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Abstract: Critical infrastructure facilities, such as nuclear power plants, are often located in coastal 
regions exposed to tropical cyclones (TCs). These facilities may employ permanent protective measures 
as well as strategies that require manual (human) actions to install temporary features (e.g., flood 
protection berms and pumps). In addition to the possibility of hardware failures, there is a possibility 
that actions will be unsuccessful due to delayed organizational decision-making, human errors, and 
differences between predicted and experienced hazard characteristics. Accurate external hazard 
probabilistic risk assessments (XHPRAs) must quantify these error probabilities, which depend on 
factors such as the information available to support decisions, the time available to perform actions, and 
the environmental conditions under which actions are performed. These factors are subject to 
uncertainty due to uncertainty in TC forecasts. To support XHPRAs for critical infrastructure facilities, 
this paper seeks to explore uncertainty in the conditions under which human actions will be performed, 
with particular emphasis on the time available to execute actions. We analyzed National Oceanic and 
Atmospheric Administration (NOAA) geographic information system (GIS) datasets related to advisory 
forecast TC track data for 2012-2020. For each historic storm, we compared advisory forecasted track 
data (e.g., predicted landfall locations, times, and wind speed) to the observed track to understand errors 
and uncertainty. 
 
 

1. INTRODUCTION 

When tropical cyclones (TCs) are predicted to make landfall, critical infrastructure facilities such as 
nuclear power plants (NPPs) must make decisions about the implementation of protective measures and 
changes to their operating status. For example, in response to a forecast, a facility may decide to shut 
down, take protective actions, or continue normal operations. These decisions are often based on 
forecasts of when the storm will make landfall, the landfall location, and the storm's severity (e.g., 
estimated wind speed or storm surge). However, if the forecast is inaccurate or if the forecast uncertainty 
is not communicated effectively to decision-makers, there may be consequences for facilities not 
prepared for the storm. Conversely, a facility may shut down unnecessarily, leading to a loss of ability 
to provide infrastructure services. 

External hazard probabilistic risk assessments (XHPRAs) are used to systematically assess the risks 
posed by external hazards such as TCs. XHPRAs often consider human reliability analysis (HRA) in 
assessing the reliability of protective or mitigating strategies. Such assessments require estimates of the 
uncertainty associated with the time available to implement actions (which depends on the estimated 
time and location of landfall of a TC) and the conditions under which actions will be performed. 
However, to date, there have not been systematic assessments of uncertainties associated with TC 
forecasts in a manner amenable to characterizing uncertainties required for an XHPRA. 

This study aims to analyze the uncertainty in TC landfall timing, location, and severity with the specific 
goal of presenting information in a manner amenable to inclusion in the XHPRAs for critical 
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infrastructure facilities such as NPPs. Particular emphasis is placed on understanding the difference 
between the assumed time available (based on procedures) and the actual time until the onset of adverse 
storm conditions. This paper describes an in-progress analysis being performed for historical storms 
affecting the Atlantic and Pacific coasts of North and Central America. Preliminary results are 
presented, and the next steps are outlined. This work is part of a larger effort described in a 
companion paper presented at this conference [1]. 

2. EXISTING RESOURCES AND CONTEXT 

For storms in the Atlantic and Northeast and North Central Pacific basins, the United States National 
Oceanic and Atmospheric Administration (NOAA), National Hurricane Center (NHC) issues 
information related to the forecasted position of a storm (storm track centerline) and maximum 1-min 
surface wind speeds. NHC forecasts are typically released every six hours (at 0300, 0900, 1500, and 
2100 UTC). The prediction periods related to these forecasts are 12, 24, 36, 48, 72, 96, and 120 hours 
after the forecast's nominal time [2]. 

NOAA NHC periodically releases NHC Forecast Verification Reports [3] that compare forecasts for a 
TC with the estimated "best track" for the TC. The TC best track is estimated after the event as part of 
a post-storm analysis, which may include observational data that was not available in real-time and 
other post-storm analyses [4], [5]. In the verification reports [3], track forecast error is defined as the 
maximum (great circle) distance between the forecast position of the cyclone and the best track position 
at the time of the forecast. The error in the forecasted intensity of the storm is also defined as the absolute 
difference between the forecasted intensity and the best track intensity at the forecast time. NOAA has 
estimated these errors as annual mean errors and five-year mean errors. Trends over time are also 
analyzed. NOAA's verification reports aim to help answer inquiries about the accuracy and skill of 
forecasts and computer models. NOAA’s verification reports are focused on overall accuracy over 
various forecast durations, but do not assess performance, in predicting the time and location of landfall, 
which is particularly relevant in the context of XHPRAs. 

In addition to predictions related to the position of a storm center track, NHC forecasts also include a 
"cone of uncertainty" reflecting uncertainty in the forecasted storm track centreline. Based on the 
definition provided by NOAA, the cone of uncertainty represents the probable track of the storm. This 
cone is formed by enclosing the area swept out by several circles along the forecast track. The size of 
each circle is set to cover two-thirds of historical official forecast errors for a five-year sample. 
However, the problem is that people often misinterpret the cone of uncertainty [6]. Under this 
misinterpretation, people assume there is a high chance of being in the path of a hurricane for those who 
live inside the cone while those outside the cone are safe from potential hurricane effects. Furthermore, 
it is difficult for people to distinguish the cone as a region experiencing the storm effects from a region 
that the storm path will pass [7]. Therefore, some studies focused on time-specific visualization of the 
predicted storm track and its uncertainty. [7], [8]. 

This study focuses on analyzing the uncertainty related to forecasted landfall characteristics of the 
storm. These characteristics include landfall location, time, and wind speed. This work is interested in 
analyzing the error related to characteristics of landfall predictions and how the forecast values are 
different from observations. Several existing studies have estimated forecast error of NHC forecasts 
related to storm track position and wind speed. However, these studies were not focused on analyzing 
the forecast errors related to landfall characteristics of the storm. For example, Rappaport et al [9] 
analyzed the forecast error of storm track. This work was focused on estimating the error related to 
predicted storm track position and intensity and has used best track data. Track forecast error was 
estimated as the great circle distance between the center of forecasted TCs and the best track position 
at the time of the forecast. Error related to storm intensity was estimated as the absolute difference 
between forecast and best track value at the time of forecast verification. This study estimated mean 
forecast errors in four different periods of data including 1970-1979, 1980-1989, 1990-1999, and 2000-
2008. The results of this study showed how forecast values improved in recent years. For example, 
forecast error for 48-hr forecast wind speed decreased from 250 nautical mile (nm) in 1970-1979 to 100 
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nm in 2000-2008. Furthermore, a study by Franklin, et al [10] showed that 24, 48, and 72-hr forecasts 
were improved at an annual rate of 1.3, 1.9, and 2% (respectively) for the period of 1970-2001. In the 
study by Zhang, et al [11], the errors of lead forecast times provided by NHC official forecasts were 
computed for the purposes of comparing against a hurricane prediction system that used a Kalman filter 
method for assimilating high-resolution radar observations. Using this method, mean absolute errors 
for intensity forecasts related to 24 to 120-hr lead forecast times were 20 to 40% lower compared to 
NHC official forecasts at similar times. 

While this study focuses on informing uncertainty characterizations for XHPRA for critical 
infrastructure, the uncertainty in forecasted location and lead time (i.e., the length of time between the 
issuance of a forecast and the time at which the storm affects a location) also affects evacuation 
decisions. For example, Lindell and Prater [12] modeled how uncertainties in the prediction of hurricane 
behavior affect an evacuation management decision support system. The study provided information 
regarding the "minimum, most, and maximum probable evacuation time estimate" versus the "earliest, 
most, and latest probable estimated times of arrival" for the storm. Lindell and Prater (2007) also 
estimated the cost of decision errors related to an unnecessary evacuation (false positive) and a late 
evacuation (false negative). A study by Regnier [13] investigated the relationship between lead time 
and storm track uncertainty for Atlantic hurricanes. They explored "threats" versus "strikes" as a 
function of lead time for several cities. 

Beyond evacuation modeling, studies have also looked at track uncertainty from the perspective of 
modeling hazard impacts (e.g., storm surge) [14], [15]. A recent study by Kang (2020) used a Bayesian 
approach for updating the uncertainty of operational track forecast errors. 

3. DATA AND METHODS 

The NHC issues advisories [17] for TCs that develop in the Atlantic and Eastern Pacific basins. The 
products are issued at least every 6 hours, typically at pre-set times. Advisories contain information 
about (1) current coastal watches/warnings, (2) the TC’s current storm center location and maximum 
sustained winds, (3) the predicted track of the storm (location and wind speed), and (4) a cone of 
uncertainty. The cone uncertainty provides uncertainty related to the centerline of the storm, not the 
spatial extent of the storm [17]. 

Archived geographic information system (GIS) storm advisory data (as zipped Keyhole Markup 
Language [KMZ] files ) from the NHC [2] was collected for the analysis herein. Figure 1 shows the 
structure of data as formatted for use in this study. Each downloaded advisory is associated with one 
set of “observational values,” which includes the location (storm center), wind speed, and the minimum 
pressure of a storm when each storm advisory is issued. For example, Figure 2a shows the estimated 
location and wind speed of Hurricane Debby (2012) at the times that advisories were issued. In addition, 
the advisory data includes the forecasted location and windspeed of storms for 12, 24, 36, 48, 72, and 
96-hour predictions. Figure 2b shows the location of Hurricane Debby (2012) at the time one example 
advisory was issued along with the 12, 24, 36, 48, 72, and 96-hour predicted locations. Figure 2c shows 
the forecasted tracks of Hurricane Debby (2012) associated with each advisory. It is noted that there is 
a 3-hour time lag between the initiation and eventual issuance of a forecast. Therefore, the forecast 
times (i.e., 12, 24, 36, 48, 72, and 96-hours) correspond to the time between the nomimal initial time 
for a forecast (i.e., the time at which the forecast process is initiated) at the time associated with a 
forecast. For example, there will typically be a 9-hour (12 hours minus 3 hours) difference between the 
forecast issuance time and the time associated with the 12-hour prediction. 
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Figure 1. Structure of data used in uncertainty analysis 

 

GIS data related to 347 TC track data for the years 2012 to 2020 for both the Atlantic and Eastern 
Pacific basins was collected. Future work will seek to expand the time period included in the analysis. 
Data was processed into the format shown in Figure 1 by extracting latitude, longitude, time, and wind 
speed data related to observed and predicted values. For this study, the advisory data corresponding to 
the documented location and windspeed of storms when the advisories are issued are treated as the 
“observed track” for the storm. This location and windspeed data values may differ from the “best 
tracks” later calculated as part of the NHC Hurricane Database HURDAT re-analysis efforts [18]. For 
example, Figure 2d shows the Hurricane Debby (2012) “observed track” (as constructed using advisory 
location/windspeed data) and the HURDAT best track. Future work will explore the potential impact 
of replacing the advisory “observational values” with the HURDAT best track values. 

Figure 2. (a) Estimated location and wind speed of Hurricane Debby (2012) at the times 
that advisories were issued; (b) Location of Hurricane Debby (2012) at the time one example 

advisory (red circle)was issued along with the 12, 24, 36, 48, 72, and 96-hour predicted 
locations (black circles); (c) Predicted tracks (dashed lined) of Hurricane Debby (2012) 
associated with each advisory (location of storm at time advisory issues shown by black 

stars); (d) Hurricane Debby (2012) track as constructed using advisory location/windspeed 
data (dashed lines with circles) and based on HURDAT best track (solid lines with circles) 
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(c)  (d) 

The landfall locations of each observed and predicted track are estimated by intersecting the storm track 
with an idealized version of the coastline of North America. Then windspeed values at landfall and the 
time of landfall are linearly interpolated based on the distance traveled between available 
latitude/longitude points. Figure 3 shows all observed tracks (as computed using the location of storm 
centers when advisories are issued) for historical storms from 2012 to 2020 originating in the Atlantic 
and Pacific basins, along with the interpolated landfall locations for the storms that made landfall. 
Ultimately, 87 landfalling storms (i.e., storms for which the observed track intersected with the idealized 
coastline) were considered in the analysis that follows. Of the 87 storms, 84 of the storms included at 
least one advisory track predicting landfall (i.e., the predicted track intersected the idealized coastline). 

Figure 3. Observational points for all historical storms (black lines) for 2012-2021, along 
with origin locations (red dots), and interpolated landfall locations (cyan circles) for (a) 

Atlantic Basin-originating storms and (b) Pacific basin-originating storms 

(a) 
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(b) 
 

For each landfalling storm 𝑖 and each associated storm advisory 𝑗, the observed and predicted track data 
was used to compute the following quantities: 

 𝑡,
ሾሿ ൌthe time elapsed between the issuance of advisory 𝑗 for storm 𝑖  and the interpolated 

observed landfall time of storm 𝑖 (hours) 

  𝑡,
ሾሿ ൌthe time elapsed between the issuance of advisory 𝑗 for storm 𝑖 and the interpolated time 

of landfall (based on the predicted storm track) for storm 𝑖 and advisory 𝑗 (hours) 

 𝑤
ሾሿ ൌ interpolated observed wind speed at landfall for storm 𝑖 (mph) 

 𝑤,
ሾሿ ൌ interpolated predicted wind speed at landfall from advisory 𝑗 for storm 𝑖 (mph) 

 𝑑, ൌ  distance between the interpolated observed landfall location of storm 𝑖  and the 
interpolated predicted landfall location of storm 𝑖 from advisory 𝑗 for storm 𝑖 (miles) 

Using the above quantities, the following error metrics are also calculated: 

 Time to landfall prediction error: 𝜀
ሾ௧ሿ ൌ 𝑡,

ሾሿ െ 𝑡,
ሾሿ 

 Landfall wind speed prediction error: 𝜀
ሾ௪ሿ ൌ 𝑤,

ሾሿ െ 𝑤
ሾሿ 

4. ANALYSIS RESULTS 

Across the 84 predicted landfalling storms in the dataset, there are 717 pairwise observations in which 

both values of 𝑡,
ሾሿ and 𝑡,

ሾሿ are available for a particular 12, 24, 36, 48, 72 or 96-hr advisory. These 

pairwise combinations of the observed and predicted landfall time are shown in the scatterplot in Figure 
4a, with colors indicating the distance between the observed and predicted interpolated landfall 
locations. The majority of points are clustered around the 45° line. However, in selected cases, large 

differences between 𝑡,
ሾሿ and 𝑡,

ሾሿ are identified, indicating that the time to landfall is substantially larger 

than predicted. This is primarily caused by differences in the observed and predicted location of landfall, 
as can be observed by the larger distances associated with data pairs located farther from the reference 
line in Figure 4a. For example, considering the storm track and predictions shown in Figure 5a. Initially, 
landfall was predicted to occur in Florida, but landfall ultimately occurred much later and much farther 

north. Figure 4b presents a histogram of the associated percent errors values ቆ100 ∗
ఌೕ
ሾሿ

௧,ೕ
ሾೌሿቇ, considering 

only observations for which 𝑑,  500 miles. The majority (59%) of computed values of 𝜀
ሾ௧ሿ  are 
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positive, indicating that the actual time to landfall was shorter than predicted. Approximately 40% of 
data pairs are associated with a percent error of േ 10%. 

There are likewise 717 data pairs for which values of 𝑤
ሾሿ and 𝑤,

ሾሿ are available. The scatterplot of 

𝑤
ሾሿ  and 𝑤,

ሾሿ  and histogram of percent error ቆ100 ∗
ఌೕ
ሾ𝑤ሿ

𝑤,ೕ
ሾೌሿቇ are shown in Figure 4c and Figure 4d, 

respectively. Negative values of 𝜀
ሾ௪ሿ   indicate observed windspeeds landfall exceed those that are 

predicted. Negative values were encountered for about half of the available data pairs. 

 

Figure 4. (a) Scatterplot of 𝒕𝒊,𝒋
ሾ𝒂ሿ and 𝒕𝒊,𝒋

ሾ𝒑ሿ; (b) Histogram of percent error ቆ𝟏𝟎𝟎 ∗
𝜺𝒊𝒋
ሾ𝒕ሿ

𝒕𝒊,𝒋
ሾ𝒂ሿቇ (a) 

Scatterplot of 𝒘𝒊
ሾ𝒂ሿ and 𝒘𝒊,𝒋

ሾ𝒑ሿ; (b) Histogram of percent error ቆ𝟏𝟎𝟎 ∗
𝜺𝒊𝒋
ሾ𝒘ሿ

𝒘𝒊,𝒋
ሾ𝒂ሿቇ 

 
(a) (b) 

 
 

(c) (d) 
Figure 5b shows a scatter plot of computed percent error values for wind and timing (considering 𝑑,  
500 miles), with colors indicated by 𝑑,. Annotations are provided showing the percentage of pairwise 
observations falling into each quadrant. In general, errors are clustered around (0,0), with asymmetry 
noted in the errors in landfall times, which are more likely to take on larger values. 
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Figure 5. (a) Example hurricane track with a large negative value of 𝜺𝒊𝒋
ሾ𝒕ሿ; (b) Scatterplot 

computed percent error values (considering 𝒅𝒊,𝒊  500 miles) with colors indicated by 𝒅𝒊,𝒋 
(annotations show the percentage of pairwise observations falling into each quadrant). 

 
(a) 

 
(b) 

 

The above results present analysis metrics across all pairwise combinations, including advisories for 12 
through 96 hours after the nominal initial forecast time. In the context of XHPRA, it is also of interest 
to understand the uncertainty in the time available to execute procedures, considering the information 
that will typically be used as the basis for initiation of protection or mitigation measures. For example, 
a procedure may require the implementation of protective actions (e.g., to install flood protection 
measures or pre-stage mitigation equipment) when a hurricane is predicted to make landfall in a region 
within the next 24 hours. 

To understand how uncertainty may change with the assumed “action trigger times” (i.e., the time when 

actions are initiated based on the predicted time until storm landfall), the quantity 𝑡,
ሾሿ is used to partition 

the dataset. Specifically, four different action trigger times are considered: 𝑡௧ ൌ 12, 24, 36, and 48 

hours. For each storm 𝑖 ൌ 1, … , 84, the first advisory 𝑗 for which 𝑡,
ሾሿ  𝑡௧  is identified, and the 

associated values of 𝑡,
ሾሿ and 𝑡,

ሾሿ are extracted. The corresponding scatterplots of 𝑡,
ሾሿ and 𝑡,

ሾሿ (with 

colors representing interpolated observed wind speed at landfall) are shown in Figure 6. The percent of 

observations for which 𝑡,
ሾሿ  𝑡,

ሾሿ (i.e., actual time until landfall is less than the predicted time) and the 

correlation coefficient between 𝑡,
ሾሿ  and 𝑡,

ሾሿ  are shown in Table 1. In general, the percent of 

observations (53-60%) for which the actual time to landfall is less than predicted time is fairly constant 
across the four sets of information. 

It is noteworthy that there are instances in which both the actual and predicted time to landfall are 
substantially shorter than the assumed trigger time. This was observed to be the result of several 
situations, some of which are related to the actual evolution of the TC event and others that are artifacts 
of the analysis that has been performed. For example, time to landfall values that are substantially 
shorter than 𝑡௧ can be caused by situations in which the first advisory was issued relatively close to 
the time of landfall (e.g., see Figure 7a), by changes in the track such that landfall is not predicted until 
relatively close to the observed landfall (e.g., see Figure 7b), or by situations in which the distinction 
between a landfalling and bypassing track is relatively minor (e.g., see Figure 7c). Some of these issues 
may be addressed by analyzes that extend beyond a centreline analysis. 
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Figure 6. Scatterplot of 𝒕𝒊,𝒋
ሾ𝒂ሿ and 𝒕𝒊,𝒋

ሾ𝒑ሿ considering a trigger time of (a) 12 hrs, (b) 24 hrs, (c) 

36 hrs, (d) 48 hrs 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Table 1. Basic statistics regarding 𝒕𝒊,𝒋
ሾ𝒂ሿ and 𝒕𝒊,𝒋

ሾ𝒑ሿ for multiple action trigger times 

𝒕𝒕𝒓𝒊𝒈  % of observations with 𝒕𝒊,𝒋
ሾ𝒂ሿ  𝒕𝒊,𝒋

ሾ𝒑ሿ Correlation between 𝒕𝒊,𝒋
ሾ𝒂ሿ and 𝒕𝒊,𝒋

ሾ𝒑ሿ # of observed landfalls 

12-hr  53% 0.53 77 
24-hr 57% 0.55 80 
36-hr 53% 0.73 80 
48-hr 60% 0.71 82 

 

Figure 7. Examples of tracks for which 𝒕𝒊,𝒋
ሾ𝒂ሿ and 𝒕𝒊,𝒋

ሾ𝒑ሿ are substantially shorter than 𝒕𝒕𝒓𝒊𝒈 

(red lines show observed track, dashed black lines show predicted tracks, and the yellow star 
indicates the interpolated observed landfall location) 

   
(a) (b) (c) 

5. NEXT STEPS 
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Several areas for future work and analysis refinements have been noted throughout the text. These issues 
will be addressed as part of future research activities. In addition, it is noted that this preliminary study 
analyzed storm track uncertainty in timing location and wind speed, considering only the centreline for 
the storm. This study did not consider the entire radial extent of the storm. For example, Figure 8a 
shows the observed wind radii (i.e., the maximum extent of sustained winds for several wind speed 
thresholds), and Figure 8b shows an example of predicted wind radii. Future work will consider 
information related to wind radii to capture better the spatial extent of the storm and its impacts. This 
is expected to yield substantially more relevant insights than an analysis focusing exclusively on the 
centerline of the storm. Future work will also consider insights derived through analyzes involving the 
cone of uncertainty (Figure 8c). Further, the current analysis does not differentiate between hurricanes 
in the Atlantic and Eastern Pacific basins. It also does not explore the relationship between errors of 
prediction as a function of hurricane parameters. Future work is expected to explore these issues. Longer 
term, future work may consider alternate hurricane prediction models and other hazards.   

Figure 8. (a) Observed wind radii of Hurricane/Storm Sandy (2012) (the storm track is 
shown by the red centerline and the red, pink, and grey shapes show wind radii); (b) Example 

of 72-hour predicted wind radii for Hurricane/Storm Sandy (2012) (the storm track is shown by 
the red centerline and the pink and grey shapes show wind radii); (c) Example cone of 

uncertainty (the storm track is shown by the red centerline and the cone of uncertainty is shown 
in grey) 

   

(a) (b) (c) 
6. CONCLUSION 

When a storm is predicted to make landfall, critical facilities such as NPPs will typically take protective 
actions before the storm makes landfall. XHPRAs often consider HRA in assessing the reliability of 
protective or mitigating strategies. Such assessments require estimates of the uncertainty associated 
with the time available to implement actions (which depends on the estimated time and location of 
landfall of a TC) and the conditions under which actions will be performed. This study seeks to 
understand and characterize uncertainty in the time available to perform actions by exploring how the 
time/location/wind speed at landfall differs from values predicted as part of NOAA advisories. This 
preliminary study considers geospatial analysis using observed and predicted storm track centerlines. 
Preliminary results indicate that there is a tendency for actual times to landfall to be shorter than 
predicted, indicating that the actual time available to implement procedural actions may be shorter than 
assumed. In general, a shorter time available to complete actions will increase human failure 
probabilities. Further analysis is required to confirm the results of this initial assessment. Specifically, 
future work will consider the radial extent of storms to provide a more comprehensive assessment. 
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