, impacts) to fully detail the characteristics of the accident 

and allow its analysis [27]. 

 

3. METHOD 
 

K-means is one of the most frequently used and effective clustering algorithms, as proved by results 

obtained in several diverse application contexts [28]. K-means has been used in this study to cluster 

countries found in EM-DAT, based on their similarity toward natural disaster exposure. The algorithm 

tries to group data by minimizing the within-cluster-sum-of-squares, which represents the distance 

between each data point and the cluster centroid [29]. Figure 1 depicts a flow chart in which explain the 

steps to perform a clustering algorithm. 

 

Figure 1. Flowchart of k-means-based clustering 

 
 

K-means is a partitioning algorithm that relies on the concept of distance and local optimization to 

perform clustering. One of the most common metrics to compute distances in k-means is the Euclidean 

distance, as it is flexible to accommodate different operational situations. Another characteristic of the 

algorithm is that it requires the user to specify the number k of clusters (step 1 in Figure 1). The 

algorithm will always converge, but it is vulnerable to local minima. This will depend on how centroids 
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are initialized. By running the algorithm with a specified number of clusters 𝑘, 𝑘 random samples from 

the dataset are allocated as cluster centroids.  

 

After the selection of k, the main steps of the k-means clustering algorithm are: 

- Initialization: the step to choose k initial centroids (step 2 in Figure 1) 

- Looping: iterative steps to stabilize centroids until reaching convergence or a maximum number 

of iterations (steps 3, 4, and 5 in Figure 1). This loop requires two sub-steps: 

o Assigning samples to their nearest centroid based on a selected distance measure. 

o Compute the mean of the assigned samples and create a new centroid. 

K-means with Euclidean distance has been used to map countries' clusters as they appear in the EM-

DAT database. 

 

Clusters must be validated to check the logical cohesion between the clustered items and to compare 

the separation among them. A useful metric for validating the significance of clusters is the silhouette, 

whose scores represent the distance from one sample to the samples in the neighboring clusters [30]. 

Silhouette coefficients range between -1 and 1 where values close to 1 indicate high compactness within 

the cluster, which in turn implies longer distances among the sample and the neighboring clusters. 

Silhouette scores close to 0 indicate overlapping clusters, while negative values indicate a possible 

misplacement of the sample [31]. 

 

Within this case study, the algorithm runs on a set of selected features considered relevant for the scope 

of the analysis: World region, Disaster count, Missing data, Gross Domestic Product based on 

Purchasing Power Parity (GDP PPP), Population density, Disaster type, Total deaths. It is worth 

mentioning that GDP PPP and Population Density data are not available in EM-DAT and have been 

retrieved from external sources [32], [33]. In addition, categorical features have been converted into 

numerical features and standardized through z-score normalization. 

 

4. RESULTS AND DISCUSSION 
 

4.1. Clusters  

 

The clustering algorithm allowed splitting the 189 countries involved in natural hazard accidents into 

40 clusters of varied sizes. Considering the relatively large number of clusters, a complete review would 

be impractical. Therefore, a selection of the most interesting clusters is presented. Two criteria have 

been considered in the selection: cumulative number of fatalities and cluster compactness. Also, clusters 

that comprise only one country are treated separately. 

The cluster with the highest cumulative number of fatalities and with more than two countries is: 

Cluster 1. Bangladesh, France, Germany, Japan, Poland, South Korea, and Vietnam. 

The cluster with the largest average intra-cluster silhouette score is: 

Cluster 2. Cayman Islands, Saint Kitts and Nevis, and Turks and Caicos Islands. 

On the other hand, the cluster with the smallest silhouette score is: 

Cluster 3. Jamaica, Madagascar, Mauritius, Sint Maarten. 

In addition, 11 clusters include only one country. Examples of these clusters are: 

Cluster 4. China; 

Cluster 5. India; 

Cluster 6. USA. 

Relevant information about the countries in each cluster is summarized in Table 1. For each country, 

Table 1 displays the number of fatalities, the most frequent and severe natural disaster types, the 

location, and the income group [34]. Clusters and countries are displayed in descending order of number 

of fatalities. 
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Table 1. Relevant information about the countries in the selected clusters 

 

The silhouette plot of the selected clusters is displayed in Figure 2. Clusters that comprise only one 

country have not been included because their silhouette score equals zero. 

 

Figure 2. Silhouette plot of the selected clusters. 

 
The average silhouette score of the selected clusters (red vertical line in Figure 1) is equal to 0.21. 

Instead, the average silhouette score is 0.24 if all the 40 clusters are considered. It is also worth noting 

that Poland, Mauritius, Jamaica, and Sint Maarten show negative silhouette scores. 

Cluster Country Fatalities Threats      (fatalities) Location Income [34] 

4 China 17.006.913 
Flood       (10.321.805) 

Drought     (6.503.534) 
East Asia  Upper-Middle 

5 India 4.515.665 
Cyclone        (160.575) 

Drought     (4.250.320) 
South Asia Lower-Middle 

1 Bangladesh 2.590.573 
Cyclone        (627.048) 

Drought     (1.900.018) 
South Asia Lower-Middle 

 Japan 50.565 
Cyclone          (32.838) 

Flood              (13.513) 
East Asia High 

 France 28.793 Heatwave       (27.517) Western Europe High 

 Vietnam 26.025 
Cyclone          (19.189) 

Flood                 (3644) 
Southeast Asia Lower-Middle 

 Germany 10.213 Heatwave          (9361) Western Europe High 

 South Korea 8932 Cyclone             (3727) East Asia High 

 Poland 2378 Cold wave         (2085) Central Europe High 

6 USA 41.359 Storm              (30.942) North America High 

3 Madagascar 3161 Cyclone             (2834) Sub-Saharan Africa Low 

 Jamaica 1391 
Flood                   (730) 

Cyclone               (604) 
Caribbean Upper -Middle 

 Mauritius 81 
Cyclone                 (28) 

Flash flood            (11) 
Sub-Saharan Africa Upper-Middle 

 Sint Maarten 4 Cyclone                   (4) Caribbean High 

2 Saint Kitts and Nevis 6 Cyclone                   (6) Caribbean High 

 Cayman Islands 2 Cyclone                   (2) Caribbean High 

 Turks and Caicos  0  Caribbean High 
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4.2. Discussion 

 

Data in Figure 2 and Table 1 allows some observations on cluster composition, similarities and 

differences between members of the same clusters, and opportunities for inter-country knowledge 

sharing. In the remainder of this section, each cluster will be briefly commented, similarities and 

differences will be discussed in terms of fatalities, disaster type, development level, and economic 

possibilities. The discussion will focus on investigating whether the proposed method has effectively 

grouped countries that show similarities and subsequently can drive to common natural risk 

management mitigations. 

 

The three most populous countries in the world – i.e., China, India, and the USA – belong to stand-

alone clusters and have not been considered similar to any other country in the dataset. This result is 

not surprising considering the unique characteristics of these countries in terms of location, area, 

exposure to natural threats, and economy. The number of fatalities in India and China is respectively 

one and two orders of magnitude larger than any other cluster. Also, China has a unique exposure to 

riverine floods and drought, which together caused 99% of the total number of fatalities (Table 1). India 

on the other hand is naturally exposed to severe droughts, which have caused more than 94% of the 

total deaths (Table 1). From an economic perspective, China has witnessed extraordinary growth in the 

last three decades and is currently the second-largest economy by GDP (Gross Domestic Product) in 

the world after the USA [35]. On the other hand, India is the sixth-largest economy, and its annual 

growth rate in terms %GDP has been larger than the USA but smaller than China since 1990 [36]. 

Geographically, China, India, and the USA are respectively the third, fourth, and seventh-largest 

countries by area [37], and they cross various climate zones [38]. In light of their unique characteristics, 

the grouping of these countries in stand-alone clusters appears reasonable. Also, a large body of research 

has focused on the study of climate-driven disasters in these countries [39]–[43]. Existing studies and 

governmental mitigation and response plans might be good opportunities to (i) share knowledge and 

lesson learned between these three countries and (ii) provide critical assistance to smaller, less-

developed countries which have similar exposure to climate-driven events (e.g., Vietnam concerning 

flooding and Bangladesh concerning storms and droughts). 

 

Regarding clusters with more than one country (i.e., clusters 1, 2, and 3), it can be observed that some 

clusters show apparent internal similarities while others are more difficult to interpret. For instance, 

cluster 2 was chosen because its members have the largest average similarity score (Figure 2), which 

indicates high compactness and separability [44]. Indeed, countries in this cluster, namely Saint Kitts 

and Nevis, Cayman Islands, and Turks and Caicos, are extremely similar: they all are archipelagos in 

the Caribbean Sea, classified as high-income countries, with a relatively low number of fatalities. Due 

to their location, the islands have been affected by several cyclones and storms. Nevertheless, the 

number of climate-related deaths is extremely low. Considering the already significant success of these 

countries in coping with tropical storms, there might be little scope for inter-country knowledge sharing. 

However, islands in different clusters with similar exposure to natural threats (e.g., Fiji Islands) may be 

inspired by the measures adopted by the countries in cluster 2. In other words, although knowledge 

transfer between countries in high-compact clusters may not appear interesting, there are still interesting 

learning opportunities for countries that have similar exposure but that were put in a different cluster 

due to significant differences in, e.g., the number of fatalities. 

 

Cluster 3 was selected for the low silhouette score of its members, which are Madagascar, Jamaica, 

Mauritius, and Sint Maarten. Three out of four countries show a negative silhouette score, indicating 

low compactness and separability [44]. However, it is still possible to spot some similarities between 

the members of this cluster, which are islands or archipelagos, relatively close to each other in pairs. In 

spite of the differences, a more detailed analysis might reveal hidden similarities and interesting 

learning opportunities. 

 

Cluster 1 was chosen because it shows the largest cumulative number of fatalities between clusters with 

more than two countries; therefore, it is definitely the most critical and interesting within the whole 

database. The cluster comprises Bangladesh, Japan, France, Vietnam, Germany, South Korea, and  
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Poland. Figure 2 shows that the members of this cluster have positive silhouette scores except for 

Poland, whose score is -0.04. Therefore, Poland may be considered an outlier and will not be considered 

further in the analysis. Interestingly, in spite of the relatively high compactness, cluster 1 appears rather 

heterogeneous. It comprises countries from different locations, with diverse socio-economic 

backgrounds and exposure to natural hazards. It is not trivial to identify similarities in this cluster. 

However, this should not be perceived as a limitation. On the contrary, comparing countries with both 

similarities and differences in disaster situations, demographics, and economy might be extremely 

interesting. It is not desirable to create 'perfect' clusters of countries for natural disaster comparison. A 

cluster of neighboring countries with the exact same possibilities and disaster situations is not advisable 

because there is little room for improvements and knowledge transfer. For cross-country learning to be 

relevant and helpful, it is beneficial that some countries are more exposed, developed, or prepared for 

disasters than others. However, countries should also exhibit some similarities in the disaster patterns 

and threats to facilitate comparison and the creation of actionable insights.  

In light of these considerations, clustering algorithms must be considered tools to reveal similarities and 

guide the analysis towards countries that may be more interesting to compare. However, in-depth 

analyses are still needed to make sense of data, interpret clusters, discover hidden similarities, and 

enable cross-country learning and knowledge transfer. In other words, clustering algorithms have the 

potential to greatly simplify the analysis by removing the need for manual screening. However, human 

intervention and expert knowledge are needed to convert groups of related countries into actionable 

insights. 

 

Considering the number of fatalities, Bangladesh can be regarded as an outlier due to its extreme history. 

The total number of climate-driven natural disaster fatalities in the country has been almost 2.6 million 

since the year 1900. Manual analysis of the EM-DAT database reveals that despite an increasing trend 

in the number of critical events, fatalities have decreased in recent times. Specifically, in the time period 

following 1992, the number of deaths has decreased, major outliers were less frequent, and resulted in 

fewer deaths. Nevertheless, tropical cyclones and storm surges have been particularly severe since 1900 

[45]. The decreasing fatalities in spite of an increasing number and severity of cyclones suggest a 

significant improvement in mitigating measures. From an economic point of view, Bangladesh is 

relatively less developed than the other members of the cluster. GPD value is larger than Vietnam's but 

significantly lower than the other counties. 

 

Vietnam is the fourth country in cluster 1 in terms of total fatalities. Similar to Bangladesh, the country 

is exposed to tropical cyclones and storms, although the number and severity of critical events are lower. 

Similar to Japan, a relevant part of the fatalities is caused by floods. Nevertheless, Vietnam has 

experienced a decreasing trend of fatalities in the past 20 years, although the decrease is less pronounced 

than in Bangladesh. From an economic point of view, Vietnam went from being one of the poorest 

countries in the world to becoming a lower-middle income country [35]. However, the development in 

Vietnam started later compared to other developed Asian countries like South Korea and Japan, but the 

growth rate has been faster than in Bangladesh [46]. 

 

Japan is the second country in cluster 1 in terms of total fatalities. Due to its location and geography, 

the country is particularly exposed to tropical cyclones, storms, localized rains, and floods [47]. 

However, the relatively large number of fatalities does not indicate unpreparedness or ineffective 

response to natural hazards. On the contrary, the continuous exposure to natural threats pushed the 

country towards increasingly effective mitigation measures [48], [49]. In fact, more than 82% of the 

total deaths were registered before 1960. After that year, the number of fatalities decreased drastically 

and has remained relatively stable. However, the trend has reversed during the last 20 years, and the 

number of fatalities has slowly returned to grow. This change may be related to the increasing frequency 

and severity of natural hazards. It is also worth mentioning that a relatively new type of event, namely 

heatwaves, has caused the most fatalities in the last ten years. Specifically, heat waves have caused 735 

deaths since 2010, while tropical cyclones and floods caused 591 and 447 fatalities over the same 

period. Interestingly, heatwaves caused only 135 events from 1900 to 2010. The recent increasing trend 

in the number of fatalities differentiates Japan from Bangladesh and Vietnam. From an economic point 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

of view, the Second World War had marked the beginning of extraordinary growth for Japan, which is 

currently one of the leading industrialized countries in the world. 

 

Germany and France have significantly fewer fatalities than Bangladesh and Japan, and they are the 

only European countries in the cluster. Another difference is that most fatalities in Germany and France 

occurred after 2000 and were primarily caused by heatwaves. For instance, the heatwave of 2003 is 

responsible for 68% and 92% of the total deaths registered in France and Germany, respectively. This 

may indicate that rising global temperatures and climate change have affected countries that were not 

significantly exposed to natural threats in earlier times [50]. France and Germany have strong and stable 

economies and are respectively the seventh and fourth countries in the world in terms of GDP [35]. 

 

South Korea is the country with the least number of fatalities in cluster 1. Like Japan and Vietnam, 

South Korea is exposed to storms and floods, which are responsible for most deaths. However, extreme 

events are less frequent and intense in South Korea than in the other Asian countries in cluster 1. Also, 

the dataset analysis reveals a downward trend in the number of fatalities. Overall, South Korea is less 

exposed to natural hazards than Japan, Vietnam, and Bangladesh. However, more frequent and severe 

events are expected in the future to the effect of climate change [51]. From an economic point of view, 

the country grew from being a lower-income before 1980 to be a high-income economy in 1995 and 

currently the tenth country in the world in terms of GDP. 

 

In light of the considerations made for countries in cluster 1, the following suggestions and learning 

opportunities may be identified: 

1. Vietnam and Bangladesh may be considered similar with respect to exposure to tropical cyclones. 

In addition, both the countries are low-middle income economies. Nevertheless, Bangladesh has 

been more successful in mitigating the effect of extreme events. Therefore, Vietnam could be 

inspired and learn from the affordable mitigating measures implemented in Bangladesh. 

2. Japan offers significant learning opportunities for Vietnam and Bangladesh because it has similar 

exposure and has invested many resources into natural disaster prevention and mitigation policies. 

Less developed countries could greatly benefit from the lessons learned by countries with more 

financial resources. 

3. The number of deaths in Bangladesh and Vietnam decreased during the last two decades, while the 

trend has inverted in Japan. This may be due to, e.g., increased elderly population, urbanization, 

and coastal moving, which all imply that more people are exposed to natural hazards. Future 

building and infrastructure plans should consider natural risks in order to avoid turning common 

hazards into major catastrophes due to demographic changes and population growth. 

4. Considering the effect of climate change and the increasing global temperatures, it might be 

beneficial for the countries that have not experienced severe heat waves (e.g., Vietnam and Korea) 

to learn from countries that have been severely affected (e.g., France and Germany) in order to 

improve awareness and preparedness to possible extreme temperature events in the future. 

5. Germany and Korea appear to be the less vulnerable countries in the cluster. Therefore, they should 

pay close attention to the current changes in trends and improve hazard preparedness. The less 

vulnerable, developed countries have economies that facilitate research on innovative mitigation 

measures. The focus should be to create low-cost, high-impact measures since natural disasters 

cause more harm to poorer countries and tend to worsen poverty and unemployment. 

 
In general, the countries in cluster 1 offered interesting insights and discussion points. This suggests 

that the clustering procedure has successfully identified groups of countries that share similar 

characteristics and can benefit from each other's experiences and lessons. However, it must be recalled 

that the analysis of clusters requires manual intervention and expert knowledge to, e.g., interpret and 

evaluate the results of the clustering procedure, identify hidden similarities and differences between 

countries, analyze trends and recognize learning opportunities. Therefore, the results from this example 

of ML clustering for risk management purposes show how the techniques used require a deep 

understanding of their benefits, limitations, and application boundaries. For this reason, this 
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contribution aims to convey the message that ML-based techniques must be considered as tools 

supporting and not substituting decision-making.  

 

Awareness and knowledge of these tools properties by the user is essential to effectively exploit their 

results. The role of the human as user of these tools is even more central than before. ML should not be 

intended as a way to replace the human, but only as an improved approach assisting the human. This is 

conform with the concept of trustworthy AI by the European Commission [52] promoting explainable 

AI (XAI) human centrality by means of interpretability, info-besity (overload of information) 

avoidance, and transparency. 

 

5. CONCLUSION 
 

Considering the widespread adoption of AI and ML algorithms, many wonder whether we are 

proceeding toward a "no-brainer" era, where machines will be in charge of critical decisions, and human 

knowledge will have only a marginal role. This issue is especially important in the context of risk 

assessment and management, where errors may result in fatalities and significant economic losses. This 

study suggests that we are not yet close to such a condition since humans still play a key role in the 

decision-making process. In addition, we claim that ML algorithms may provide critical support and 

better-informed decision-making if certain conditions are met. These conditions include knowing (i) 

what the algorithm does, (ii) how it does it, and (iii) what the limitations are. We discuss this topic 

through an example of clustering of climate-driven natural disasters. EM-DAT dataset is used as the 

data source, and k-means is used to group countries that share similar characteristics with respect to 

exposure to natural disasters. The cluster analysis revealed underlying causes and influential factors 

that can inform decision-making and enable cross-country learning. However, the objective of this 

investigation is not to present and discuss an example of "perfect" clustering. On the contrary, the 

overall intent is to show that effective deployment of ML models must consider the role of humans in 

the design of the algorithms and interpretation of the results. This study shows that human knowledge 

still plays a pivotal role in developing and implementing ML algorithms. For example, expert 

knowledge is required for features selection, model hyperparameters tuning, evaluation strategy 

selection, and, more importantly, cluster analysis and interpretation. These steps involve human 

intervention and, therefore, heavily rely on human knowledge. In light of these considerations, ML 

algorithms are to be considered (advanced) tools, and like most tools, they are only as good as their 

users. Therefore, AI and ML must be considered powerful and reliable tools to extract hidden patterns 

from data and provide suggestions to decision-makers; however, humans are still essential to interpret 

those suggestions and, eventually, convert recommendations into actions. 
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