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Abstract: Unsupervised learning is a type of machine learning that deals with analyzing provided data 
to draw its patterns without pre-expected results. The patterns are drawn by clustering the data. In this 
paper, the Gaussian Mixture Model (GMM) is chosen as the clustering method, and a parameter-study 
is performed. This parameter study includes pre-processing the data using standardization and 
normalization techniques, along with tuning GMM parameters. This method undergoes a parameter 
analysis, to find the set of parameters that gives out the clusters that are most compatible with the 
manufacturer’s set criteria, in this case, roughness values Ra. Moreover, the data is clustered in an 
unsupervised approach and upon studying a wide range of parameter possibilities, the algorithm is 
expected to provide an output fitting a certain prescribed standard (Ra), mimicking therefore a 
supervised approach without having to train the data, but by rather studying the patterns. The paper 
briefly discusses the theory behind the methods used based on published research, but the main scope 
of the paper is the feasibility of the method. 
 
 
1.  INTRODUCTION 
 
The cutlery industry is well established yet continuously adapting to modern requirements. The products 
are being continuously optimized, improved and refined. Such changes are however context-based. 
Moreover, the products are manufactured with the focus of them being individualized, customized 
solutions based on the expected usage. Consequently, changing any of the manufacturing process 
parameters or the materials changes the surface topography, which is the most important quality for 
these products. 
 
Manufacturing processes of fine grinded surfaces – cutlery, are complex and consist of more than 50 
steps [1]. They are controlled by many production parameters, such as the feed rate, cutting speed, 
grinding disc, cutting fluid, contact force and process time. The surface topography is then measured 
by the following target parameters: gloss, roughness, and colour. To achieve the sought-for surface, a 
compromise needs to be reached. This compromise depends on which characteristic of the product is 
more important for the specific task or product. 
 
For analysing the quality of the product, and hence of the accompanying optimization technique, 
unsupervised learning methods are used in this study. The application of the Gaussian Mixture Model 
(GMM) algorithm for the unsupervised analysis of surface topographies is proposed as a solution.   
 
The solution discussed in this paper covers the following aspects: firstly, an analysis of a real data set 
out of the cutting industry and comparison of the achieved results to the company targets. Secondly, the 
company results are set using the specification limits (upper and lower) and for that, the ideal products 
are defined from the manufacturer point of view. Finally, a comprehensive analysis of the parameters 
of the algorithm is performed. This is achieved by studying and setting the proper set of parameters 
within the algorithm.  
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This paper is divided into two main parts, the theoretical and the practical parts. The theoretical part 
acts as transition between the research question and the practical part, where the question is answered. 
It consists of general background information of machine learning and a thorough explanation of the 
GMM algorithm. The practical framework consists of the parametric analysis of the algorithm, an 
explanation of the data, a display, and a discussion of the obtained results.  
 
2.  Literature Review 
 
GMM is an area of active research.  This is well founded by the amount of the literature present in its 
regard. As previously mentioned, this paper uses gaussian mixture model as the unsupervised learning 
method to analyse the surface topographies. Numerous literature discuss unsupervised machine learning 
clustering using GMM, the theory behind it and how to program it. Andriyanov, Tashlinsky, 
and  Dementiev in their article [2] discuss gaussian models clustering in detail. A further example is 
McLachlan and Rathnayake’s article discussing the number of components in GMM [3]. 
 
Due to its “effectiveness and efficiency”, GMM is researched a lot [4]. Many relevant literature however 
focuses on the mathematical aspect of GMM. While it is justified that the focus of researchers be 
concentrated on this aspect due to its complexity and huge potential, it still serves as the preliminary 
steps that saturate the theory.   
 
Moreover, literature here divides into more than one aspect, mainly explaining the mathematics behind 
GMM, Expectation-Maximization (EM) iterations, and developing the current GMM method. The 
developments include for example aspects where the current algorithm is not fully explored, such as 
using it with incomplete data, as discussed by Zhang et al. in their article [4]. Another aspect is the 
dimensional representation of data sets, as explored by Shrivastava and Tsui in their article [5]. Liu, Cai 
and He also propose an improved gaussian mixture model documented in their article [6]. They 
introduce a GMM approach with local consistency. Those research papers are some of many examples 
of papers investigating areas where GMM could be adapted. All of this occurs by applying the 
algorithms and the improved versions on already-present data, to study them and the mathematics 
behind them rather than the data itself, hence focusing on theory and understanding rather than 
application.  
 
Several literature take this however, a necessary step further. A focus is put instead on the study of 
experimentally acquired data, such as that done by Selwyn and Difranco in their study [7]. Yussof et 
al., and Ye et al.’s papers to name a few, are also article-archetypes of clustering self-acquired data 
using gaussian mixture models in various applications; biological, transportation and traffic, as well as 
telecommunications respectively [8, 9].  
 
All such articles draw the same conclusion, that GMM is a well-fit clustering-method for analyzing 
their data. This explores the applicability of GMM, it however stays within the premises of explaining 
and analyzing a situation rather than solving a problem.  
 
Nevertheless, there exist multiple pieces of literature that serve that purpose. Within this scope comes 
condition monitoring using GMM. Zorriassatine et al. in their case study [10] and Chauhan and 
Surgenor’s [11] cover condition monitoring by fault detection.  
 
Additionally, condition monitoring is also covered in many fields. Yu covers it in the field of Machine 
Tools [12], Qui et al. in the field of Aircraft by studying the damage propagation [13], and Shen et al. 
in the field of Automotive Engines [14] to name a few. Yusoff et al. in their article [15] and Heyns, 
Heyns and De Villiers [16] also discuss condition monitoring using GMM in their respective fields, 
namely: turbomachinery and the monitoring of a gearbox.  
 

https://link.springer.com/chapter/10.1007/978-3-030-55187-2_34#auth-Nikita-Andriyanov
https://link.springer.com/chapter/10.1007/978-3-030-55187-2_34#auth-Alexander-Tashlinsky
https://link.springer.com/chapter/10.1007/978-3-030-55187-2_34#auth-Vitaly-Dementiev
https://www.researchgate.net/profile/F-Zorriassatine
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However scarcely in any literature is it researched on surface topographies using GMM. This paper 
serves as to abridge the gap present in the practical aspect by enriching the current literature concerning 
feasibility of unsupervised machine learning in condition monitoring. Moreover, this paper does not 
add to the present literature in quantity by multiplying the scarce practical literature, but by a introducing 
a new perspective with which unsupervised learning can be approached as will be shown later in the 
paper. Additionally, the methods used in this paper are also unprecedented within the contexts they are 
used in. The generic character of this research allows it to be applied to other sets of extracted data of 
fine grinded surfaces.   
 
3.  Theoretical Background 
 
In this chapter, the theoretical background needed for the understanding of the application of the 
algorithms as well as their parametrization is briefly described.  
 
3.1.  General theory of machine learning 
 
Machine learning consists of three main types along with their derivatives or combinations. Mainly, 
supervised, unsupervised, and reinforcement learning. Derivatives include semi-supervised, self-
supervised, and multi-instance learning techniques.  
 
The main difference between the main machine learning types lies within which data they can be used 
on and what is the expected outcome of the process. Supervised machine learning is applied on labelled 
data where the result is predetermined, and the algorithms work on the data to give an expected output. 
Algorithms therefore are continuously trained, tested, and corrected until an acceptable level of 
accuracy is reached.  
 
Unsupervised learning is applied on unlabelled data, where the output is unknown, and the algorithm is 
expected to draw conclusions from the data based on patterns between the datapoints and result in an 
output. This is therefore reliant on how the algorithm is built/programmed and on how it processes the 
data points. This however is not random. Supervised and unsupervised machine learning types 
distinguish and recognize patterns between datapoints in specific ways. Supervised machine learning 
methods determine the output by classification and regression. Unsupervised machine learning types 
can on the other hand determine outputs by clustering or dimension reduction. Clustering is nonetheless 
the more common method.  
 
The following methods are the most prevalent in clustering: exclusive-distance based, overlapping, 
hierarchical-based on similarities or differences, density-based, association and probabilistic. Each of 
these methods can be applied using various algorithms.  
 
Each algorithm has a specific parameter-set, method and code based on the expected result. The 
algorithms are also under continuous research, testing, and improvements [17, 18]. 
 
3.2.  Gaussian Mixture Model 
 
The gaussian mixture model is an unsupervised machine learning model based on a probabilistic 
approach. It clusters the data by associating each data point with a gaussian distribution curve. 
Moreover, this model finds out the probability of each data point to correspond to each of the clusters, 
and the gaussian with the highest probability is the cluster that the datapoint belongs to. 
The model samples the data as a mixture of gaussians. This means that the data is thought to be fully 
explained by a set of multiple gaussian graphs, a mixture that is. The gaussians here are latent variables, 
they are unknown and are to be found.  
 
Modelling large sets of data using GMM is plausible because of the central limit theorem. This theorem 
states that the larger the number of data, population, or points, the more it mimics a gaussian 
distribution.  
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The gaussian probability distribution is described using two main parameters, the mean and the 
variance. The mean describes the centre of the distribution (focus), where most of the data are located, 
for a standard non-skewed gaussian while the variance describes the spread of the data away from the 
mean (scatter).  
 
To cluster multivariate data, a multivariate gaussian distribution is needed. A multivariate gaussian is 
however specified by a vector of mean and a vector of variance corresponding to the number of 
variables. A multivariate variance is called covariance, and it is a matrix. 
 
As stated, the gaussians are described by their parameters, and the data in the gaussian mixture model 
are specified by the latent gaussians. This means that obtaining which gaussians cluster which data 
points can be done by either finding the parameters mean and covariance, or by finding the related latent 
gaussians. Thus, either one or the other needs to be given. However, for this unsupervised machine 
learning algorithm, the only present information is the data. For this purpose, the gaussian mixture 
model uses an expectation-maximization method.  
 
EM is an iterative method used to find the parameters and consequently the corresponding gaussians. 
Additionally, it finds each of the probabilities of each of the datapoints to each of the gaussians and 
assigns them accordingly. This iteration method always converges, which is a major advantage of the 
algorithm.  
 
The iteration method EM consists of two steps: expectation and maximization. Both steps make up one 
iteration. Initially in the E-step, the algorithm allocates random mean and covariance values for each of 
the multivariate gaussians, to find a multivariate gaussian density. The mean, covariance, and weights 
are fixed while the probability of each datapoint belonging to each data point is found. The number of 
gaussians is predetermined as the number of components. This is done using the following equation 
[19]: 
 

𝑝𝑝𝑘𝑘(𝑥𝑥 ∣ 𝜃𝜃𝑘𝑘) = 1
(2𝜋𝜋)𝑑𝑑/2|Σ𝑘𝑘|1/2 𝑒𝑒

−12(𝑥𝑥−𝜇𝜇𝑘𝑘)𝑡𝑡Σ𝑘𝑘
−1(𝑥𝑥−𝜇𝜇𝑘𝑘)   (1) 

 
𝜃𝜃𝑘𝑘 = {𝜇𝜇𝑘𝑘 ,Σ𝑘𝑘}    (2) 

 
Where 𝜇𝜇𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎 Σ𝑘𝑘 are the mean and covariance respectively, k is the number of components and x is 
the data point.   
 
In the M-step, the weights, mean, and covariance parameters are updated using the following equations 
while the probability is fixed. The updated values take account of the weighted contributions of the 
datapoints from the previous step [20]. 

𝜆𝜆𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑘𝑘
𝑁𝑁

   (3) 

𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑁𝑁𝑘𝑘
∑  𝑁𝑁
𝑛𝑛=1 𝑤𝑤𝑛𝑛𝑘𝑘 ⋅ 𝑥𝑥𝑛𝑛    (4) 

Σ𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑁𝑁𝑘𝑘
∑  𝑁𝑁
𝑛𝑛=1 𝑤𝑤𝑛𝑛𝑘𝑘 ⋅ (𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘 )(𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘 )𝑇𝑇  (5) 

 
Where 𝑤𝑤𝑛𝑛𝑘𝑘 is weight of the data point, N is the total number of datapoints, 𝑁𝑁𝑘𝑘 is the sum of the 
weights for the kth cluster and 𝜆𝜆𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛is the updated mixture weight.  
 
The GMM uses the EM method to fit and predict the labels from the data. It fits the data as many times 
as stated by the number of initializations. Number of maximum iterations determines the number of 
times the EM steps iterate within one run of number of initializations. The model keeps iterating till 
either the number of maximum iterations or a stopping criterion is reached. If the change of the 
likelihood function is less than the tolerance, the iterations stop. [20] 
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4.  Implementation and parametrization of the algorithm 
 
The practical aspect of the paper, where the GMM is applied on the set of data described in the following 
section, consists of two main objectives. Mainly, a comprehensive and structured testing of various 
parameter setups to find the best parameters and a quantitative comparison of the achieved results. 
 
4.1.  Data sources / experimental rig including feature extraction 
 
Three types of knives were provided by the manufacturer with different surface-topographies. The data 
used is therefore taken from a variety of cutlery samples and divides into two main parts, mechanical 
and optical. The former consists of color, roughness, and gloss values. Optical values on the other hand 
consist of a variety of line and optical measurements analyzed with the help of computer vision. Only 
a part of the surface is measured and clearly specified. As a variable control, all pictures are cropped in 
the same measurements and the reference part of the cutlery is consequently identified. [21] 
 

Fig. 1. Knife-image taken by the camera [21] 

 
 
The optical values are data collected about the knives to define their current state. The mechanical 
values are on the other hand considered as target values, with which the final surface topography and 
hence the characteristics are defined. The optical data is therefore intended to be eventually compared 
to the mechanical data to check for possible compatibility. 
 
The collected data on which the methods are applied is multivariate, with 42 variables (features), 
structured, numerical and is taken from the surfaces of the three knife-types. Of the three target-variable-
categories, the one of most interest in this study is roughness represented by the Ra value. These are 
calculated for each knife using the following equation [22]: 
 

𝑅𝑅a = (1/𝐿𝐿m)∫  𝑥𝑥=𝐿𝐿m
𝑥𝑥=0 |𝑦𝑦|d𝑥𝑥   (6) 

 
Where 𝐿𝐿m is the total scanned length in the x direction. 
 
4.2.  Numerical setup in detail 
 
For the purpose of the study, the optical data is first pre-processed. This is done using two 
standardization techniques, one normalization technique and a combination of those. The order of 
combining is also varied, yielding seven pre-processed mechanical data combinations and one is left 
without pre-processing. Standardization is rescaling the distribution of the values to change the mean 
to 0 and the standard deviation to 1. It is done by subtracting the mean and dividing by the standard 
deviation. While the two normalization techniques are the MinMax and the normalizer functions from 
the Sklearn library. They rescale the data to a range between 1 and 0. [23, 24] 

For the covariance parameter, there are four types that this algorithm uses. These types are “full”, “tied”, 
“diag” and “spherical”. They dictate the shape of the clusters and are specified by their matrices, 
consisting of standard deviations and their correlations. For the covariance type “spherical”, the 
standard deviations on the diagonal are equal while the rest is zeros, showing no correlation between 
the variables. This spread has one variance. This gives therefore spherical clusters of the same shape 
but different sizes. In the covariance matrix of type “diag” the standard deviations on the diagonal vary 
while the rest of the matrix is also zero. This gives diagonal gaussians of different sizes. Type “Full” 
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can on the other hand take any of the shapes and has therefore varying standard deviations and non-
zero values on the rest of the matrix, giving varying relationships. The gaussians here are of different 
shapes and sizes. The type “tied” ensures all gaussians take the same shape and standard deviation, 
giving therefore equal clusters in shape and size. [25] 
 
The pre-processed data can then be used by the GMM algorithm. The parameter lists are initially set. 
The following parameters are tuned: the covariance types, number of initializations, number of 
iterations and tolerances. Number of clusters or components is set to three. For the covariance types, all 
the possible types are chosen. For number of initializations and iterations four values are set, namely: 
100, 200, 500 and a 1000. These are chosen to cover a wide range to check the trends they create and 
study which tendencies they tend to follow. For tolerances two values are chosen, 0.01, 0.0001. Based 
on multiple runs of the algorithm on several different pieces of the data using a variety of tolerances 
ranging from 0.01 till 0.00001 it was determined that those are sufficient. Moreover, the efficiency 
values with tolerances of 0.0001 and 0.00001 yielded a discrepancy of around 1% and same happened 
with tolerances of values 0.01 and 0.001. for this reason, only one of each of the two sets were chosen, 
and the higher the tolerance value the faster the convergence occurs, which saves the computational 
effort and at the end the time needed for the calculations.   
 
All the parameter-combinations are run by the algorithm. Each set of parameters is run through the 
algorithm and then fitted to result in an array of 0, 1 or 2 corresponding to which cluster each data point 
belongs. The target variable of interest in this paper as previously mentioned is the roughness value 
classified in three classes. This is chosen because of the manufacturer set criteria. The manufacturer 
provided a set of roughness values forming an upper and a lower limit. Values of roughness not within 
this range are considered from the manufacturer’s point of view of no use and are therefore avoided in 
the production of the knives. The clustered data are consequently set to be compared to this set with the 
upper and lower limit. Because of this comparison, the number of clusters is chosen to be equal to the 
number of classes corresponding to the roughness values set by the manufacturer. 
 
The clusters’ order needs to therefore comply with roughness order. As the GMM algorithm labels 
clusters arbitrarily, yet consistently nonetheless, the order of the clusters may need to be redone. This 
is done by renaming the clusters. Renaming the clusters occurs on basis of the roughness values present 
in each of the clusters. Moreover, the mean of the roughness values corresponding to each cluster is 
calculated. The clusters are then renamed in ascending order based on the roughness mean. The lower 
the mean, the lower the cluster number, that is.     
 
The relabelled clusters are now ready for comparison. The comparison shows how well the clustering 
method clusters the data in correspondence to the manufacturer’s set criteria. The efficiency of the 
algorithm is measured by various counters, the most important of which is the efficiency. The best set 
of parameters with the highest efficiency is the set that is supposed to be chosen to analyse the quality 
of the surface topographies of knives within this criterion and this production process.  
 
The generic character of this experiment allows it to be used on other manufacturer set criteria, with 
different production processes and in different settings. As previously shown, the data is unlabelled, 
and is clustered using unsupervised learning methods. By comparing it to some prescribed set of data 
and expecting it to comply with it, by calculating the efficiency, and ‘training’ it, by setting a GMM-
parameter analysis, this study mimics a supervised machine learning method. Therefore, in this study, 
an unsupervised machine learning method simulates, in some aspects, supervised machine learning, 
which adds to the importance of such literature in the field. 
5.  Discussion of results 
 
This research covers a comprehensive analysis of the parameters of the GMM. The parameter-
combinations are run through the algorithm and the efficiency attained by each of the sets is recorded. 
The parameters are then analysed separately as seen by the graphs below and plotted against their 
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efficiencies. This allows for a comparison between the values chosen. The best set of parameters is 
recorded, and an analysis is done.  
 

Fig. 2. Pre-processing techniques and efficiency.   

 
 

Data with no pre-processing is initially run once. Subsequently, seven techniques were used; 
standardization, normalization using normalizer, standardization followed by normalization, 
normalization followed by standardization, normalization using MinMax normalizer, standardization 
followed by MinMax normalizer, and MinMax normalizer followed by standardization respectively.   
 
The normalized-standardized technique gives the lowest efficiencies at certain parameter-combinations, 
they however proceed to give the highest efficiencies in all other combinations, in comparison to all 
other pre-processing techniques. It also covers all the efficiency range along various parameter-
combinations. Data pre-processed using standardization-MinMax normalization has its lowest 
efficiency higher than that of all other techniques. Its highest efficiency is however only around 10% 
more, giving overall the smallest range. 70% of the Standardized-normalized data gives an efficiency 
of around 45%, while the other 30% is unequally distributed with 20% giving higher efficiencies 
reaching up to the overall maximum. Around half of the data pre-processed using MinMax-
standardization give a stable 35% efficiency, which is the lowest value attained by this technique. 
Additionally, around 50% of the data give the overall lowest efficiencies compared to all other 
techniques, ranging between 35 and 40% efficiency. Normalized data and standardized-MinMax data 
behave similarly with an increase and decrease at the same parameter-combinations.  
 
In general, however, none of the techniques always results in the lowest efficiencies. There always exist 
combinations that increase the efficiencies, unlike the trend shown by normalization-standardization 
where it takes over the overall highest efficiency. It is also noteworthy to state that the order of the 
techniques largely influences the output.  
 
Standardized-MinMax and MinMax behave as replicas in all parameter-combinations, and so do 
MinMax- standardized and standardized data.  
 
Pre-processing the data is also not always necessary. While the highest efficiencies are given by double 
pre-processing, unprocessed data still gives high efficiencies of around three percent less than the 
maximum. This is relevant if the computation time is a decisive factor. This results with the combination 
of  “full” covariance type, 0.0001 tolerance value, and all combinations of the number of iterations and 
initializations.  
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If the pre-processing technique is predetermined, these combinations should be used: for normalization, 
standardization, MinMax-standardization, tolerance of 0.01, covariance type “full” for all initializations 
and iterations. For normalization-standardization and without pre-processing, same combination except 
for tolerance, which is 0.0001. for standardization-MinMax and MinMax the same initial parametric 
combination but “diag” instead of “full”. Standardized-normalized also uses the same combination but 
here the number of initializations becomes relevant, with 100 and 200 giving the highest efficiency.  
 

Fig. 3. Number of initializations and efficiency.   

 
 
The number of initializations as stated earlier also does not have a large effect on the efficiency. The 
lowest and the highest efficiencies are achieved by 1000 initializations meaning that the combination 
has the determining effect. Nonetheless, around 40% of the model combinations give slightly higher 
efficiencies with 100 initializations in comparison to the three other values.   
 

Fig. 4. Maximum number of iterations and efficiency.   

 
 

Maximum number of iterations does not affect any parametric combinations. Meaning that convergence 
occurs, and the number of iterations is not the stopping criterion here. 
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Fig. 5. Tolerance and efficiency.   

 
 

The overall lowest efficiencies are achieved by the lower tolerance 0.0001, and the lowest efficiency 
the tolerance value 0.01 achieved is around five percent higher than that.  
 

Fig. 6. Covariance types and efficiency.   

 
 

The “full” covariance types give significantly higher efficiencies overall, with the maximum being 
given by “full”, followed by “tied” with five percent less. The lowest efficiency is achieved also by 
“tied”. While the “spherical” covariance type consistently gives the lowest efficiency in comparison to 
all other types. The lowest efficiency attained by the “diag” type is 36% which is higher than that of all 
other types.  
 
Several parameter sets achieved the highest overall efficiency. The highest efficiency was achieved for 
“full” covariance type, tolerance of 0.0001 and a pre-processing method of first normalizing the data 
and then standardizing them. Number of iterations and initializations however varied. All combinations 
of number of iterations and initializations, given all other parameters fixed as mentioned above, gave 
the same value of efficiency. This shows that these two parameters did not affect how well the algorithm 
works on the data and are in comparison insignificant.  
 
With around 50% of the highest efficiency, the lowest efficiency was attained by the following 
parameter sets: normalization followed by standardization as the pre-processing technique, a tolerance 
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of 0.0001 and all values of the maximum number of iterations. The covariance type is however ‘tied’, 
and the number of initializations is 1000. The first three parameters in these sets were common with the 
sets for the highest numbers of efficiencies. In this context, this means that the covariance type and the 
number of initializations are the more determining factors.  
 
For the sake of completeness, the parameters that most affect the efficiency of the algorithm to analyze 
the surface topography are mainly the pre-processing techniques, followed by the covariance types, 
then by the tolerance.    
 
6.  CONCLUSION AND OUTLOOK 
 
This paper studies the usage of gaussian mixture model unsupervised machine learning algorithm on 
data extracted from the surfaces of three knife-types provided by the manufacturer. The data extracted 
using computer vision is clustered using this probabilistic approach and then compared to certain 
roughness values also provided by the manufacturer. The manufacturer-set criteria act as decisive 
factors on the usability of the knives. The Model studies the surface topographies and analyses their 
quality. This is done using a parameter-study, including five of the gaussian mixture model parameters, 
mainly, the maximum number of iterations, the number of initializations, pre-processing techniques, 
tolerances, and the covariance types. These are varied and the clustered outcome of each set is compared 
to the manufacturer-set upper and lower limits. The efficiency of each set is then calculated, and the 
results are compared and discussed.   
In the upcoming research, a set of different unsupervised algorithms will be analysed and discussed in 
detail. Based on several algorithms, the overall efficiency as well as the best algorithm for the purpose 
of similar analysis with similar data shall be estimated. 
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