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Abstract: In the context of design of experiments (DoE), for many cases the quantitative dependency 

of a nonlinear target parameter on a few factors is to be determined for the related parameter prediction. 

For these cases, from the group of response surface designs, test plans are used following the structure 

of Central-Composite Design (CCD). Their leverage value α predefines the relative directional distance 

beyond the center run for the star runs, which yield the required information for a quadratic model while 

still being highly efficient. The individual value determination of α as well as the specific arrangement 

of the test runs in the design matrix follow a generic mathematical approach to match required DoE 

properties. Here the most essential respective property is orthogonality. It is sufficiently required in 

order to consider uncorrelated and independent coefficients separately and to establish regression 

models, guaranteeing the narrowest possible confidence intervals for parameter prediction. It can be 

complied and determined analytically based on α and the relative amount of individual run types. 

However, in the current state of research it remains unclear to what extent renewed adjustments in the 

amount and arrangement of test runs or further deviations from orthogonality have a practicable effect 

on design efficiency, test power and precision in regression coefficient estimation. This paper presents 

a parameter study regarding generic orthogonality deviations in CCDs. For this purpose, various 

orthogonality deviations are mathematically identified, quantified and performed. Subsequently, 

potentials and deviations in the effect detection are calculated. Finally, tendencies and first 

recommendations for design adaptations are presented under consideration of parameter prediction and 

design efficiency. This includes the categorical exclusion of possible orthogonality deviations as well 

as the quantification of tolerance limits for minor orthogonality deviations. 

 

 
 

1.  INTRODUCTION 
 

Design of Experiments (DoE) as a method for the empirical description of a target variable or a system 

behavior as an investigation objective is considered in many aspects as the most efficient method to 

determine the variable characteristics of an object or system holistically by descriptive influencing 

factors. Fischer was the first to define this approach fundamentally and to introduce the transfer of a 

variety of experimental observations into matrix notation [1]. In contrast to e.g., One-Factor-at-a-Time 

approach (OFAT), the information gain to be obtained is thus made more comprehensive and 

maximized with a putative minimum number of test runs. This avoids an unstructured and disordered 

implementation of experiments, whose integration into a sequential investigation procedure, potentially 

based on just previously gained experimental information in each run, is avoided. The indicated again 

has a strong positive effect on efficiency, both in monetary, temporal – in particular for lifetime testing 

– and scientific terms [2]. In contrast to a possible identification of a best investigation result with 

respect to a sequence-dependent target variable, a presumed global optimum can thus be identified. 

Within this process, a simultaneous and systematic change of several factors and the multiple utilization 

of experiments is used to generate additional benefit to system understanding in the evaluation of the 

results and interactions.  

For the implementation of this systematic approach in experimental investigation, by this time various 

experimental designs are available, which meet different requirements in the respective application. 

Initially, factorial designs were introduced as a basis, and are further developed by Box and Behnken 
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(Box-Behnken experimental design), Plackett-Burmann (screening experimental designs) and Box and 

Wilson (Central-Composite Designs, CCDs) [3-5]. The latter in particular favor system response 

variable-performance tuning or specific application and extension of DoE plans in lifetime modeling 

over a multidimensional parameter space as established in reliability engineering [6,7]. As predestined 

use cases for this type of experimental design, this enables exemplarily the investigation of chemical 

reaction-behaviors with regard to their optima or likewise the consideration of reliability models with 

curved and low-order system model functions in combination with quantifiably narrow confidence 

intervals. Response surface designs (RSM), which include CCDs, namely allow optimization of the 

determined global optima beyond a linear relationship with respect to the 𝑘 factors to be investigated 

[2].   

However, in order to ensure this, certain boundary conditions must be considered. The mathematical 

description for test designs of this type delineates the demand to meet particular requirements according 

to their matrix notations: balance and orthogonality. Although both balance and orthogonality are 

characterized as equally considerable in mathematical terms, orthogonality may analytically determine 

the balance. Thus, within an orthogonal test design matrix, performed test runs are arithmetically 

independent, meaning derived model coefficients are uncorrelated and separately/multiply assignable 

to individually observed test results. Thereby each of these assignments regard the appropriate factor 

combinations [2]. In addition to uncertainties due to noise parameters in experimenting, which are 

usually not to be investigated factorially in the test designs, therefore a widening of the confidence 

intervals of derivable system models is minimized [8]. However, in order to ultimately use rating 

parameters evaluating the orthogonality of a test plan, in case there are deviations from the same, a 

number of criteria are provided by now [9]. These control procedures are capable of quantifying the 

type and scale of the deviations of orthogonality. Nevertheless, they do not provide practical 

information about the outcome model’s power (test power) generated supposedly by non-orthogonal 

experimental designs. While one might encounter anomalies such as correlations via the construction 

of the fitted system function estimates and a residuals analysis, it does not give practical significance 

for actually identifying effects. A feasible evaluation of the practical impact of these deviations on 

detection performance of significant system effects remains thus and to date undetermined.  

Using and applying commonly deployed CCDs, this paper thus provides a primal overview of generally 

potential and ordinarily occurring deviations from orthogonality. To this end, relevant concepts related 

to CCDs, regression models, orthogonality in experimental designs, and associated control criteria are 

initially highlighted. Eventually generic effects are recorded and exemplified for one study point in a 

second-order model. Other than just consulting control criteria, with the presentation of possible 

orthogonality deviations, the consideration of the design efficiency, the coefficient quality in regression 

analysis as well as the test power are evaluated. Finally, a first recommendation for action is formulated 

based on identified tendencies.  

 

2. CENTRAL COMPOSITE DESIGNS (CCDs) AND BOUNDARY CONDITIONS  
 

In this section, first an overview of properties and boundary conditions associated with CCDs, 

orthogonality and the use of regression analysis for statistical evaluation is provided. This overview 

also includes a selection of applicable control criteria available to evaluate CCD orthogonality. 

Additionally, well-documented standard literature such as [2,7,8] and a more detailed, elementary 

overview of relationships between factorial experimental designs, orthogonality, and control criteria 

according to [10] provide a quick-access information framework beyond the presented work, so they 

will not necessarily be discussed in detail here.  

 

2.1.  CCD Characteristics 

 

The CCD is based on a 2𝑘 full- or 2𝑘−𝑝 fractional-factorial experimental design with r replications per 

run, where 𝑝 ≥ 0 represents an extra quantity of parameters added to the model as influencing factors. 

The design for 𝑛𝐹  factorial or cube points is expanded to include 2𝑘  star points in a symmetrical 

arrangement around the factor axes and additional 𝑛𝐶 central points, cf. Figure 1. As a part of RSMs, 

this makes the CCD a viable, diversely utilized experimental design in two aspects, since it can be 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

sequentially extended on a factorial experimental design, and nonlinearity can additionally be identified 

and mapped by 5 axial runs (star points) [2]. Accordingly, an original derivation is based on the central 

point to discover curvature of the model. The additional star points per factor provide information about 

the pure quadratic function of the detected curvature. The factorial points are. Moreover, the factorial 

runs are the only ones providing information about factor interactions [11]. Containing a random error 

term 𝜀~ 𝒩( 0, 𝜎2), for 𝑘 factors the system’s output can be determined in a second-order model by 

 𝑦 =  𝛽𝑜 + ∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ 𝜀

𝑘

𝑖<𝑗=1

𝑘−1

𝑖=1

, (1) 

which is based on the factors 𝑥𝑖, the output’s mean 𝛽𝑜 and 𝛽𝑖 coefficients derived from the observed 

parameter influence.  

 
Figure 1: CCDs with 𝒌 = 𝟐 (left) and 𝒌 = 𝟑 (right), cf. [2] 

 

The axial distance of the star points from the central points is defined by the distance- or leverage-value* 

𝛼𝐷 , whereby this value generally varies from 1.0 to √𝑘 depending on a face-centered or spherical 

positioning of star points on the factor axis [11]. However, both 𝛼𝐷 and 𝑛𝐶 needs be defined depending 

on various design characteristics: orthogonality, and as needed exemplarily combined with rotatability 

and sphericity. Here, the parameter space to be examined is defined decisively in its scope. To quantify 

prediction goodness of the model to be derived, this is done by assessing the consistency and robustness 

of the variance of all examination points 𝑥𝑖 through 𝑘 factors [2,11]. As Box and Hunter proposed in 

[12], the prediction variance of the model �̂� to be fitted based on 𝑦𝑖 observations will be stable in all 

study points on spheres of a second-order design if they have the same distance from the central point. 

Consequently, for this reason a test design with factorial points and star points becomes a rotatable 

central composite around the centre point by: 

 𝛼𝐷 = (𝑛𝐹)
1

4⁄ , (2) 

regardless of the value for 𝑛𝐶. The amount of center runs 𝑛𝑐, however, determines a reasonable stability 

of prediction variance within the entire design region [13], respectively the orthogonality, which will 

be discussed in the next Section by terms of model building. Since the sets of test runs have to be 

integers by nature, there are cases for some combinations of test run types where orthogonality and 

rotatability cannot be achieved exactly at the same time [13,14]. Exemplarily for orthogonal CCDs, the 

test points may depend on adjusted runs by individual numbers of replications 𝑟 for  

• factorial runs 𝑛𝑓 = 𝑟𝑓 ∙ 𝑛𝐹, forming the factorial portion with 𝑥𝑖 = −1,+1 for 𝑖 = 1,… , 𝑘;  

• central runs 𝑛𝑐 = 𝑟𝑐 ∙ 𝑛𝐶  with 𝑥𝑖 = 0 for 𝑖 = 1,… , 𝑘; and  

• axial runs (or star runs) 𝑛𝑠 = 𝑟𝑠 ∙ 2𝑘  of the form (0, … , 𝑥𝑖 , … 0) with 𝑥𝑖 = −𝛼𝐷 , 𝛼𝐷  for 𝑖 =
1,… , 𝑘;  

 

                                                 
* In standard literature (e.g., [2,8,11]) usually called 𝛼 – for reasons of clear differentiation in variable naming to 

significance level 𝛼: here adapted to ”𝛼𝐷”. 
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Here the axial distance of star runs follows according to [2,13,15] as: 

 𝛼𝐷 =

[
 
 
 
 √𝑛𝐹(𝑛𝐹+2𝑘∙

𝑛𝑠
𝑛𝑓

+
𝑛𝑐
𝑛𝑓

)−𝑛𝐹

2∙
𝑛𝑠
𝑛𝑓

]
 
 
 
 

1
2⁄

. (3) 

Beside even more, also spherical CCDs (𝛼𝐷 = √𝑘), face-centred CCDs (𝛼𝐷 =  1) and Box-Behnken 

designs (e.g., 𝛼𝐷 = √2 for 𝑘 = 3) are commonly applied satisfying different investigation intents.  

Since positioning of the star runs / axial points, the position of the (±1)-coded factorial points is 

decisive, the influence of significance levels on effect detection is also examined in the following. 

 

2.2.  Test Power and Statistical Interference 

 

With the conversion of experimentally observed effects by factor level change into an empirical model, 

it needs to be guaranteed that these are not subject to an effect, which is exclusively due to a (normally 

distributed) error of randomness. For this and the intention of this paper, a brief overview of the 

consideration of significance levels is given here. Therefore, hypothesis testing is used to detect the 

significance of an effect, which is derived by the putatively observed difference of mean values �̅� 

through the stochastic system response variable 𝑦 ~ 𝒩( �̅�, 𝜎2), supposedly existing in simultaneous 

coexistence with a random variance 𝜎2 for a respective combination of factor levels changes [2]. To 

this end, two complementary hypotheses (null hypothesis 𝐻0 and alternative hypothesis 𝐻1) are formed 

to evaluate an effect as existing or not existing by difference of the means after factor level (𝑥𝑖 =
−1,+1) adjustments: 

 𝐻0: �̅�𝑖,−1 = �̅�𝑖,+1; (4) 

 𝐻1: �̅�𝑖,−1 ≠ �̅�𝑖,+1. (5) 

With this approach, two wrong decisions may be likely due to chance: 𝐻0 is rejected although it is true 

(type-I-error); or 𝐻0 is not rejected although it is false (type-II-error) [2,8], see Figure 2. 

  

Figure 2: Statistical Interference and Test Power, cf. [2,8] 

 

The probabilities of these errors result in 𝛼 for the type-I and in 𝛽 for the type-II error, where the power 

of test is defined as the probability to identify an existing influence on the effect correctly by 

 Power =   1 − 𝛽. (6) 

The level of significance complementary to the error probability can thus be specified via 𝛼 for the 

effect evaluation, usually with 𝛼 = 0.05 or less [2,15]. However, in order to obtain an information on 

the significance of the result before the test is performed, the 𝑝-value and 𝑡-statistic is generally used. 

The 𝑝-value is the probability that the test statistic will adopt the value that is at least as extreme as the 

observed value of the statistic in case that 𝐻0 according to Equation (4) is true [2]. Accordingly, the 𝑝-

value is the probability of being wrong when 𝐻0 is rejected [9].  

In addition, if any number of parameters are relevant to the application, Analysis of Variance (ANOVA) 

and the 𝐹𝑘,𝑛−𝑘−1-distribution can be used, where 𝑝 = 1 − 𝑃(𝐹 > 𝐹𝑘,𝑛−𝑘−1) is derived from [2,8,11]. 
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A detailed description of this statistical analysis is outside the focus of this paper and well documented 

in [2,8,11,17]. Instead, for background on orthogonality deviations, an overview of the model building 

through regression analysis and aspects of orthogonality therein are described below. 

 

2.3.  Model Fitting of the Second-Order Response Surface  

 

In order to evaluate effects on the system response 𝑦 from the experimental observations as significant 

and to finally transfer them into a fit for the RSM, the regression coefficients 𝛽𝑖 need to be estimated to 

�̂�𝑖 from the effect observations. Among others, the Maximum-Likelihood Estimation (MLE) and the 

Method of Least Squares are suitable for this purpose [2]. Since, regardless of the shape of the surface 

fitted by the regression model, all regression models are linear as long as the regression parameters are 

linear, and therefore second-order models with interactions can also be described through this [17]. 

Conclusively, this also includes RSM with curvatures. 

Illustrating the above, exemplarily the quadratic function of an RSM with 𝑘 = 2 factors and interactions  

 𝑦 = 𝛽𝑜 + 𝛽1x1 + 𝛽2x2 + 𝛽11x1
2 + 𝛽22x2

2 + 𝛽12x1x2 + 𝜀 (7)  

may hold substitutes as stated in [11,17] for  

 x3 = x1
2, x4 = x2

2, x5 = x1x2 and 𝛽3 = 𝛽11, 𝛽4 = 𝛽22, 𝛽5 = 𝛽12.  

Dealing with 𝑛 > 𝑘 observations, then exemplarily the least-squares estimators �̂�𝑖 can be derived from 

multiple linear regression analysis via matrix notation of the system response through 

 y = Xβ + ε, (8)  

where    

 y = [

𝑦1

𝑦2

⋮
𝑦𝑛

], X = [

1 𝑥11    𝑥12 … 𝑥1𝑘

1 𝑥21    𝑥22 … 𝑥2𝑘

⋮   ⋮          ⋮        ⋮  
1 𝑥𝑛1    𝑥𝑛2 … 𝑥𝑛𝑘

], β = [

𝛽𝑜

𝛽1

⋮
𝛽𝑘

] and ε = [

𝜀1

𝜀1

⋮
𝜀𝑛

].    

Concluding, the vector of least-squares estimators β̂ is tried to be determined, so that the least-squares 

function 

 𝑆(β) = ∑𝜀𝑖
2 = ε′ε = (y − Xβ)′(y − Xβ)

𝑛

𝑖=1

 (9)  

with Equation (8) rearranged to ε is minimized, corresponding to  

 
∂𝑆

∂β
|
β̂

= −2X′y + 2X′Xβ̂ = 0. (10) 

Here the least-squares estimator of β is derived by 

 β̂ = (X′X)−1X′y (11) 

and supplemented in the fitted regression model with x′ = [1, 𝑥1, 𝑥2, … , 𝑥𝑘] 

 �̂� = x′β̂ = �̂�0 + ∑�̂�𝑗

𝑘

𝑗=1

𝑥𝑖𝑗  ,for 𝑖 ≠ 𝑗 and 𝑗 = 1,… , 𝑘. (12) 

Determining X′X as a (𝑘 + 1 × 𝑘 + 1) matrix, note that here diagonal elements are sums of squares of 

column elements of X, as off-diagonal elements are respective cross products. Corresponding the vector 

of fitted response values �̂�𝑖  to the observed system responses 𝑦𝑖  the (𝑛 × 𝑛)  hat-matrix H =
X(X′X)−1X′ mapping the vector of observed values into the vector of fitted values is obtained for 

 ŷ = Xβ̂ =  X(X′X)−1X′y =  Hy (13) 

Eventually, for the residual 𝑒𝑖  =  𝑦𝑖  – �̂�𝑖, the 𝑛 differences between the observations and the fit follows 

(cf. [17]) 

 e = y − ŷ = y − Xβ̂. (14) 

Analogously, the fit to a second-order model according to Equation (1) is given by [2,11] as follows 

 �̂� = �̂�0 + x′β̂ + x′Bx, (15) 
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where with consideration of re-substitution 

 𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑘

],  β̂ =

[
 
 
 
�̂�1

�̂�2

⋮
�̂�𝑘]

 
 
 

 and B =

[
 
 
 
�̂�11 �̂�12 2⁄

  �̂�22

 
  ⋯ �̂�1𝑘 2⁄

  ⋯ �̂�2𝑘 2⁄
      

sym.         
   ⋱    ⋮

 �̂�𝑘𝑘 ]
 
 
 

  

 

In this shape β̂ forms a (𝑘 × 1) first order regression coefficients vector, B a symmetric (𝑘 × 𝑘) matrix, 

containing quadratic coefficients (�̂�𝑖𝑖) on the main diagonal and mixed coefficients �̂�𝑖𝑗, 𝑖 ≠ 𝑗 as else. 

Following the idea of hypothesis testing and ANOVA from Section 2.2. considering 𝑝 parameters, the 

residual mean square with n-p degrees of freedom results through Equation (14) in an unbiased 

estimator of the unknown model-dependent variance 𝜎2 as follows [17]: 

 𝜎2 ≈ �̂�2 =
y′y−β̂′X′𝑦

𝑛−𝑝
=

e′e

𝑛−𝑝
.  (16) 

Considering the matrix M = (X′X), the property of the variance of  β̂ can be determined [11,17] by the 

covariance matrix  

 𝑉𝑎𝑟(β̂) = 𝜎2M−1, (17) 

resulting in the variance of �̂�𝑗 through 𝜎2𝑀𝑗𝑗
−1 and the covariance between �̂�𝑖 and �̂�𝑗 in 𝜎2𝑀𝑖𝑗

−1. 

If last based on M also the confidence interval around an estimated value of the system response �̂�(x) 

in the overall analysis process to RSM is to be described as stated in [11,17,18], this is called prediction 

variance and describes how well ones predicts with the model: 

 𝑃𝑉(x) = 𝑉𝑎𝑟(�̂�(x)) =  𝜎2x(𝑚)′ M−1x(𝑚)′ . (18) 

Here, (𝑚) in x(𝑚) reflects the obtained model, where exemplarily a first-order model defines x(1)′ =
(1, 𝑥1, … , 𝑥𝑘). Scaling the 𝑃𝑉(x) with a per observation basis by 𝑁/𝜎2, the scaled prediction variance 

is derived by 

 𝑆𝑃𝑉(x) =
𝑁 𝑉𝑎𝑟(�̂�(x))

𝜎2
=  𝑁x(𝑚)′ M−1x(𝑚)′ = 1 + ∑𝑥𝑖

2.

𝑘

𝑖=1

 (19) 

The scaled prediction variance is constant on spheres, therefore designs with same 𝑁 𝑉𝑎𝑟(�̂�(x))/𝜎2 

are rotatable.  

From this understanding of the model construction by (multiple) linear regression shown within this 

Section, the following relation should be clear: if off-diagonal entries of X′X go towards zero and the 

entries on the main diagonal are as large as possible, the main diagonal of M−1 and thus an explained 

part of the model variance 𝑉𝑎𝑟(β̂)/𝜎2 as stated in Equation (17) is minimized [17].  

Thus, the test plan property orthogonality can be outlined in the following. 

 

2.4.  CCD Orthogonality 

 

As delineated in the previous Section 2.3. and from a model fitting point of view, an orthogonal test 

design minimizes 𝑉𝑎𝑟(β̂) and therefore enhances model prediction accuracy [11,17]. This is based on 

linear independency of input parameters with 𝑥𝑖 = ±1 for all levels in the factorial test design and 𝑖 =
 1, . . . , 𝑘. Therefore, an orthogonal test design features a matrix M = (X′X) which consists of a diagonal 

matrix, where the columns of X are apparently also mutually orthogonal.  

The CCD becomes orthogonal as in addition the ratio between the amount of design points and leverage 

value (𝑥𝑖 = ±𝛼𝐷) is satisfied according to Equation (3), cf. Figure 1 [17]. For this, in any case, the 

transformations by Equation (7) must be considered – at least according to this procedure, since with 

the quadratic terms X′X  is otherwise not composable. Because of this reason and with just this 

particularity about leverage values 𝛼𝐷  of CCDs, mainly the deviations of orthogonality and thus 

sphericity by changing these values will be discussed in the context of this paper. 
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Thereby it is to be understood, that in second-order models both orthogonality, despite still elemental, 

and the coefficient estimation take subordinate roles in relation to the fitted model, as mainly dominated 

by the importance of the scaled prediction variance 𝑁 𝑉𝑎𝑟(�̂�(x))/𝜎2, cf. Equation (19), and derived 

design characteristics (𝛼𝐷, cf. Section 2.1.). According to the analysis of the response surface design 

procedure [11], the goodness of fit based on the estimate to the model response �̂�(𝑥) here is more 

important than the exact determination of the parameter ratios in the model. However, since both as 

consequences rely on orthogonality described here, control procedures for evaluation of the same are 

important as shown below. This motivates the first step in assessing generic effects through 

orthogonality deviations, as presented in this paper. 
 

2.5.  Controlling Orthogonality 

 

In order to use orthogonality as a criterion derived from the best test design, it is useful to measure and 

control this size quantitatively and qualitatively. Several criteria can be found in literature [2,8,9]. 

Besides a simple evaluation of the design matrix X and X′X as described in Section 2.4., respectively 

the parameter matrix and matrix column orthogonality determined as existing or not existing, the 

following methods are to be mentioned: correlation matrix 𝐶𝑜𝑟𝑟(X)  [17], 𝐴 -Optimality [18],  𝐷 -

Optimality [12,19], 𝐺 -Optimality [12]. More specifically, the correlation matrix and 𝐴 -optimality 

evaluate the model estimates over correlations, 𝐷-optimality evaluates the estimates over variances and 

covariances, and 𝐺-optimality evaluates the scaled prediction variance of the estimated model, each 

with associated criteria. For 𝑅 = 𝐶𝑜𝑟𝑟(X) = X′X = [𝜌𝑖𝑗], 

 𝐴2 = ∑𝜌𝑖𝑗
2

𝑖<𝑗

 (20) 

measures as a criterium for 𝐴-Optimality the non-orthogonality while 𝐴2 = 0 when orthogonality is 

present. Knowing well that beyond that other criteria are available, not all of them are applicable on the 

basis of the star point values in CCDs. Nevertheless, a measure of how much a test design deviates from 

orthogonality can be determined with the aid of these criteria. 

 

3.  ORTHOGONALITY DEVIATIONS OF CCDS 
 

With the fundamentals shown in Sections 2.3. - 2.5. for the mathematical construct of orthogonality in 

test designs, as well as the outlined advantages and control criteria for it, the determining principles are 

thus explained. Now, with the help of an evaluation for the statistical significance of recognized 

coefficients and effects in the estimated model according to Section 2.2., a far more palpable evaluation 

variable for deviations in orthogonality shall be introduced.  
Building on the work of [10], which already presents first basic results for full factorial experimental 

designs, this initial foundation is extended step by step to RSMs using the example of CCDs in the 

context of this paper. For this purpose, an approach with relevant and realistic orthogonality deviations 

in star runs as well as the implementation of a second-order design model will be described. Therefore, 

the model described below is used to consider the probability of actually detecting an existing effect in 

coefficient determination correctly, in other words, the power as a performance measure. 

 

3.1.  Default System Model Setup 

 

To illustrate the effects of orthogonality deviations in the use case of CCDs within RSMs, a two-

dimensional model is implemented in the presented study: a CCD with a quadratic response surface via 

two factors 𝑥1 and 𝑥2. Consequently, this results in a second-order model as stated in Equation (7). 

In order to create a comparable database and for simplicity, a given default system model is attributed 

with an equivalent pre-specified value for the regression coefficients for each factor, cf. Figure 4. For 

both the prediction (or model) error 𝜀  and the estimation of the coefficient values (effects) 𝛽1,2  a 

normally distributed error is assumed, which can be defined by a given standard deviation 𝜎 = 0.1, cf. 

Equation (9) and Equation (16). In the context of this paper, this definition is initially considered as a 

first initial setting point, which is subject to variation in further investigations. Consequently, this results 
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in the model composition according to Table 1. Eventually, this model is investigated in the simulation 

described in Section 3.3. (also see Figure 4).  

 

Table 1: Coefficients and Standard Deviation for Model Setup 

 

3.2.  Orthogonality Deviations 

 

For a deliberate implementation of deviations from orthogonality for an experimental design for the 

investigation of generic effects, variants for the same are considered, which can be derived from 

reasonable and practicable contexts, cf. also [10]. Thus, on the one hand, these assumptions are well 

realizable by simulation, but they also have a direct relation to practical problems. 

With respect to CCDs studied here, these contexts are first outlined in the course of this work and 

understood to be generally plausible in real-world test scenarios based on their foundation, as they may 

generally arise for reasons of precision and/or time constraints, as well as monetary and/or physical 

capacity limitations in the execution of the test design. These may include scenarios where a single test 

run, particularly a critical factor level combination at the star point, 

• is not physically or mechanically feasible, due to e.g., time and effort or ambient testing 

conditions;  

• is just realisable at a decreased level of the original the axial run definition, therefore ±𝛼𝐷 

shrinks; 

• or a factor stage combination is encountered where a pure axial run can no longer be performed 

due to displacements, scatter or dependencies with another factor (e.g., factor correlation). 

 

Accordingly, the following deviations from orthogonality for generic effects are considered in this 

paper, while they are intended as first steps for further studies: 

 

• One star run (originally defined by 0,±𝛼𝐷) is not set to the predefined axial distance: |𝛼𝐷| 
might accidentally or deliberately not be set correctly (cf. Figure 3: I);  

• A star point is no longer performed as a pure axial run and obtains a second value unequal to 0 

with respect to the second factor (cf. Figure 3: II); 

• The star runs through 𝛼𝐷  undergo a given scattering in the setting values, e.g., based on 

systematic variance of the operating hardware capacities in the control, regulation and sensor 

technology (cf. Figure 3: III); 

• One star run through 𝛼𝐷 is entirely omitted in the test design (cf. Figure 3: IV). 

 

3.3.  Study Approach 

 

For the investigation of generic effects of orthogonality deviations summarized in Section 3.2., a 

numerical simulation model is chosen for this work with the implementation of a Monte Carlo (MC) 

performing 100.000 repetitions, cf. Figure 4. According to Section 3.1., the second order regression 

model is used to capture generic effects and impacts. Effects and coefficients considered in this model 

are taken over with normalized factor change around the average of the system response as defined in 

Table 1 with an originally given system model. Finally, deviations of the presented cases I – IV as stated 

in Figure 3 are implemented in such a way that for the design matrix X contains   

• a star run taking 𝛼𝐷 = 1 (case I-1), 𝛼𝐷 = 0.8 ∙ 𝛼𝐷 (case I-2) or 𝛼𝐷 = 1.2 ∙ 𝛼𝐷 (case I-3); 

• the combined factor at the star run 𝛼𝐷, adopting 𝑥1 = 0.1 (case II-1) or 𝑥1 = 1 (case II-2) 

causing correlation; 

• star runs 𝛼𝐷 equally scattering each over their original value within a 10 % scatter region 

(corresponding to case III); and 

• an omitted star run (corresponding to case IV). 

 

Model order type 𝜷𝒐 𝜷𝟏 𝜷𝟐 𝜷𝟏𝟏 𝜷𝟐𝟐 𝜷𝟏𝟐 𝝈 

quadratic 30 0.1 0.1 0.1 0.1 0.1 0.1 
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To map a statistical basis of the regression error, each experimental point is replicated three times (if 

present). For each deviation, the model approximation is then formed using the regression analysis 

presented above in Section 2.3.  

 

Figure 3: Implementation of orthogonality deviations regarding axial runs (star points): I) 

varying over axial distance in one case; II) varying through factor correlation in one case; III) 

randomly scattered over all cases; IV) omitted in one case. 

 

The resulting means and coefficients are finally evaluated with respect to their power at a significance 

level of 𝛼 = 0.05 . The subsequent comparison ultimately provides information about supposed 

tendencies and optimization possibilities. The simulation process is shown in Figure 4. 

 
Figure 4: Simulation Study Approach: Flowchart

 

3.4. Results 

 

In order to evaluate generic effects of the orthogonality deviations in CCDs as described in Section 3.2 

and along the simulation approach from Section 3.3., in a first attempt the following measures are 

determined and compared for the estimated models: First, the 𝐴2-criterion is utilized to measure non-

orthogonality in a dimensionless way and stated in Table 2. Second, also the power of the estimated 

model coefficients is recorded in Table 2 measuring the chance of correctly capturing them. Last, the 

percentage deviations of the coefficient estimates are listed in Table 3 to finally show the extent of 

deviation of the estimated model from the default model depending on the overlaid errors and 

randomness. 

According to the results in Table 2, the estimated coefficient 𝛽𝑜 as the mean value of the system model 

is always found with a probability equivalent to certainty in all cases for the second-order model. 

With regard to the coefficients 𝛽1 and 𝛽2 as linear fractions of the system model, an axial shift of the 

star point relative to 𝑥2 has a slightly negative effect on the power of the factor-associated coefficient 

𝛽2 = 67.2 % compared with 𝛽1 (68.9 %), if the star run is face-centred (I-1). Compared with this, a 
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deviation in not fully reached distance above the face (I-2) results in an improved power for 𝛽2 with 

similar power for 𝛽1, an oversized 𝛼𝐷 (I-3) reduces this power again. Also, a transversal shift with 

direction 𝑥1 to (0.1 and 1.0, 𝛼𝐷) reduces the power of the factor-associated coefficient 𝛽2 compared to 

the orthogonal case (II-1), but shows that 𝛽1 has slightly improved power with larger shift (II-2). If the 

settings of all star points are given a 10 % uniformly distributed scatter (III), the power of the linear 

coefficients is reduced by up to 2.4 percentage points. Last, according to the simulation results gathered 

here, omitting the star point has a comparable effect on the power of the linear regression coefficient 

𝛽1 as within the cases described before but causes a power drop for 𝛽2 to 61.0 %. 

With regard to the quadratic coefficients it follows, that the coefficient 𝛽11 is recorded with a power 

loss of 3 to 4 percentage points, cf. Table 2 for 𝛽11 = 72.1 % in the orthogonal case against all other 

cases. Note that the factor star point of this quadratic effect is not manipulated by simulation, except in 

case (III). Orthogonality deviations through the single star point of 𝑥2 obviously improve the power of 

𝛽22 for a star point value between face-centered and alpha (73.2 %) and holds within random scatter 

(72.0 %). 

 

Table 2: Results for Orthogonality Deviations through Star Runs in CCDs for Second-Order 

Models: 𝑨𝟐 and Coefficient Power 

 

Table 3: Results for Orthogonality Deviations through Star Runs in CCDs for Second-Order 

Models: Coefficient Estimation Error, grey values indicate relative errors greater than 5 % 

 

The interaction effect (𝛽12), assuming only 62.1 % power in the orthogonal case while considering the 

global scattering system error in the simulation, deteriorates in its power in every case, but least in the 

case of the strongest opportunity of factor correlation (II-2), which is also captured most strongly in 

relative terms by the implemented 𝐴2-criterion (= 0.352). A relatively lower power for 𝛽12 compared to 

the previously mentioned coefficients can be explained by the axially oriented experimental setup in 

the CCD. As expected, the 𝐴2-criterion, which uses the trace of the correlation matrix according to 

Case Star Run  𝐴2 
Power [%] 

𝛽𝑜 𝛽1 𝛽2 𝛽11 𝛽22 𝛽12 

 
Orth. (0, 𝛼𝐷) 0 100.0 72.1 71.9 72.1 72.3 62.1 

 

I-1 (0,1) 0.04 100.0 68.9 67.2 69.1 65.1 58.3 

I-2 (0, 0.8 ∙ 𝛼𝐷) 0.04 100.0 69.1 70.0 69.1 73.2 57.9 

I-3 (0,1.2 ∙ 𝛼𝐷) 0.07 100.0 69.0 66.2 69.1 63.5 58.0 

 

II-1 (0.1, 𝛼𝐷) 0.01 100.0 68.9 69.1 68.8 68.7 58.3 

II-2 (1, 𝛼𝐷) 0.35 100.0 69.5 66.7 68.1 66.7 60.8 

 
III (0, 𝛼𝐷) ± 10 % 0.01 100.0 68.7 69.7 68.8 72.0 58.1 

 
IV (NaN,NaN) NaN 100.0 69.1 61.0 68.1 60.3 57.8 

Case Star Run 
Coefficient Estimation Amount Error [%] 

𝛽𝑜 𝛽1 𝛽2 𝛽11 𝛽22 𝛽12 

 
Orth. (0, 𝛼𝐷) 0.00 0.74 -0.47 0.77 0.34 0.33 

 

I-1 (0,1) -0.03 -2.88 1.55 -3.24 1.24 -8.60 

I-2 (0, 0.8 ∙ 𝛼𝐷) 0.00 0.23 4.03 2.20 2.19 6.19 

I-3 (0,1.2 ∙ 𝛼𝐷) 0.01 -2.97 0.05 -3.19 4.63 4.98 

 

II-1 (0.1, 𝛼𝐷) 0.00 -0.09 5.50 5.05 1.93 1.32 

II-2 (1, 𝛼𝐷) 0.00 -1.01 0.82 -0.46 7.71 3.98 

 
III (0, 𝛼𝐷) ± 10 % 0.00 -1.53 2.77 -2.95 1.61 -1.65 

 
IV (NaN,NaN) -0.01 3.30 -0.89 -8.69 -0.20 -5.75 
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Equation (20), becomes noticeably larger exclusively by increasing correlation of the star point with a 

second factor (II-2) in comparison to all other cases. 

Eventually, for a general assessment of the orthogonality deviations, the relative deviations of the 

estimated values for the model coefficients are compared with the default model coefficients. Table 3 

shows that the estimated value of the coefficient 𝛽2 , which is axially affected by the star point 

manipulation, deviates strongly (5.50 %) when the star point is slightly correlated with the second factor 

(II-1). The same holds for the squared coefficient 𝛽11 (5.05 %) as well as when the 𝑥2 star point above 

(IV) is not performed or observed (-8.69 %).  

The transversal shift of the considered 𝑥2 star point in case II-2 also results in a strongly deviating 

estimated value (7.71 %) for the associated second-order coefficient. The interaction value varies over 

all deviation manipulations by up to -8.60 % – least, on the other hand, if the star points are subject to 

scatter (-1.65 %) or if one correlates only slightly with the second factor (1.32 %). 

 

3.5. General Findings 

 

If the results briefly summarized in section 3.4. are to be subsumed, the following observations can first 

be drawn in general terms from the simulation results that have been carried out and some of which are 

presented in this paper: 

• Generic effects of orthogonality deviations are detected on a factor-specific basis in the 

corresponding coefficient powers and estimates; 

• The factor-dependent power deviation for the coefficients shows a relation to the corresponding 

orthogonality deviations (cf. Table 2): the axial value of the star directly determines the power 

and estimation quality of its coefficient; increasing correlation with 𝑥1 increases power and 

estimation quality of the partner factor and vice versa; 

• Star run scattering (±10 %) keeps the power and quality of model estimation within manageable 

proportions (max power loss: -4.0 %, max estimate error: -2.95 %); 

• The 𝐴2-criterion has only limited potential as a suitable generic tool for the dimensionless 

measurement of correlation effects due to deliberately placed orthogonality deviations within 

the second-order models, as long as factor correlations are not directly implemented within; 

• The simulation setup (default model calculation validated with commercial software Minitab) 

is appropriate in its structure; 

• The results are suitable as a basis for calculating a tradeoff of exemplary 5 % estimation error 

and 5 % power loss versus deviation in orthogonal experimental design settings, which can be 

used deliberately or unconsciously for the improvement of test design efficiency (cf. Figure 5). 

 
Figure 5: Power of Model Coefficients Compared to a Tolerance Value of Error: for the 

Demonstrated Cases, I-1, I-3, II-2 and IV cause a power loss > |𝟓| % for linear and quadratic 

coefficients of the Manipulated Factor 𝒙𝟐. 

 

4.  CONCLUSION 
 

In the context of this paper, the tools for hypothesis testing are introduced in addition to the explanation 

of the statistical background of an experimental design within DoE, the subsequent model building via 

regression analysis and the use of control criteria with respect to orthogonality. Besides the meaning of 

orthogonality described at the beginning for CCDs, possible deviations from the same are presented 

here, with the intention of identifying effects and deriving generic findings within second-order models. 
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Eventually, the statistical significance was taken from the fundamentals in order to use the power of 

model coefficients, i.e. the probability of actually detecting significant effects by means of test design 

orthogonality deviations, as a measure besides a calculated estimation error for model coefficients. To 

implement this investigation numerically, an MC is used. 

Even though with this first approach presented within this paper a simple model setup with primitive 

orthogonality deviations through star points was investigated first, results and insights gained from this 

already serve as a great foundation for findings. This allows insight into opportunities to tune further 

test designs in terms of effort and cost to cogently compare this against model performance. 

Accordingly, further attempts are intended to consider more comprehensive orthogonality deviation 

variations and combinations, to combine them with further power levels, and to investigate model 

variations with further effect sizes and error terms in more detail. 
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