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Abstract: Economic and convenience benefits of interconnectivity drive the current explosive 

emergence and growth of networked systems. However, numerous systemic failures of various 

internetworked infrastructures demonstrate that interconnectivity also creates various risks, including 

risk of undesirable contagion.  Our work in progress discusses challenges and possible approaches to 

developing reliability/security risk metrics for large-scale infrastructures, which quantify systemic risk 

of catastrophic phenomena. Since cascades leading to catastrophic phenomena in large-scale systems 

are possible due to cycles of positive feedbacks in system component interactions, conventional 

attack/fault tree models of multicomponent systems do not describe cascading phenomena. We propose 

to model component interactions by Markov field, which allow for such cycles to exist, and associate 

systemic failures with phase transitions as the number of system components becomes large. This model 

has advantage of benefiting from rich body of approaches and results provided by statistical physics. 

We carry out our analysis and interpretations under mean-field approximation which provides 

qualitative and sometimes even quantitative system description. We demonstrate a possibility of 

cascading behaviour leading to systemic failure. We argue that metrics of systemic risk in large-scale 

infrastructures should account for the likelihood of catastrophic transition within system time horizon. 

The risk of this transition becomes essential as system operational time horizon becomes comparable 

with “life expectancy” of the normal/operational metastable system equilibrium. We consider “large 

deviation regime” in which system operational time horizon is much less than the “life expectancy” of 

the normal/operational metastable system equilibrium, but high level of risk averseness makes systemic 

risk essential. Note phenomenological nature of our analysis of transitions between metastable states 

since consistent analysis should be based on the underlying Markov dynamics of the system. Such a 

consistent analysis as well as applicability of the proposed approach to real-life systems may be areas 

of future research. 

 

 

1.  INTRODUCTION 
 

Economic and convenience benefits of interconnectivity drive the current explosive emergence and 

growth of networked systems.  However, numerous systemic failures of various internetworked 

infrastructures demonstrate that interconnectivity also creates various risks, including risk of 

undesirable contagion [1].  Due to reliance on networked infrastructures, understanding and ability to 

manage the fundamental risk/benefit trade-offs of interconnectivity is one of the most important 

challenges faced by modern society. In a case of undesirable contagion, e.g., due to propagating 

computer viruses, cascading failures or overload, the goal of system designers and operators is keeping 

system inside of the contagion-free region in space of system parameters. Since typically economic and 

competitive incentives drive system design and operation towards the boundary of this region, the 

nature of the contagion emergence, e.g., continuous or discontinuous, is of critical importance due to 

the occasional breach of this boundary caused by unavoidable uncertainties. 

 

Our work in progress discusses challenges and possible approaches to developing reliability/security 

risk metrics for large-scale infrastructures, which quantify systemic risk of undesirable cascades leading 

to systemic failure. Since cascades in large-scale systems are possible due to cycles of positive 

feedbacks in system component interactions, conventional attack/fault tree models of multicomponent 

systems do not describe cascading phenomena, we propose to model component interactions by Markov 
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field, which allows for such cycles to exist, and associate systemic failures with phase transitions as the 

number of system components becomes large. This model has advantage of benefiting from rich body 

of approaches and results provided by statistical physics. We carry out our analysis and interpretations 

under mean-field approximation which provides qualitative and sometimes even quantitative system 

description. We demonstrate a possibility of catastrophic phenomena leading to systemic failure. We 

argue that metrics of systemic risk in large-scale infrastructures should account for the likelihood of 

catastrophic transition within system time horizon. The risk of this transition becomes essential if the 

probability of system operational time horizon exceeding the “life expectancy” of the 

normal/operational metastable system equilibrium is comparable or exceeds the risk tolerance level of 

the system. We consider “large deviation regime” in which system operational time horizon is much 

less than the “life expectancy” of the normal/operational metastable system equilibrium, but high level 

of risk averseness makes systemic risk essential. Note phenomenological nature of our analysis of 

transitions between metastable states since consistent analysis should be based on the underlying 

Markov dynamics of the system. Such a consistent analysis as well as applicability of the proposed 

approach to real-life systems may be areas of future research. 

 

The paper is organized as follows. Section 2 introduces loss function of a multicomponent system, 

which generalizes notion of structural function for monotonic system [2]. For systems with component 

interactions without cycles it is possible to obtain loss distribution which is the basis for risk measures. 

This situation is illustrated on an example of a system security model described by a probabilistic Attack 

Graph. Section 2 proposes Markov field model of multi-component system, which is consistent with 

local component interactions and allows for cycles in these interactions to exist. Mean-field 

approximation for this model indicates a possibility of metastability and catastrophic cascades in large-

scale infrastructures where component interactions contain positive feedback cycles. Section 3 

discusses conventional notion of Value at Risk in context of systemic risk of catastrophic cascades in 

large-scale infrastructures. Finally, Section 4 briefly summarizes and outlines directions of future 

research. 

 

 

2.  MULTI-COMPONENT SYSTEM 
 

2.1.  System Losses  

Consider system whose state is characterized by binary vector 
1( ,.., ) {0,1}N

N  =  . In the context 

of reliability of a N - component system, vector   characterizes reliability status of all components: 

0n =  if component 1,..,n N=  is operational, and 1n =  if this component fails. In the context of 

security of a system with N  potential vulnerabilities, vector   characterizes which of the potential 

vulnerabilities have been exploited: 0n =  if vulnerability has not been exploited, and 1n =  

otherwise. Note that due to causal relationships between component failures or vulnerability exploits, 

vector  takes values in some subset of . 

We assume that system state   can be mapped to system economic loss ( )L  , where function ( )L   

satisfies the following properties: (a) , (b) function  is increasing, i.e.,  

if , for any binary vectors 1 1( ) {0,1}N

n =   and 2 2( ) {0,1}N

n =  , and (c) each 

component/vulnerability is relevant, i.e., for each 1,..,n N=  there exists vector , 

such that . Partial ordering of vectors is defined with respect to all vector 

components:  . These assumptions define class of structures which 

generalize class of monotonic structures [2] for which loss function  is binary:  or 

 for . Such an example is considered in the next subsection. 

 

 {0,1}N

(0) 0L = ( )L  1 2( ) ( )L L 
1 2 

: ( , )n k k n − = 

(0, ) (1, )n nL L − −

1 2 1 2( , 1,.., )n n n N      =

( )L  ( ) 0L  =

( ) 0L L =   
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Assuming that unconditional probability distribution of vector ,  is known, 

system reliability or security risk due to failed component or, respectively, successfully exploited 

vulnerabilities is fully characterized by the corresponding probability distribution of system losses 

: 

                              
{0,1}, ( )

( ) ( )
L L

P L P
 


 

= .                                                                              (1) 

However, evaluation of unconditional distribution  is generally a difficult and still open problem. 

Indeed, unconditional distribution  incorporates both system structure and conditional 

probabilities of activation of individual vulnerabilities 
nq , 1,..,n N= , given that the required 

prerequisites have been satisfied. In practice, conditional probabilities 
nq  are estimated from historical 

data, e.g., probabilities of successful exploits of individual vulnerabilities can be found in the National 

Vulnerability Database (NVD) and Common Vulnerability Scoring System (CVSS) scores [3].  

 

We separate system architecture, to be described below in this subsection, and state of environment 

1( ,.., ) {0,1}N

N  =   which characterizes environment “willingness” to activate different 

vulnerabilities if the required prerequisites are satisfied. The reason for this separation is that in 

adversarial setting, exploits may be associated with certain cost for the adversary who may choose not 

to exploit the corresponding vulnerability. Conventional attack/reliability model assigns conditional 

exploit probabilities   and assumes that random variables  are jointly statistically 

independent for : 

                                           .                                                               (2) 

Generalization, which assume certain correlations between likelihoods of activation different 

vulnerabilities, is straightforward.  

 

It is common [4] to encode causal relationships between system failures/exploits by binary functions 

, , where  if prerequisites for successful exploit of 

vulnerability n  are satisfied, and  otherwise. We assume functions  to be 

increasing with respect to partial ordering of vectors . For example, if prerequisite for exploitation 

of vulnerability n  is successful activation of both vulnerabilities  and , then 

. If prerequisite for activation of vulnerability  is successful activation of at least one vulnerability 

 or , then . The following equations, which directly follow from 

definition of functions  , are analytical representation of system component interdependencies: 

                                                                    ,                                                                                  (3) 

. We view (3) as a system of  equations with respect to vector  , given vector .  

 

In cases when system (3) has unique solution, which include cases of multi-component systems whose 

component interactions do not include positive feedback cycles: 

                                                   ,                                                                                (4) 

mapping (4) allows for reformulation random system loss in terms of conditional distribution   

rather than unconditional distribution  [5]: 

                                      
{0,1},L( )

( ) ( )
L

P L Q
 


 

=   ,                                                                 (5) 

where renormalized loss function is 

                                                .                                                              (6) 

In particular, (5)-(6) yields average loss 

                                                                   
( )[L( )]QL E  = .                                                                          (7) 

 

However, for multi-component systems whose component interactions allowing positive feedback 

1( ,.., )N  = ( )P 

( )L 

( )P 

( )P 

[ ]n nq E = n

1,..,n N=

1

1
( ) (1 )n n

N

n nn
Q q q

  −

=
= −

( ) {0,1}n n −  1,..,n N= ( ) 1n n − =

( ) 0n n − = ( )n n −

n−

kv mv ( , )n k m k m    =

nv

kv mv ( , )n k m k m k m      = + −

( )n n −

( )n n n n   −=

1,..,n N= N  

( )n n n n    −=

( )Q 

( )P 

1 1 1L( ) : [ ( ),.., ( )]N N NL      − −=
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cycles, mapping (4) may not exist since state of environment 
1( ,.., ) {0,1}N

N  =   is consistent 

with numerous sets of exploited vulnerabilities 
1( ,.., ) {0,1}N

N  =  . This situation is considered 

in Section 3 of the paper. 

 

2.2.  Example: Probabilistic Attack Graph 

 

Consider shown in Figure 2 popular toy example [4].  

 

                                           
Fig. 1. Example of networked system 

 

Machines 0, 1, and 2, are user’s workstation, a web server, and a database server, respectively. The 

firewall allows http and ssh requests from machine 0 across to machine 1. During the normal operation, 

the user makes an http request to server 1, which goes through the firewall. Server 1 accesses database 

server running on server 2 to retrieve the required data and communicates back to machine 0 through 

http. If the user attempts to access machine 2 directly, e.g., by sending a ssh request from machine 0 to 

machine 2, the firewall blocks the communication. Successful attack may include a command injection 

attack on server 1 followed by a SQL injection attack on the database at machine 2. Then, the restricted 

data could be siphoned to server 1 and then to machine 0. 

Attack graph for shown in Fig. 1 system is depicted in Fig. 2, where vulnerabilities are enumerated 

as follows: ftp_rhosts(0,1) 
1v= , ftp_rhosts(0,2) 

2v= , ftp_rhosts(1,2) 
3v= , rsh(0,1) 

4v= , rsh(0,2) 

5v= , rsh(1,2) 
6v= , sshd_bof(0,1) 

7v= , local_bof(2) 
8v= .  

 

 

 

 

  

 

 

 

 

 

Fig. 2.  Attack graph for shown in Fig. 1 system. 

 

Following [4], we assume that point estimates of conditional probabilities of successful vulnerability 

exploits are as follows: 
1 2 3 0.8q q q= = = ,

4 5 6 0.9q q q= = = , 
7 8 0.1q q= = . The corresponding 

functions ( )n n  −
 in (4) are as follows [5]: 

1 2 7 1     , 
4 4 1( )  − = , 

5 5 2( )  − = , 

3 3 1 4 7 1 4 7( )       − = + − ,
6 6 3 3 3 1 4 7 1 4 7 3( ) ( ) ( )           − −= = + − ,      

8 8 2 5 6 6 6 2 5 6 6 6 2 5 2 5 1 4 7 1 4 7 3 6( ) ( ) ( ) (1 )( )                       − − −= + − = + − + − . 

Since economic loss L  is due to user directly accessing machine 2, the renormalized loss function (6) 

is 
8 8 8L( ) : ( )L    −= , i.e.,  

                        
8 2 5 2 5 1 4 7 1 4 7 3 6L( ) [ (1 )( ) ]             = + − + − .                                                 (8) 

Substituting (8) into (5) yields probability distribution of system losses ( ( ) ) 0.087P L L =   and 

( ( ) 0) 1 ( ( ) ) 0.013P L P L L = = − =   [5]. Thus, the expected loss (7) is 0.087L L .  

 

`

Attacker
Machine 0

Firewall Router

sshd

Database

Server
Machine 2

FTP

Server
Machine 1

1 0.8q =

2 0.8q =

3 0.8q =

4 0.9q =

5 0.9q =
6 0.9q =

7 0.1q =

8 0.1q =
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3.  MARKOV FIELD MODEL OF MULTI-COMPONENT SYSTEMS 
 

3.1.  Loss Distribution and Mean-Field Approximation 

 

In a general case of multi-component system allowing feedback cycles in component interactions, 

system (3) may not have solution, and second, or may have multiple solutions with respect to vector 
. In the first case, “local interactions” (3) cannot be simultaneously for 1,..,n N=  realized in the 

system with any unconditional distribution ( )P  , and ink the second case, equations (3) for 

1,..,n N=  are consistent with multiple unconditional distributions ( )P  . These possibilities can be 

reformulated in terms of the activation probabilities of individual vulnerabilities conditioned on the 

status of other vulnerabilities ( )n n np  −
. Equations (3) are consistent with the following conditional 

probabilities: 

                                
( ) 1

( )
1 ( ) 0

n n n n

n n n

n n n n

q if
p

q if

  
 

  

−

−

−

=
= 

− =
,                                                                        (9) 

which may or may not uniquely define unconditional probability distribution ( )P   for vector 

1( ,.., )N  = . 

 

Given provability distributions ( )n n np  −
, we propose to define the unconditional probability 

distribution ( )P   for vector 
1( ,.., )N  =  as follows: 

                                              1

1
( ) ( )

N

n n nn
P Z p  −

−=
=  ,                                                                                 (10) 

where normalization constant, which is called partition function in statistical physics, is 

                                             
{0,1} 1

( )N

N

n n nn
Z p


 − =

=  .                                                                            (11) 

Definition (10)-(11) assumes that that unconditional probability distribution ( )P   is a specific form of 

Markov random field [6], where “strengths” of local interactions are “consistent” with given provability 

distributions ( )n n np  −
. Since Markov random fields allow for existence of cycles in the system 

component interdependencies, assumption (10)-(11) can be used for modelling systemic risk of 

catastrophic phenomena in large-scale systems as N → . In particular cases when system component 

interdependencies do not have cycles, definition (10)-(11) takes form of the Bayesian belief propagation 

network and the corresponding risk evaluation formalism is known under various names specifying 

their “Bayesian” nature, e.g., Bayesian Attack Graph [7]. 

 

To demonstrate flexibility of Markov random field model (10)-(11), below we consider the following 

model of local interactions  

                          
[ (1 ) ( )] 1

( )
1 [ (1 ) ( )] 0

n n n n n n

n n n

n n n n n n

q if
p

q if

    
 

    

−

−

−

+ − =
= 

− + − =
,                                              (12) 

where parameters 0 1n   characterize strength of the positive feedback cycles in the activation of 

system vulnerabilities. Case 0n = , model (12) takes form of model (9) with the highest strength of 

this positive feedback, and another extreme case 1n = , 1,..,n N=  corresponds to a mutually 

independent activations of all vulnerabilities. Model (12) enhances model (9) by allowing for 

“spontaneous” activation of vulnerability 1,..,n N=  with positive probability 
n nq  even when 

( ) 0n n − = , i.e., the neighbouring vulnerabilities are not activated. When ( ) 1n n − = , i.e., the 

neighbouring vulnerabilities are not activated, vulnerability n  is activated with higher probability 
nq , 

00 1n np q   . Thus distribution (10)-(12) can be used as reliability model of multicomponent 

system where different components can fail spontaneously and failure of “neighbouring” components 

increases likelihood of this failure. We demonstrate in the next subsection that existence of these 
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positive feedback cycles creates a possibility of systemic failures. Also note that generalization allowing 

for differentiated feedback from different components is straightforward. 

 

It is known from statistical physics [8] that evaluation of distribution (10)-(11) is typically unattainable 

due to computational intractability of the partition function (11). Statistical physics developed 

approximations which produce qualitatively and sometimes even quantitatively accurate results. As an 

example, consider mean-field approximation [8] which assumes that 

 

                      1

1
( ) ( , ) : [ (1 ) ]n n

N

n nn
P P p p p

   −

=
 = − ,                                                             (13) 

where : [ ]n P np E = . Averaging equations (3) over distribution ( )P   we obtain the following system 

of non-linear fixed-point equations 

                                          ( )n n np p −= ,                                                                                                 (14) 

where vector ( , )n kp p k n− =   and functions  

                              
1

1

{0,1}
( ) ( ) [ (1 ) ]k k

N
n

n n n n n k kk n
p p p p

 


  −

−

−

− − 
= −  .                                         (15) 

Due to Brouwer fixed-point theorem [9], mean-field system (14)-(15) has at-least one solution. It can 

be shown that for sufficiently small unconditional probabilities of exploits 
nq , 1,..,n N= , system 

(14)-(15) has unique stable solution 
* *( )np p=  which can be associated with normal/operational 

system equilibrium and the corresponding steady-state loss distribution (1) is approximated by 

                                  1

* * *{0,1} , ( ) 1
( ) [ (1 ) ]n n

N

N

n nL L n
F L p p

 

 

−

  =
= −  .                                                         (16) 

For sufficiently high probabilities 
nq , system (14)-(15), in addition to the normal/operational state, may 

have other stable solutions which can be interpreted as describing metastable, i.e., persistent, system 

states with high losses. 

 

3.2.  Systemic Failures in Large-Scale Infrastructures under Mean-Field Approximation 

 

To demonstrate a possibility of systemic failure in large-scale infrastructures on an example of a 

homogeneous system with large number of cycles in the system component interactions. In this system, 

which is reminiscent of system considered in [10], all N  components/vulnerabilities can be associated 

with nodes in a regular homogeneous graph where each node has the same degree 1d  , and model 

(12) of local interactions: 

                            
[ (1 ) ( )] 1

( )
1 [ (1 ) ( )] 0

n n n

n n n

n n n

q if
p

q if

    
 

    

−

−

−

+ − =
= 

− + − =
.                                                   (17) 

We assume that successful activation of a vulnerability n  is possible only when {0,1,.., }t d  out of 

d  neighboring to node n  vulnerabilities have already been activated, i.e., ( ) 1n n t − =  if 

n
kk I

t


 , and
0( )n n t p − =  otherwise, where  is the set of 

neighboring nodes for node .   

 

In this case, system (14)-(15) has a homogeneous solution 
np p=  which satisfies the following single 

fixed-point equation: 

                                                  ( )p q p= ,                                                                                            (18) 

where function 

                  
1

0

! !
( ) (1 ) (1 ) (1 )

!( )! !( )!

t d
i d i i d i

i i t

d d
p t p p p p

i d i i d i
  

−
− −

= =

= − + − −
− −

  .                              (19) 

Since (0) = , parameter : q =  can be naturally interpreted as the exogenous load on the system. 

 

Solution to equation (18)-(19) is shown in Fig. 1 for different set of system parameters ( , , )q t . 

1{ ,.., } {1,.., } \{ }n k kdI n n N n 

{1,.., }n N
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Fig. 3. Solution to fixed-point equation (18)-(19). 

 

For sufficiently low exogenous load   and sufficiently low strength of the positive feedback of the 

vulnerability activations, e.g., characterized by sufficiently high parameter  , function (19) is shown 

as 
1( ) ( )p p =  in Fig. 3, and thus fixed-point equation (18)-(19) has unique globally stable solution 

*p p= . For intermediate values of   and sufficiently high strength of the positive feedback of the 

vulnerability activations, e.g., characterized by sufficiently low parameter  , function (19) is shown as 

2( ) ( )p p =  in Fig. 3. In this case, fixed-point equation (18)-(19) in addition to stable equilibrium 

*p p=  has another equilibrium *p p= , *

*p p . For sufficiently high  , function (19) is shown as 

3( ) ( )p p =  in Fig. 3, and thus fixed-point equation (18)-(19) has unique globally stable solution 

*p p= . Following conventional interpretation of mean-field approximation, we interpret stable 

solutions 
*p  and *p  as describing normal/operational and catastrophic system equilibria respectively. 

Coexistence of these solutions as locally stable we interpret as describing metastable system equilibria.  

 

Fig. 4 depicts solution to fixed-point equation (18)-(19) vs. exogenous load   in a case of low positive 

feedback, when this system has unique globally stable solution. 

 

 

 

 

 

 

 

 

 

 

 

 

                               (a)                                                                               (b) 

Fig. 4a-b. Solution to fixed-point equation (18)-(19) vs. load   for low (a) and high (b) positive 

feedback. 

 

Fig. 4 depicts solution to fixed-point equation (18)-(19) vs. exogenous load   in a case of high positive 

feedback, when this system may have multiple unique locally stable solutions. 

 

*p

p

10

1

*p

( )p

1( )p

2 ( )p

3( )p

0

p
1

1



0
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C

D
E



p

*
*

1

1
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For sufficiently low load 
*  , system (18)-(19) has unique globally stable “good” solution 

*p p=  

represented by curve 0A . For intermediate load *

*    , this solution, represented by curve AB

, is locally stable, coexists with locally stable “bad” solution 
*p p=  represented by curve CD . For 

sufficiently heavy load 
*  , this “bad” solution 

*p p= , represented by curve DE , is unique and 

globally stable. In terminology of phase transitions [8], Fig. 5 indicates that system experiences 

discontinuous phase transition, also known as phase transition of first kind, which is associated with 

metastability and hysteresis loop ABDCA  as exogenous load   changes adiabatically, i.e., much 

slower than life expectancy of metastable states. 

 

 

3.  RISK METRICS FOR LARGE-SCALE NETWORKED INFRASTRUCTURES 
 

3.2.  Landau Theory Based Risk Metrics for Large-Scale Networked Infrastructures 

 

Expected loss 
( )[ ( )]PL E L =  may not be an adequate representation of the security risk since L  

does not account for the tail risk. This motivated introduction of Value at Risk (VaR) [11]: 

                                          
1 inf{ 0 : ( ( ) ) }VaR L P L L  − =    ,                                                               (20) 

where confidence level 1 − quantifies decision maker risk averseness. Practical region for 
1VaR −

 

lies between expected loss L  for some 0.5  , and the maximum loss 
{0,1}

ˆ : max ( )NL L





=                                             

for 0 = . Further in the paper for simplicity we assume that system loss function is additive: 

                                                         
1

( )
N

n nn
L l 

=
= ,                                                                                             (21) 

where constants 0nl    characterize “importance” of vulnerability 1,..,n N= . Generalization is 

straightforward. 

 

Consider the following family of distribution on {0,1}N  , which depends on parameter 

( , ) −  : 

                                                   ( ; ) ( )exp[ ( ) ( )]P A L      = − ,                                                            (22) 

where 

                                               
{0,1}

( ) ln exp[ ( )] ( )NA L P


   


= − − .                                                       (23) 

and distribution ( )P   is given by (10)-(11). Note that family (22)-(23) includes ( )P   for 0 = .  

 

Consider function of ( , ) −  , ( ; ) ( )L A L   = − , where 0L   is a fixed parameter. Due to 

function ( )A   convexity for ( , ) −   and easily verified equality 

0 ( )( ) : [ ( )]PA L E L   =  = = , function ( ; ) ( )L A L   = −  is minimized over ( , ) −   

for 0 =  [ ]. Introduce “free energy” ( ) [ ( ); ]F L L L=  , where ( )L =  is unique solution to 

( )A L   = , and thus 

                                                    
0min ( ) ( ) 0L F L F L = = .                                                                                  (24) 

 

It is known [12] that for large-scale systems with large number of vulnerabilities 1N  , probability 

distribution of system losses has the following form: 

                                                          ( )( ( ) ) ~ F LP L L e − ,                                                                                   (25) 

where free energy ( )F L  is an extensive characteristic, i.e., is proportional to N , as N → , most 
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likely values of system loss L  are concentrated in close neighborhood of free energy ( )F L  minima. 

Due to (24)-(25), system Value at Risk (20) can be approximated for 1N   as follows: 

                                         
1 sup{ 0 : ( ) ln }VaR L F L −    − .                                                                       (26) 

Unfortunately, for systems with large number of interdependent vulnerabilities N , expression (26) 

cannot be used directly due to intractability of free energy ( )F L .  

 

Statistical physics developed various approximations for free energy ( )F L . In the rest of this 

subsection we discuss a mean-field approximation ( ) ( )F L F L  in a situation when system (14)-(15) 

may have two stable solutions 
* *( )np p=  and * *( )np p=  describing normal/operational and 

catastrophic system equilibria with losses 
*L  and *

*L L  respectively. Fig. 6 shows a “relative” 

approximate free energy 
* * *( ) : ( ) ( )F L F L L F L  = + − .                                                        

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. System free energy under mean-field approximation. 

 

Function 
1( )F L   corresponds to a situation when mean-field system (14)-(15) has unique globally 

stable solution 
* *( )np p=  describing normal/operational system equilibrium. In Fig. 5 this situation 

corresponds to region 
*0    . Functions 

21( )F L   and 
22( )F L   correspond to situations 

when mean-field system (14)-(15) has two locally stable solutions 
* *( )np p=  and * *( )np p=  

describing normal/operational and catastrophic system equilibria respectively. In Fig. 5 these situations 

correspond to region *

*    . Since vast steady-state probability that system loss L  are 

concentrated in close proximity to the global minimum of function ( )F L  , functions 
21( )F L   and 

22( )F L   demonstrate situations when this steady-state system equilibrium is normal/operational and 

catastrophic respectively. In Fig. 5 these situations correspond to region 
1 =  and 

2 =  

respectively, where *

* 1 2      . Function 
3( )F L   represents a situation of the stability 

boundary of solution 
* *( )np p= , which corresponds to point * =  in Fig. 5. 

 

3.2.  Systemic Risk in Large-Scale Infrastructures under Large Deviation Regime 

 

Presence of metastable states creates a possibility that observable random losses get stuck in some 

metastable equilibrium and do not have sufficient time to explore other metastable states or reach 

steady-state distribution. Assuming existence of two metastable states, normal/operational with low 

losses 
*L L  and catastrophic with unacceptably high losses 

*L L , and that initially, at moment 

0t = , system resides at the normal/operational equilibrium, it is natural to consider the following time 

0t   dependent Value at Risk: 

0

21h

( )F L 

L

1( )F L 

21( )F L 

22 ( )F L 

3( )F L 

22h

2A

3A

2B

3B



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

                                          
1 ( ) inf{ 0 : ( , ( ) ) }VaR t L P t L L  − =    .                                                    (27) 

Despite time evolution of 
1 ( )VaR t−  depends on the underlying system dynamics, it is possible to 

obtain quantitative results in large deviation regime using with rate function derived from free energy [ 

].   

 

It is known from statistical thermodynamics that wide range of underlying system dynamics results in 

Langevin potential dynamics [12]. Analysis of this Langevin dynamics demonstrates [13]-[14] that 

lifetime of the normal/operational system state   is distributed exponentially 

( ) 1 exp( )P t t   − − , where expected lifetime of this state [ ]E =  is approximately 

exponential in N  as N → : 

                                                             
( )~ F Le 

+
,                                                                                                  (28) 

where 

                                          ( ) [ ( ) ]
L

L
F L d F L d L dL+ +  =    ,                                                                   (29) 

parameter (1)O =  as N →  characterizes time scale of macroscopic system relaxation and 

[ ] : max(0, )x x+ = . Function ( )F L+
 in (29) is an extensive variable, i.e., ( ) ( )F L O N+  =  as 

N → . This function represents local potential for the Langevin dynamics [12], and is derived from 

the corresponding action functional under large deviation regime [13].  

 

In Fig. 6a-b curve 0ABC  depicts free energy  ( )F L   and curve 0AB C+ +
 depicts local potential 

( )F L+   in cases of low and high positive feedback in vulnerability actualization.  

 

 

 

 

 

 

 

 

 

 

 

 

                                a                                                                                     b 

Fig. 6a-b. Free energy and local potential for low (a) and high (b) positive feedback. 

 

Local minima of free energy ( )F L   characterize system metastable states and global minimum 

characterizes system steady state. Fig 6a (6b) shows situation when normal/operational system 

equilibrium is system steady state (metastable) while catastrophic equilibrium is metastable (steady 

state). Local potential ( )F L+   quantifies “high of the barrier” required for the system to reach state 

with losses *L L  since point A  in Fig. 6a-b represents the boundary of the “attraction region” of the 

normal/operational region.  

 

We assume that system operational horizon T  is much shorter than expected lifetime of the 

normal/operational system equilibrium  : T  , and thus probability of transition to the 

catastrophic state during system lifetime 

                                           ( ) 1 exp( ) 1P T T T    − −   .                                                                (30) 

We consider large deviation regime when both probability of system transition to catastrophic 

equilibrium during system lifetime ( )P T   and tolerable risk   are small but comparable for 
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1N  , i.e., formally, ( ), 0P T  → , but 1 ( ) (1)P T O −  =  as N → . 

 

Using (28) one can show that in this regime  

                                 ( )

1 *( ) inf{ 0 : ( ) }F LVaR T L L T e  
+− 

−  +    ,                                                  (31) 

and thus  

                                                         
1 *( )VaR T L L−  +  ,                                                                                    (32) 

where L  is an unique solution to equation 

                                                      ( ) ln[ ( )]F L T +  = .                                                                                  (33) 

 

Fig. 7 shows system time horizon Value at Risk (32)-(33) vs. “effective risk averseness” ( )T = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. System time horizon aware Value at Risk. 
 

Curves 
(1)

1VaR −
, (21)

1VaR −
, and (22)

1VaR −
 in Fig. 7 correspond to local potentials 

1( )F L  , 
21( )F L  , 

and 
22( )F L   in Fig. 5 respectively. Constants 

21  and 
22  are determined by conditions 

21 * 21( ) lnhF L L + − =  and 
22 * 22( ) lnhF L L + − =  respectively. Discontinuity in system time 

horizon aware Value at Risk indicate risk of system transition to catastrophic equilibrium through 

cascading process during system lifetime. 

 

 

3.  CONCLUSION AND FUTURE RESEARCH 
 

This paper has reported on our work in progress on reliability/security risk metrics for large-scale 

infrastructures, which quantify systemic risk of undesirable cascades leading to systemic failure. Since 

cascades in large-scale systems are possible due to cycles of positive feedbacks in system component 

interactions, conventional attack/fault tree models of multicomponent systems do not describe 

cascading phenomena, we propose to model component interactions by Markov field, which allows for 

such cycles to exist, and associate systemic failures with phase transitions as number of system 

components increases. We argue that metrics of systemic risk in large-scale infrastructures should 

account for the likelihood of catastrophic transition within system time horizon. The risk of this 

transition becomes essential if the probability of system operational time horizon exceeding the “life 

expectancy” of the normal/operational metastable system equilibrium is comparable or exceeds the risk 

tolerance level of the system. We consider “large deviation regime” in which system operational time 

horizon is much less than the “life expectancy” of the normal/operational metastable system 

equilibrium, but high level of risk averseness makes systemic risk essential. 

 

Numerous issues deserve further investigation. Evaluation of risk metrics for large-scale systems whose 

underlying dynamics is described by a Markov process with large number of locally interacting 

( )ln T 

1VaR −

0 22
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21
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1VaR −

(22)
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components may be possible  with approach [15]-[16]. Large deviation regime implies system being 

sufficiently distanced from the point of phase transition to the catastrophic equilibrium. It is known [8] 

that mean-field approximation does not give qualitatively accurate system description in close 

proximity to a point of phase transition. Modern theories of phase transition [8] may provide an adequate 

apparatus for quantitatively accurate risk metrics for systems in close proximity to a point of phase 

transition. Extension of the proposed approach to more recent risk measures, e.g., Entropic Value at 

Risk (EVaR) [17], is straightforward. Moreover, in addition to advantages of EVaR as a risk measure, 

e.g., coherency, EVaR has advantage of applicability to large-scale systems due to natural connection 

to entropy maximization. The ultimate goal should be application to specific socio-technical systems 

experiencing abrupt transitions. 
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