
Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Enabling Reliable Detection of Failed Parts in Cyber-Physical Systems  

Using Unreliable Detection Sensors 

 

Boris Krihelia,b and Eugene Levnera 
                                                  a Holon Institute of Technology, Holon, Israel, levner@hit.ac.il 

    bAshkelon Academic College, Ashkelon, Israel, borisk@hit.ac.il 
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Abstract: Consider a problem of reliable detection of failures in Educational Cyber-Physical Systems 

(ECPS) consisting of several hundred computers, advanced audio and video devices and control 

mechanisms, as well as intelligent sensors, which are located at home and in the classrooms of the 

university; they can interact with each other via the Internet and serve for hybrid teaching and learning, 

for example, during and after the pandemic. Various probabilistic and statistical methods are known for 

assessing the probability of failure detection in the system, depending on the reliability of the imperfect 

sensors. Our approach is based on probabilistic safety assessment. To achieve the required level of 

safety, our key idea is to check each CPS component several times in succession. Using the formula for 

total probability and the Bayesian approach, we build a mathematical model for finding the minimum 

number of necessary repeated tests required for each component. We then develop an appropriate test 

scheduling algorithm and examine its complexity. Finally, we run computational experiments to detect 

failures in a real educational CPS serving for hybrid teaching; we compare the proposed algorithm with 

two known failure-detection algorithms and obtain encouraging practical results. 

___________________________________________________________________________  

 

1.  INTRODUCTION 
 

Cyber-Physical Systems (CPS) are networks of physical and computer components that are 

interconnected to securely, flexibly, and efficiently manage integrated computing, networking, and 

physical processes. The CPS have pervaded everywhere; examples include the internet of medical 

robotic things (IOMRT), intelligent operating rooms and surgeries, computer-integrated manufacturing 

systems, robotics systems, hybrid educational systems, regional power grids, smart homes, etc. ([14]). 

Educational Cyber-Physical Systems (ECPS) consist of several hundred computers, advanced audio 

and video devices and control mechanisms, as well as intelligent sensors, that are located at home and 

in the classrooms of the university; they can interact with each other via the Internet and serve for hybrid 

online/face-to-face teaching and learning, for example, during and after the pandemic. 

 

The reliability and safety aspects of such systems are crucial. Various probabilistic and statistical 

methods are known for assessing the probability of failure detection in the system, depending on the 

reliability of the imperfect sensors. Our approach is based on probabilistic safety assessment. 

 

In this paper, we are looking at a multi-component ECPS that is known to have failed; it is necessary to 

determine what is the exact location of the failed component. For this, a system of unreliable sensors is 

used, which sequentially check the ECPS components. For any possibly failed part of the ECPS, the 

following data are known: (a) the cost and time of checking the component; (b) the initial probability 

that the component failed; (c) the probability of a false-negative test result for the sensors, that is, the 

probability that during the checks the unreliable sensors will not notice that a  faulty component is out 

of order; (d) the probability of a false-positive test result, when the sensor  erroneously classifies a 

healthy component as ”failed”; and (e) the required safety level, which is defined as a desired level of 

the probability of correctly detecting the failed ECPS component; this  parameter  is set by the decision 

maker in advance and far exceeds the known probabilities of obtaining correct results by individual 

sensors. 
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The discrete sequential failure search is an ancient operations research problem that has many civil and 

military applications (see, e.g., Matula [12], Levner [11], Kress et al. [7], Alpern et al. [2], Kriheli and 

Levner [8], Kadane [6], Kriheli et al. [9], Sotoudeh-Anvari et al. [15], and references therein). In this 

paper we develop a new algorithm that enables to efficiently solve a novel formulation of the problem. 

To achieve the required level of safety, our key idea is to check each CPS component several times in 

succession. In the next section, using the formula for total probability and the Bayesian approach, we 

build a mathematical model for finding the minimum number of necessary repeated tests required for 

each component. In Sections 3 and 4, we develop an appropriate test scheduling algorithm and examine 

its properties. Finally, in Section 5, we describe computational experiments to detect failures in a real 

educational CPS serving for hybrid teaching; we compare the proposed algorithm with several known 

failure detection algorithms and obtain encouraging practical results. Section 6 concludes the work. 

 

2.  A FAILURE DETECTION PROBLEM AND THE MATHEMATICAL MODEL 
 

Let a multi-component ECPS be known to have failed. An exact location of the failed part in the CPS 

is not known precisely, only preliminary probabilities may be estimated by experts. It is necessary to 

determine what is the exact location of the failed part. To do this, a system of unreliable sensors is used 

that sequentially checks the ECPS components. The failed part, which we shall refer to as the target, is 

“hidden” in one of a finite set I of possible locations (components), with a priori known probability pi 

(where ΣiI  pi =1), the total number of all the possible components being m = ׀I׀. The detecting sensors 

are smart but not totally perfect, and this sensor system is used by a searching team to sequentially 

inspect each location, possibly more than once, in order to find the “hidden target”.  

                    

Associated with each location i, along with the above probability pi, are the following given data: 

 a cost ci and time ti for inspecting/searching location i; 

 an “overlook probability” αi, i.e., the probability that if the target is in location i and when the 

sensor inspects the location i once, it does not discover the target; in this case we say that there 

happened sensor’s overlooking, or a false-negative outcome;  

 a “false alarm” probability βi; this is the probability that the location i does not contain the 

hidden target but an imperfect sensor erroneously classifies the location as containing the target 

we are looking for; in this case we say that a false-positive outcome occurs. 

 

Our problem is to find a sequential strategy (i.e., a sequence) π = [π(1), π(2), …], where π(k) is a location 

(or a component) inspected at the kth step in π, such that the expected cost V(π) of finding the object is 

minimal. A precise value of the V(π) will be defined below. Note that, since the sensor is imperfect, 

before the object is successfully found any location may be searched, in the worst case, more than once. 

 

Following Matula [12], we call a strategy ultimately periodic if π(j + θ) = π(j) for all j > T, where T 

denotes the length of the initial transient phase and θ the length of the period. In his seminal work of 

1964, Matula [12] had investigated a special case of the above problem where the false-positive 

inspection outcomes do not occur, and only false-negative outcomes are studied. He proved the 

existence conditions for a periodic optimal search sequence with the overlook inspection errors only 

and found how the initial overlook probabilities and costs affect the minimal period and transient phase 

length of the periodic sequence. The present paper extends the Matula search model. It treats the case 

in which the imperfect sensor may give both the false-positive and false-negative indications. We obtain 

the existence conditions for a periodic, asymptotically optimal search sequence and find the possible 

lengths of the period and the transient phase.  

To handle the false-positive indications of the sensor, we introduce and compute  the conditional 

probability, denoted by 𝑝[𝑖,ℎ𝑖], of the event that the hidden target is indeed in a location i under condition 

that the sensor has repeatedly detected the target in the location i during hi sequential inspections, where 

the integer parameter hi is chosen in such a way that the latter probability 𝑝[𝑖,ℎ𝑖] will be no less than the 

success level SL, a given parameter which is set in advance by the human searcher. 
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2.1.  Basic Properties of the Search Process 

We start with presenting the given input data in more detail (see Table 1). 

Table 1. Given input data 

Event  Ci {the target is hidden in a location i} 

P(Ci) = pi  a priori probability that the target is hidden in location i   

Event Bi {the sensor has classified a location (or, a component) i as a hidden target (either correctly, or 

probably not correctly) during a single inspection of the location i in sequence π}. In other 

words, the sensor testifies that it has detected a target in the location i as a result of a single 

inspection of this location at some step of the sequential strategy π, but we cannot be sure that 

this outcome is true since the sensor is imperfect 

P(Ci) = pi,  a priori probability that the target object is hidden in location i   

𝛼𝑖
= 𝑃(�̄�𝑖|𝐶𝑖) 

Probability that the target object is not detected in location i under condition that the object is 

actually hidden in location i); this is the overlooking probability, or a false-negative outcome 

mentioned in the Introduction 

𝛽𝑖
= 𝑃(𝐵𝑖|�̄�𝑖) 

probability that a no-target object is erroneously classified by the sensor as the target when 

searching in location i although, in fact, the target object is not in location i; this is called the 

false-alarm probability, also referred to as the probability of a false-positive inspection 

outcome 

 

Next, we introduce several auxiliary parameters depending on the above input data, which are presented 

in Table 2. 

 

 Table 2. Auxiliary parameters  

𝑓𝑖 = 𝑃(𝐵𝑖) probability that the sensor has classified a location i as the hidden target during a single 

inspection of that location i at some step of the sequential strategy} 

P(Bi |Ci), the conditional probability that the target is correctly detected by the sensor in location  i 

during a single inspection of the i under condition that the hidden object is actually in 

location i 

hi the integer whose role is explained in the following definitions  

Event 

{𝐶𝑖 |𝐵𝑖
(1) ∩

𝐵𝑖
(2)… .∩

𝐵𝑖
(ℎ𝑖)} 

{the hidden target is really in location i under condition that during hi sequential, but not 

necessarily consecutive, inspections of that location, the sensor has testified hi times that it 

detected (correctly or maybe not correctly) that the target is in the location i, the integer 

parameter hi being fixed} 

𝑝[𝑖,ℎ𝑖] 𝑝[𝑖,ℎ𝑖] = 𝑃 (𝐶𝑖 |𝐵𝑖
(1) ∩ 𝐵𝑖

(2)… .∩ 𝐵𝑖
(ℎ𝑖)), the conditional probability of the above event 

{𝐶𝑖 |𝐵𝑖
(1) ∩ 𝐵𝑖

(2)… .∩ 𝐵𝑖
(ℎ𝑖)} 

 

SL 

the required safety level; this is an additional parameter which is set by the searcher in advance 

as a permissible lower bound on the above probability 𝑝[𝑖,ℎ𝑖] 

 

Hi 
the minimum amount (min hi) of sequential inspections (not necessarily consecutive ones) of 

location i depending on the given input probabilities and a known SL value, and such that the 

𝑝[𝑖,ℎ𝑖] value satisfies the above inequality (1):  

Hi = min (hi) |𝑝[𝑖,ℎ𝑖]≥ SL). Hi is precisely computed below 

Simply speaking, parameters hi and SL are chosen in such a mode that the following inequality (1) 

holds: 

                   𝑝[𝑖,ℎ𝑖] ≥ SL.                                                                        (1) 

Using the total probability formula and Bayes’ formula, we can obtain that  

𝑓𝑖 = 𝑃(𝐵𝑖|𝐶𝑖)𝑃(𝐶𝑖) + 𝑃(𝐵𝑖|�̄�𝑖)𝑃(�̄�𝑖) = (1 − 𝛼𝑖)𝑝𝑖 + 𝛽𝑖(1 − 𝑝𝑖). 
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      In order to precisely and efficiently compute the Hi values, we need the following claims: 

Claim 2.1. The conditional probability,   for a single search, is: 

𝑃(𝐶𝑖|𝐵𝑖) =
𝑃(𝐵𝑖|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝐵𝑖|𝐶𝑖)𝑃(𝐶𝑖)+𝑃(𝐵𝑖|�̄�𝑖)𝑃(�̄�𝑖)
=

(1−𝛼𝑖)𝑝𝑖
(1−𝛼𝑖)𝑝𝑖+𝛽𝑖(1−𝑝𝑖)

. 

Claim 2.2. If an integer parameter hi is given, the conditional probability 𝑝[𝑖,ℎ𝑖] can be found as 

follows:  

𝑝[𝑖,ℎ𝑖] = 𝑃 (𝐶𝑖 |𝐵𝑖
(1)
∩ 𝐵𝑖

(2)
∩ …∩ 𝐵𝑖

(ℎ𝑖)) =
𝑝𝑖(1 − 𝛼𝑖)

ℎ𝑖

𝑝𝑖(1 − 𝛼𝑖)
ℎ𝑖 + (1 − 𝑝𝑖)𝛽𝑖

ℎ𝑖
 

Claim 2.3. For any location i, i  I, the Hi =mini hi value can be found as follows: 

𝐻𝑖 = ⌈
𝑙𝑜𝑔(

𝑝𝑖
1−𝑝𝑖

⋅
1−𝑆𝐿

𝑆𝐿
)

𝑙𝑜𝑔(
𝛽𝑖
1−𝛼𝑖

)
⌉, 

 

where ⌈𝑥⌉is the ceiling value of a real number x, that is the smallest integer number following x. 

  

The proofs of Claims 2.1-2.2 are straightforward, and we omit them. The Claim 2.3 directly follows 

from the relation (1), Claim 2.2, and the following inequality: 

𝑝[𝑖,ℎ𝑖] = 𝑃 (𝐶𝑖 |𝐵𝑖
(1) ∩ 𝐵𝑖

(2) ∩ …∩ 𝐵𝑖
(𝐻𝑖)) =

𝑝𝑖(1−𝛼𝑖)
𝐻𝑖

𝑝𝑖(1−𝛼𝑖)
𝐻𝑖+(1−𝑝𝑖)𝛽𝑖

𝐻 ≥ 𝑆𝐿.    

 

The Stopping Rule. Our key assumption is that the searching process is allowed to stop when the 

bounding inequality (1) holds for some inspection, where the required value of SL is known, that is, the 

probability 𝑝[𝑖,ℎ𝑖] of successful detection of the target in some location i should be no less than the 

required success level SL. In other words, the search of the target finishes when the hidden target is 

detected by the sensor in some location i exactly 𝐻𝑖 times, for some i, i  I, the value 𝐻𝑖 being computed 

in advance in Claim 2.3. 

 

The relation (1), Claim 2.3, and the Stopping Rule display the principal difference between the Matula 

model [12] and the presented search process scenario. Namely, in the Matula model it is assumed that 

the hidden target is found immediately as soon as the sensor testifies (for the first time) that it has 

detected the hidden target during an inspection of some location, and immediately, after that this event 

occurs, the search process stops. This is correct because in this model the false-positive outcomes are 

absent.  

 

In contrast, in the present scenario, a single detection of the target by the imperfect sensor is insufficient, 

and after the first detection of the target the search process should be continued; the search may be 

stopped only when, in a certain location, the target is discovered by the sensor ‘sufficiently many times’ 

(or, to say precisely,𝐻𝑖  times). We define the sufficient value 𝐻𝑖  in Claim 2.3 in such a way that 

guarantees that the probability 𝑝[𝑖,ℎ𝑖] of a ‘correct discovery’  of the target reaches a required 

sufficiently high safety level SL,  which is selected in advance by the searcher.  
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3. AN INDEX-BASED GREEDY ALGORITHM  

 

Consider an initial sub-sequence of the strategies contains 𝐻1 − 1 inspections of component 1,   𝐻2 − 1 

inspections of component 2, …, 𝐻𝑚 − 1 inspections of component m, where all the ‘heights’ Hi are 

defined in Section 2. For instance, we can take the initial part of the strategies as follows:  

𝑈[𝜋,0] = { 1,1,… ,1⏟    
𝐻1−1 𝑡𝑖𝑚𝑒𝑠

, 2,2,… ,2⏟    
    𝐻2−1 𝑡𝑖𝑚𝑒𝑠

, … ,𝑚,𝑚,… ,𝑚⏟      
𝐻𝑚−1

}.                                                      (2) 

 

Let us consider the following sequential search strategy π = {U[π,0] , π[1],…, π[n], …}. Such a choice of 

the initial sub-sequence 𝑈[𝜋,0] is motivated by the stopping rule formulated above; namely, the 𝑈[𝜋,0] 

provides that during the first ׀ 𝑈[𝜋,0] ׀   steps of any strategy π, the search process will not stop and should 

be continued according to the greedy algorithm described in this section below. 

 

We need the following additional notation:  

 𝑀(𝑖, 𝑁, 𝜋), the number of inspections of a location i among the first N steps of a sequence π 

under condition that (i) the sensor discovers the target in the location i exactly Hi times during 

the first N steps of sequence π, and (ii) the sensor discovers the target in that location i at the 

‘final’ Nth step, after which the search stops; 

 𝜋(𝑁) = 𝑖; 

  𝑃𝑖 = 𝑃(𝑖, 𝑁, 𝜋) = 𝑃(𝑀(𝑖, 𝑁, 𝜋)) , the probability that the sensor discovers the target in 

location i exactly Hi times among first N steps of sequence π, under condition that the target is 

discovered at the Nth step, after which event the search stops; 

  ti , time spent for inspecting the location i; 

 ci , cost assigned to a single inspection of a location i in the linear minimum-cost search model; 

 V(π), the total search cost assigned to strategy π. V(π) is a random function depending on the 

random number of steps in strategy π before the search process stops; this function is defined 

in detail below. 

 the search process in the sequence π stops at the 𝜇th step of sequence π, where 𝜇 is a random 

number that obtains the integer values 1,2,3,… 

 

If  𝜇 = 𝑁, this means that within the first N steps the sensor detects the target in location  𝜋[𝑁] =
𝑖 exactly Hi times. Now we can formulate more precisely in which way this search process differs from 

the search scenario of Matula [12]. Actually, the search under investigation can be looked at as a 

sequence of independent Bernoulli trials where, in terminology of the Bernoulli trials, a ‘success’ 

corresponds to the event that the sensor claims that it detects the target during a single inspection. 

Denote by 𝑃(𝜇 = 𝑁) the probability of Hi successes in location  𝜋[𝑁] = 𝑖 occurring during 𝑀(𝑖, 𝑁, 𝜋) 
trials. It is known that the random variable 𝜇  has the negative binomial distribution (NBD) with the 

success probability 𝑓𝑖 in a single trial. (For the detailed NBD definition and notation, we refer the reader 

to the standard texts, e.g., De Groot [5]) or Wentzel [16]. Therefore,   

 

𝑃(𝜇 = 𝑁) = 𝑃(𝑀(𝑖, 𝑁, 𝜋)) = (
𝑀(𝑖, 𝑁 − 1, 𝜋)

𝐻𝑖 − 1
) (1 − 𝑓𝑖)

𝑀(𝑖,𝑁−1,𝜋)+1−𝐻𝑖 ⋅ 𝑓𝑖
𝐻𝑖 

 

Define the random cost 𝑅(𝜇, 𝜋) of the first 𝜇 steps of strategy π as follows: 

 

𝑅(𝜇, 𝜋) = 𝑅(𝜋[𝜇], 𝜇, 𝜋) = 𝑐𝜋[𝜇] ⋅ 𝑇(𝜋[𝜇], 𝜇, 𝜋), 

 

where 𝑇(𝜋[𝜇], 𝜇, 𝜋)  is the random search time before the search process stops, which is computed as 

follows: 𝑇(𝜋[𝜇], 𝜇, 𝜋) = ∑ 𝑡𝑗(𝐻𝑗 − 1)
𝑚
𝑗=1 + ∑ 𝑡𝜋[𝑘]

𝜇
𝑘=1 . In this formula, the first term corresponds to 

the duration of the initial sub-sequence of steps Uπ[0] in sequence π, whereas the second term is the 

duration of all subsequent steps of π.  Notice that 𝑇(𝜋[𝜇], 𝜇, 𝜋) is random since 𝜇 is random.     
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Denote  𝑇(𝜋[𝑁], 𝑁, 𝜋) = 𝑇(𝑖, 𝑁, 𝜋) by 𝑇𝑖. Then the expected cost of the target search in the sequence π 

is:  

 

𝑉(𝜋) = 𝐸𝑥𝑝(𝑅(𝜇, 𝜋)) = 𝐸𝑥𝑝(𝑅(𝜋[𝜇], 𝜇, 𝜋)) =∑ (𝑅(𝜋[𝑁], 𝑁, 𝜋))
∞

𝑁=1
𝑃(𝜇 = 𝑁) = 

=∑ (𝑅(𝑖, 𝑁, 𝜋))
∞

𝑁=1
⋅ 𝑃(𝜇 = 𝑁) =∑ 𝑐𝑖 ⋅ 𝑇𝑖

∞

𝑁=1
⋅ 𝑃(𝜇 = 𝑁) = 

=∑ 𝑐𝑖 ⋅ 𝑇𝑖
∞

𝑁=1
⋅ (
𝑀(𝑖, 𝑁 − 1, 𝜋)

𝐻𝑖 − 1
) (1 − 𝑓𝑖)

𝑀(𝑖,𝑁−1,𝜋)+1−𝐻𝑖 ⋅ 𝑓𝑖
𝐻𝑖 

Let us define an ‘attractiveness’ of each location, which is inspected after the initial sub-sequence 

𝑈[𝜋,0], as the following preference ratios 𝑄𝑖: 
 

    𝑄𝑖 =
𝑐𝑖⋅𝑃𝑖

𝑡𝑖
=
𝑐𝑖⋅𝑃𝑖(𝑀(𝑖,𝑁,𝜋))

𝑡𝑖
=
𝑐𝑖⋅(

𝑀(𝑖,𝑁−1,𝜋)
𝐻𝑖−1

)(1−𝑓𝑖)
𝑀(𝑖,𝑁−1,𝜋)+1−𝐻𝑖 ⋅𝑓

𝑖

𝐻𝑖

𝑡𝑖
.                                (3) 

 

The following claim permits to define the optimal (i.e., minimum-cost) search sequence. 

 

Theorem 3.1. The strategy π is optimal iff at each step N after the initial sub-sequence 

𝑈[𝜋,0] the next inspected location 𝜋(𝑁) = 𝑖 ∗  is selected in such a way that its ratio Qi* = maxj Qj, 

where the ratios Qj are defined in (3). 

 

   Notice that, when selecting a next location 𝜋(𝑁) =  i*,  the maximum ratio Qi* is calculated for all 

jI using the ‘new’ values of 𝑃𝑖 = 𝑃𝑖(𝑀(𝑖, 𝑁, 𝜋)) calculated at each new step. The proof of Theorem 1 

is straightforward by the standard ‘interchange argument’ well known in scheduling theory (see, e,g, 

Blazewicz et al. [4], Lenstra and Shmoys [10]) and is left to the reader. This claim extends Theorem 1 

of Matula [12], which is valid when all the false-positive probabilities are zeros; a minor technical 

difference is that in place of the times ti used in the present model, Matula’s model uses costs ci, for all 

i.  The attractiveness ratio Qi depends on the outcomes 𝑀(𝑖, 𝑁, 𝜋) of already-done search steps – which 

is not typical for standard scheduling problems without task repetitions, wherein the ratios Qi do not 

depend upon a ‘history’ of the search. 

 

In what follows, we will be interested in investigating the periodicity property of the optimal solutions. 

For this aim, we need to introduce the definitions of asymptotically suitable and asymptotically optimal 

solutions. Consider a sequence π and the first N searches in the π. Let i denote the location inspected at 

the Nth step of π: 𝜋(𝑁) = 𝑖. We shall call an inspection sequence suitable if all locations in it are 

ordered as pointed out in Theorem 3.1. The sequence π is called asymptotically suitable if all the 

locations in it are ordered in such a way that,  at any step N of π made after the initial sub-sequence 

𝑈[𝜋,0] the next inspected location 𝜋(𝑁) = 𝑖  is selected in such a way that its preference ratio Qi 

satisfies the following:  Qi/maxjQj = 1-α(N), where the max-operator is taken over all the preference 

ratios computed at the step N, and   0N   when N  . 

                            .  

A sequence π* is called asymptotically optimal if, for this sequence π* and the optimal sequence sopt , 

the following holds:  

 

    *, , 0lim
opt

N

V N V s N


   ,                                                     (4) 

 

where 𝛥𝑉(𝑠, 𝑁) denotes the value of the cost function computed for the “tail” of the infinite sequence 

𝑠,  where s stands for π* or sopt, beginning with the (N+1)th step. This definition means that the 

difference between the values of the ‘tails‘ of sequences π*and sopt is arbitrarily small for sufficiently 

large N and approaches zero when N →∞. 
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We assume that there exists the ‘learning effect’ during the search. It means that, if an inspection is 

repeated several times in the same location, the inspection duration decreases for larger steps. 

Specifically, in the claim below the inspection time decreases faster than 1/N2 with the growth of N. 

 

Theorem 3.1’. If (i) the durations of inspections are decreasing for larger steps as    21/it N O N  , for 

any 𝜀 > 0 and for each 𝑖 ∈ 𝐼, and (ii)  𝜋∗ is asymptotically suitable, then 𝜋∗is asymptotically optimal. 

 

   The claim immediately follows from the definitions of asymptotically suitable and asymptotically 

optimal sequences and the description of the learning effect.  

 

4. PERIODICITY PROPERTIES OF THE GREEDY SEARCH STRATEGY  

Let us determine under which conditions an ultimately periodic, asymptotically optimal sequence exists 

for the failure detection problem with false-positive and false-negative outcomes. The next Lemma and 

Corollary are analogous to the similar claims in Matula [12].   The proof of these facts is along the same 

line as that in [12]. 

 

Lemma. If 𝜋 is an ultimately periodic, asymptotically optimal sequence of transient length T and period 

𝜃 = ∑ 𝜎𝑖𝑖∈𝐼 , where σi is the number of inspections of location i per period, then (1 − 𝑓𝑖)
𝜎𝑖 = (1 − 𝑓𝑗)

𝜎𝑗, 

for any i,j ∈ I. 

 

Corollary. A necessary condition for the existence of an ultimately periodic and asymptotically optimal 

sequence in the case of two error types is that the set of ratios { 
 𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
} , 𝑖, 𝑗 ∈ 𝐼 consists only of 

rational numbers. 

The next theorem highlights the impact of two error types on the parameters of ultimately periodic, 

asymptotically optimal solutions. 

 

Theorem 4.1. For the considered search problem with two error types, where the ratios {
𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
} are 

rational numbers for  𝑖, 𝑗 ∈ 𝐼, there exists a search sequence π* such that:  

   (a) π* is ultimately periodic of period 𝜃 and initial transient length denoted by T, 

𝜃 = 𝑚𝑖𝑛{𝜃′ |𝜃′ and 
𝜃′

∑ (
𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
)𝑗∈𝐼

are integers for 𝑖 ∈ 𝐼 },                                           (5) 
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 ,       (6) 

 
(b) If the searching process involves the ‘learning effect’ described in Theorem 3.1’, the sequence 

π* is asymptotically optimal, 

      (c) 𝜃  is the minimal possible period (in the periodic part of the sequence π*). 

 

Here T denotes an initial transient length, which will be upgraded to �̃� in Theorem 4.1*(a) below. 

 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Remark 4.1. Meaning of formula (5) is that the value of period 𝜃 and the numbers of inspections of 

each location within the 𝜃 should be integer and will guarantee the minimum to the 𝜃. The structure 

of the obtained solution and the stopping rule are notably different in comparison with the single-type 

error model by Matula [12].   

 

For the search problem under investigation there exists at least one suitable sequence 𝜋, satisfying (3) 

and Theorem 3.1. Let us introduce the following notation: 

 

  

 
 

 , 1, 1, 1,
1

1
, 1,2,...max

i i
M i N H H

i i i

i

i I i

M i N
c f f

H
N N

t





  



  
    

  
  

 
 
 

                             (7)         

 1
min

j

j

H

j j

H
j I

j j

c f

f t
Y



  
 

  


,                                                                 (8)    

   𝑇 = min{𝑁|𝜙(𝑁) ≤ 𝑌},                                                            (9) 

                                  𝜎𝑖 =
𝜃

∑
𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼

, 𝑖 ∈ 𝐼,                                                   (10)     

                  𝑋 = exp {
𝜃

∑
1

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼

},                                                           (11)     

       and 𝐾 = 𝑚𝑖𝑛{𝐾′|𝜙(𝐾′) ≤ 𝑋𝑌}.                                                (12) 

 

The definitions of T in (6) and (9) are equivalent (see the proof of Claim 4.1 in Section 5). Using (10) 

and (11), we obtain:     

  

𝑋 = 𝑒𝑥𝑝{
𝜃

∑
1

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼

} = 𝑒𝑥𝑝{
𝜎𝑖∑

𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼

∑
1

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼

} = 𝑒𝑥𝑝{𝜎𝑖 𝑙𝑜𝑔(1 − 𝑓𝑖)} = (1 − 𝑓𝑖)
𝜎𝑖.             (13) 

 

Since the numbers {
𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
} are rational, ∑

𝑙𝑜𝑔(1−𝑓𝑖)

𝑙𝑜𝑔(1−𝑓𝑗)
𝑗∈𝐼  is also rational for any 𝑖 ∈ 𝐼, giving 

meaning to the relation (5). 

 

It is easy to see that, for any i, the ratio 𝑄𝑖(𝑀(𝑖, 𝑁 − 1, 𝜋)) defined in (3) is monotonically non-

increasing function of 𝑀(𝑖, 𝑁 − 1, 𝜋) that approaches zero. The latter fact gives meaning to parameter 

R and inequality (14) defined below.  

 

Let us show that in the considered search scenario, along with the transient phase, which is analogous 

to Matula’s transient phase, the asymptotically optimal strategy has a so-called preamble phase that 

precedes the transient phase and is defined as follows. Denote by 𝑅𝑖  the minimum value of 

𝑀(𝑖, 𝑁 − 1, 𝜋) for which the function 𝑄𝑖(𝑀(𝑖, 𝑁 − 1, 𝜋)) is a monotonically non-increasing and, in 

addition,  the following inequality holds: 
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Consider 𝑅𝑖 consecutive initial searches of any location i, which form a part of a preamble phase of the 

location i. Consider the concatenation Cm of m individual preliminary searches for all the locations, 

each one containing 𝑅𝑖 consecutive searches of location 𝑖, i=1,2,…, m. Totally, this initial part of π has 

𝑅 = ∑ 𝑅𝑖𝑖  inspections. Finally, define the preamble sub-sequence 𝑆𝑝𝑟of  π to be a longer subsequence 

among sub-sequences, Cm and Us(0) , which contains 𝑅 ̂ = max (R, | Us(0))  |) steps, where Us(0) was 

defined in (2) in Section 3. 

 

From the definition of 𝑆𝑝𝑟, it follows that after that the preamble phase 𝑆𝑝𝑟 of any search sequence is 

done, the following properties hold: 

1. The function 𝜙(𝑁) is a monotonically non-increasing function that approaches zero. 

2. (
𝑀(𝑖, 𝑁 − 1, 𝜋)

𝐻𝑖 − 1
) (1 − 𝑓𝑖)

𝑀(𝑖,𝑁−1,𝜋)+1 < 1,  for any location 𝑖 and for each step N after the 

preamble phase.  

3. If the false positive probabilities are zeros (i.e., 𝐻𝑖 = 1 for each location 𝑖) then R = 0. 

 

   Now let us define the set 

𝐺 = {𝑖 |
𝑐𝑖⋅𝑓𝑖

𝐻𝑖

(1−𝑓𝑖)
𝐻𝑖⋅𝑡𝑖

= Y}                                                                  (15) 

 

and let us arrange all the elements of G as follows:  𝐺 = {𝑖0, 𝑖1, 𝑖2, . . . . 𝑖𝐿}. 

 

Now we are in position to define the desired sequence 𝜋∗. Let π be some suitable sequence. Define a 

sequence 𝜋∗as follows: 

 

𝜋∗ = {𝑆𝑝𝑟}, for all locations from step 1 up to step 𝑅 ̂ =  max (𝑅, | Us(0)) |  ); 
             𝜋∗(𝑗) = 𝜋(𝑗)       for      �̂� + 1 ≤ 𝑗 ≤ �̂� + 𝐾 − 1; 

𝜋∗(𝑗 + �̂� + 𝐾) = 𝑖𝑗       for      0 ≤ 𝑗 ≤ 𝐿, 𝑖𝐽 ∈ 𝐺; 

𝜋∗(𝑗 + 𝜃) = 𝜋∗(𝑗)       for      𝑗 > �̂� + 𝐾 + 𝐿 − 𝜃. 
 

From the above construction of the sequence 𝜋∗, the transient phase in 𝜋∗ terminates when the first 

period 𝜃 in the periodic part of 𝜋∗ starts;  hence, it has the length �̂� = �̂� + 𝐾 + 𝐿 + 1 − 𝜃. 

 

We can now prove the following: 

Theorem 4.1’ (a). 𝜋∗ is ultimately periodic with period 𝜃 and augmented transient length �̃�, 

where  
 

�̂� = �̂� + 𝐾 + 𝐿 + 1 − 𝜃 = �̂� + 𝑇 − ∑ (⌈𝑙𝑜𝑔(1−𝑓𝑖) (
𝑀(𝑖, 𝐾 − 1, 𝜋∗)

𝐻𝑖 − 1
)⌉)𝑖∈𝐺                   (16) 

 

Notice that, in comparison with the parameter  �̃� in (16), the transient length T in the Matula work does 

not contain the preamble term �̂� nor the negative term with the sum of logarithms. 

 

Theorem 4.1(b). If the searching process involves the ‘learning effect’,  𝜋∗ is asymptotically optimal. 

 

We prove by induction on k  (where k=0,1,2,…) that 𝜋∗ is suitable (and, hence, asymptotically suitable) 

through  stages from �̂� + 1 to �̂� + K + L + k. 

 

For k=0 the required claim follows from the definition of the sequence 𝜋∗and the fact that the 

sequence 𝜋 is suitable. We have: 

 

𝜋∗(𝑗) = 𝜋(𝑗), if  �̂� ≤ 𝑗 ≤ �̂� + 𝐾 − 1.   
 

Next, by virtue of (16) we have that  
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𝜙(𝐾) = 𝑋𝑌 =
𝑐𝑖 ⋅ (

𝑀(𝑖, 𝐾 − 1, 𝜋∗)
𝐻𝑖 − 1

) (1 − 𝑓𝑖)
𝑀(𝑖,𝐾−1,𝜋∗)−𝐻𝑖+1 ⋅ 𝑓𝑖

𝐻𝑖

𝑡𝑖
, if 𝑖 ∈ 𝐺, 

  

and, for any j,  
𝑐𝑗⋅(

𝑀(𝑗,𝐾−1,𝜋∗)
ℎ𝑗−1

)(1−𝑓𝑗)
𝑀(𝑗,𝐾−1,𝜋∗)+1−𝐻𝑗 ⋅𝑓

𝑗

𝐻𝑗

𝑡𝑗
= 𝜙(𝐾) ≤ 𝑋𝑌. 

 

Therefore, the locations from the set G are, indeed, the locations of the suitable sequence 𝜋∗: 
 

𝜋∗(𝐾) = 𝜋(𝐾) = 𝑖0, 𝜋
∗(𝐾 + 1) = 𝜋(𝐾 + 1) = 𝑖1, 𝜋

∗(𝐾 + 2) = 𝜋(𝐾 + 2) = 𝑖2, . . . , 𝜋
∗(𝐾 + 𝐿) =

𝜋(𝐾 + 𝐿) = 𝑖𝐿.    
 

By virtue of Theorem 3.1’, the sequence 𝜋∗ is asymptotically optimal up to stage K+L. 
 

Assume now that 𝜋∗is suitable through stage K+ L + k  and let 𝜋∗(𝐾 + 𝐿 + 𝑘 + 1) = 𝑖, hence also 

𝜋∗(𝐾 + 𝐿 + 𝑘 + 1 − 𝜃) = 𝑖 (for the simplicity of notation, here we omit symbol �̂�). 

Then 
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The latter relations show that 𝜋∗is asymptotically suitable, and, hence, asymptotically optimal through 

stage K+L+k+1, and by induction axiom asymptotically optimal at all stages. 

 

By virtue of Theorem 4.1 and relation (16), the period length 𝜃 and the augmented transient length �̃� 

do not exceed 3m (recall that m is the number of components)  Therefore, if the number of periods C is 

fixed, then the number of steps of the greedy algorithm does not exceed O(Cm), and the total computing 

time does not exceed O(Cm). 
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 5.  NUMERICAL EXPERIMENTS AND COMPARISONS   

 
In this section, we briefly report about our computational experiments for detecting failures in a real 

educational CPS serving for hybrid teaching. We compare the results produced by the proposed 

algorithm with several known failure detection algorithms and obtain encouraging practical results. As 

an illustration, consider a sample experiment in which we have selected three most vulnerable parts of 

the ECPS; the input data are presented in Table 1; SL = 0.95 as selected by a decision maker. 

 

Table 1. Input data    

 Part 1 Part 2 Part 3 

𝑝𝑖 = 𝑃(𝐶𝑖) 0.08 0.28 0.64 

𝛽𝑖 = 𝑃(𝐵𝑖|�̄�𝑖) 0.46 0.67 0.57 

𝛼𝑖 = 𝑃(�̄�𝑖|𝐶𝑖) 0.05 0.05 0.15 

𝑡𝑖 (Min.) 5 8 10 

𝑐𝑖 ($) 100 10 1 

 

Applying the formulas for probabilities fi, heights Hi, and ratios Qi, we find that  f1=0.50; f2=0.75; 

f3=0.75; H1=2, H2 = H3=1, and Us0 =<1>, �̂� = 𝜃 = 4. Omitting elementary computations, we have that 

the transient sequence is (1,1,1,2), which is followed periodically by the sequence (3,2,1,1), that is, we 

have found that the best search sequence, up to the 8th step, is as follows: 𝜋𝑜𝑝𝑡 =<1,1,1,2,(3,2,1,1)>, its 

objective function value being 𝐹(𝜋𝑜𝑝𝑡) =  2,157.78. If we take, for comparison, a random search 

sequence, for instance,  𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = <1,1,1,2,(2,3,2,1)>, we obtain a worse value:  𝐹(𝑠𝑟𝑎𝑛𝑑𝑜𝑚)=2, 257.78. 

If we continue the calculations, we obtain that, at Step 24, 𝐹(𝜋𝑜𝑝𝑡) = 2,657.68 and 

𝐹(𝑠𝑟𝑎𝑛𝑑𝑜𝑚)=3,012.47. After this step, further changes in the objective values become negligible.  

  

It should be noted that the proposed fast algorithm, which guarantees that the probability of correctly 

detecting a target is no lower than a given safety level, in practice outperforms several known 

combinatorial failure detection algorithms. Namely, in our simulations, we have consistently observed 

that the Matula algorithm stops as soon as the “first success” occurs, that is, when a sensor first detects 

that a part is faulty. Such a ‘solution’ is not applicable to the scenario considered in this paper with 

possible false alarms. Another closely related algorithm is Alidaee’s algorithm [1], in which sensors are 

allowed to repeat the inspections of vulnerable components, and the search process continues until 

either sensor declares twice that a certain part is faulty. For the convenience of the reader, we present 

the following formula for the probability of𝑝𝑖 a successful target detection by the Alidaee algorithm: 

𝑝𝑖(1-𝛼𝑖)
2

𝑝𝑖(1-𝛼𝑖)
2 +(1-𝑝𝑖)𝛽𝑖

2 
  . 

 
In the considered example, this probability is smaller than the given level SL; in general, it may be 

notably smaller than the probability of correct detection provided by the proposed algorithm.  

  

 

6.  CONCLUSIONS 
 

Various probabilistic and statistical methods are widely known today for assessing the probability of 

failure detection in large-size systems, depending on the reliability of imperfect sensors. Our approach 

is based on probabilistic safety assessment.  

The developed framework aims to be a part of the Education 4.0 concept, where the authors utilize 

Industry 4.0 technologies to efficiently and quickly detect the faulty parts in the CPSs, by this improving 

the efficiency of educational process and increasing the perception of the studied material [3, 13].  
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Future work on the proposed approach will be to further integrate Industry 4.0 technologies with the 

‘teaching factory’. In addition, promising directions for future research are further development and 

extension of the proposed fast failure-detection algorithm for more general scenarios such as multiple 

failures, multiple parallel searchers, as well as prevention and mitigation of possible risks caused by 

failures. Algorithm comparison will be continued and expanded in our future research.  
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