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Abstract: Condition-based monitoring (CBM) techniques are widely being used for maintenance 

activities in nuclear power plants (NPPs). As faults are rare events, it is highly unlikely that all potential 

fault modes are captured for a single component. In addition, fault signatures extracted from a single 

component cannot be robust enough to handle unseen fault patterns. On the other hand, privacy, 

security, legal, and commercial concerns restrict data-sharing across different plant systems/different 

systems within one plant. This research presents federated-transfer learning (FTL) to scale machine 

learning (ML) models for CBM across a component or plant system by combining federated learning 

(FL) and transfer learning (TL) approaches. FL enables a centralized server to develop an aggregated 

global CBM model, while the training data are safely and privately distributed on the devices of plant 

systems, and TL enables application of the developed aggregated model to different but related systems 

within the same plant site, or to the same system at different plant sites. FTL was demonstrated using 

circulating water system data for two plant sites—one two-unit plant and one single-unit plant—to 

predict the health condition of a circulating water pump. The FTL framework was verified using a multi-

kernel adaptive support vector machine and an artificial neural network. The results show significant 

improvement in prediction performance, reducing overfitting issues and data heterogeneity. 

 

 

1. INTRODUCTION 
 

Over the years, the domestic nuclear power plant (NPP) fleet has relied on labor-intensive and time-

consuming preventive maintenance (PM) programs, thus driving up operation and maintenance (O&M) 

costs to achieve high-capacity factors [1]. As part of the PM strategy, plant systems, structures, and 

components (SSCs) undergo manual, labor-intensive periodic maintenance checks—such as inspection, 

testing, calibration, replacement, and refurbishment—irrespective of their condition. Predictive 

maintenance (PdM) strategies recommend that action be taken ‘as required’ based on the health 

condition of the SSCs. 

 

A well-constructed risk-informed PdM approach for an identified plant asset will take advantage of 

advancements in data analytics, machine learning (ML), artificial intelligence (AI), physics-informed 

modeling, and visualization. PdM strategies utilize plant asset current and historic data to develop 

diagnostic and prognostic models. Diagnostic models provide the current state of health of the plant 

assets. If the diagnosis indicates a potential incipient fault, the prognostic model predicts the time to 

failure or the remaining useful life, thus allowing plant personnel to develop a maintenance plan 

accordingly. 

 

Domestic NPPs are currently focusing on transitioning from a PM strategy to a PdM strategy to achieve 

long-term economic sustainability in the current competitive energy market [2]. One of the challenges 

with this transition is the need to develop a scalable PdM strategy that is deployable across plant assets 

and the NPP fleet. In collaboration with Public Service Enterprise Group (PSEG) Nuclear, LLC, Idaho 

National Laboratory (INL) has developed a risk-informed PdM strategy, as observed in Figure 1, and a 

scalability framework, as shown in Figure 2 [2]. As part of this framework, scalability is defined as 

expanding capabilities of a target entity to meet current and future application-specific requirements. 

‘Entity’ in this context is each element of the suggested framework. Expanding each element of the 

framework is outside the scope of this paper, which focuses on the ‘methodology’ entity. 
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Figure 1. Research and development for achieving risk-informed PdM strategy. 

 
 

Figure 2. Risk-informed PdM scalability framework. 

 
 

One of the biggest challenges in building scalable methodologies is the dynamic and heterogeneous 

nature of the data. The data collected on a particular asset can vary significantly in types and resolutions 

across plants. A particular signal may not always be available due to instrumentation errors or sensor 

failure. Finally, plants might add a new sensor modality to enhance situation awareness, resulting in 

new information. These data dynamics lead to a problem of identifying a ‘global’ ML model capable 

of representing the state of the plant asset. This warrants some sort of active learning [4] that constantly 

updates the ML model based on data dynamics. While active learning could be a potential solution, it 

requires regular retraining of the ML model, which is undesirable because of the effort required to train 

the models and the impact on model explainability. 

 

To address dynamics in data, this paper presents the application of a federated-transfer learning (FTL) 

approach on circulating water system (CWS) data obtained from the PSEG-owned plant sites. The 

coupling of federated learning (FL) with transfer learning (TL) provides a foundation that aligns with 

the goals of the scalable risk-informed PdM strategy framework by: (1) collaborating and building a 
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robust ML model addressing privacy, security, legal, and commercial concerns that restrict data-sharing 

across the fleet; (2) eliminating the need to create a centralized data repository (i.e., data stays at the 

source); (3) eliminating the cost associated with building and maintaining a centralized data repository; 

(4) minimizing the technical challenges, such as cyber-scenarios, latency, throughput, and bandwidth 

optimization (for wireless data transmission); (5) enabling the transfer of a ‘globally’ trained and 

validated ML model to similar plant assets across the NPP fleet; and (6) adapting the transferred ML 

model with minimal retraining for a different plant asset within the same plant site. A summary of 

related work on the application of FL towards a PdM strategy is shown in Table 1. 

 

Table 1. Summary of the Related Work on the Application of FL towards PdM. 

Algorithm Ref Problem Area Contribution 

Federated 

Multi-Task 

Learning 

[5] 

Minimal computational 

complexity and low 

communication overhead. 

Distributed PdM. 

SplitPred [6] Collaborative PdM. Privacy-aware resource sharing. 

FL+Blockchain [7] PdM on cross-company data. 
Collaborative learning with 

blockchain. 

FL 
[8] Equipment condition monitoring 

in manufacturing environment. 

Intelligent prediction and 

monitoring engine. 

 

 

2. CIRCULATING WATER SYSTEM 
 

To develop initial scalable methods and models, the CWS at two NPPs was selected as the identified 

plant asset. The CWS is an important non-safety-related system. As the heat sink for the main steam 

turbine and associated auxiliaries, the CWSs at Plant Site 1 and Plant Site 2 are designed to maximize 

steam power cycle efficiency [2]. A CWS consists of the following major equipment [2]: 

• vertical, motor-driven circulating pumps (e.g., ‘circulators’), each with an associated fixed trash 

rack and traveling screen at the pump intake to filter out debris and marine life 

• main condenser (tube side only) 

• condenser waterbox air removal system 

• circulating water sampling system 

• screen wash system 

• necessary piping, valves, and instrumentation/controls to support system operation. 
 

The NPP at Plant Site 1 comprises a two-unit pressurized water reactor that features six circulators at 

each unit. A schematic representation of the main condensers for Plant Site 1 Unit 2 is shown in Figure 3 

(left). Each pair of waterboxes is named using the following convention: Unit #, Condenser #A, Unit #, 

and Condenser #B. The NPP at Plant Site 2 consists of a single-unit boiling water reactor with four 

circulators. A schematic representation of Plant Site 2 CWS is shown in Figure 3 (right). Several distinct 

differences can be seen between the two plants. These include: (1) the water supply to the Plant Site 2 

CWS comes from a cooling tower water basin, not directly from the river; (2) the Plant Site 2 CWS 

does not have traveling screens, but each circulator has a single-pump screen to prevent debris 

transmission to the waterboxes; and (3) the Plant Site 2 CWS has four circulators feeding six waterboxes 

via a common header, unlike the Plant Site 1 CWS, in which each waterbox had its own circulator. 

 

A general functional description of the Plant Site 1 CWS, component integration, and design basis are 

found in [2]. The description of the Plant Site 2 CWS is similar, with minor differences in the integration 

due to the previously highlighted changes in the design basis. The CWS equipment that most impact 

the unit’s gross load output are the circular water pumps (CWPs) and their motors. The number of 

CWPs operating together impacts the generated gross load. A derate is a percentage decrease in gross 
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load, which is due to unavailability of plant assets supporting power generation. A trip is a reactor 

shutdown in which one or more plant assets are unavailable, thereby leaving the plant unable to maintain 

safe reactor operation. An outage occurs when reactor power is at zero for an extended period (e.g., 

usually less than a month) to address scheduled fuel cycle maintenance. During this time, all plant assets 

are non-operational, leading to an observable pattern in the plant gross load, which is labeled as 

operational, derate, trip, and outage. 

 

Figure 3. Schematic representation of the CWS at Plant Site 1 Unit 2 CWP 

combination 21A and 21B (left) and Plant Site 2 (right). 

 

2.1 Plant Site 1 

The Plant Site 1 Unit 1 and Unit 2 CWS process data are collected once per minute and stored in the 

plant’s OSIsoft process information system. Due to file size restrictions, the project team received CWS 

process data on an hourly frequency for both units from 2009 to 2020. Continuous CWP motor current 

data for both Units 1 and 2 are available only from September 2017 onward. Figure 4 (top) shows a 

sampling of CWS process data for a Plant Site 2 unit. 

2.2 Plant Site 2 

The Plant Site 2 CWS data consists of hourly measurements spanning from 1 January 2010 to 

18 May 2021. Overall plant status data include gross load in megawatts and a 15-minute average of the 

ambient outside temperature. Each of the four CWP measurements include the basin level, discharge 

pressure (DP), motor winding temperature, motor axial position, outbound and thrust bearing 

temperatures, and discharge valve position. The pump run status (on/off) is also recorded. Figure 4 

(bottom) shows a sampling of CWS process data from the Plant Site 2. Table 2 details CWP specific 

measurement types observed at both Plant Site 1 and Plant Site 2. 

 

Table 2. CWP specific measurement types observed at Plant Site 1 and Plant Site 2 NPPs. 

 

Measurements Plant Site 1 Plant Site 2 

Timestamp Y Y 

CWP Status Y Y 

Gross Load Y Y 

Differential Temperature (DT) Y Y 

Motor Current Y × 

Motor Temperatures (stator, outboard, inboard) Y Y 

Motor Vibration (axial, outboard, inboard) Y × 
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Figure 4. An example of changes to the CWS process data both before and after waterbox fouling. 

(a) Plant Site 1 Unit 2’s CWP 22B (Top) and (b) Plant Site 2’s waterbox A (Bottom). 

 
 

 
 

 

3. FEDERATED-TRANSFER LEARNING 
 

FTL [3] is a combination of FL and TL. In FTL, datasets differ in the feature space. This applies to 

datasets collected from NPPs of different but similar nature. Due to differences in the nature of operation 

and monitoring, such plants may share only a small overlap in the feature space. FL is a collaborative 

learning where many clients collaboratively train a model under the orchestration of a central controller 

without exchanging the user’s original data. FL enables focused data collection and data minimization 

by reducing systematic privacy risks and costs resulting from traditional, centralized ML. The FL 

process is typically driven by a model engineer developing an AI model for a particular application. TL 

builds an effective model for the target domain while leveraging knowledge from the other (source) 

domains. The main advantage of TL is that the training time is reduced significantly, while a very small 

amount of training data or no training data are required to leverage pre-trained models. 
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Using the FTL approach, this work focuses on: (1) developing an individual component level model 

using component-specific available data sources; (2) consolidating the knowledge gained from 

individual component models for a given plant asset into a master model; (3) using the master model 

for diagnostic and prognostic estimations of the entire system; and (4) applying (i.e., transferring) the 

master model for diagnostic and prognostic estimations of similar plant systems either at the same plant 

site or a different NPP entirely. The schematic representation of FL and TL is shown in Figure 5. The 

FL learning is demonstrated on Plant Site 1, while the TL framework is demonstrated on Plant Site 2. 

The FTL framework is demonstrated on neural networks (NNs) [9] and support vector machines 

(SVMs) [10]. 

 

Figure 5. FTL framework for condition assessment of vertical motor-driven pumps of the CWS across 

two plant sites. 

 
 

 

4. NUMERICAL RESULTS 

4.1 Plant Data for FTL Modeling 

This section discusses two examples of waterbox fouling, one each from Plant Sites 1 and 2, which will 

be used in the development of FTL for condition-based monitoring (CBM). The two examples highlight 

the similarities and differences in fault signatures for waterbox fouling and are a perfect example of the 

need for FTL in predictive modeling. The primary issue noted with the Plant Site 1 CWS is fouling of 

the waterboxes by grass and debris. Fouling of the waterboxes typically occurs due to the accumulation 

of grass/debris in the waterbox, thus resulting in condenser tube blockage and reduced circulator water 

flow. This is a unique and frequent issue at Plant Site 1 where the CWP intake comes directly from the 

river, resulting in a significant quantity of grass/debris. The grassing season typically occurs between 

February 1 and May 31. Grassing often emerges from the river during high-wind conditions associated 

with storms. During these periods, the motor current can oscillate with river level changes. Operations 

monitors the waterbox motor current and inlet pressure, and schedules waterbox cleanings based on 

deviations in motor current and inlet pressure when compared against the historical baseline data. 

Waterbox fouling is typically identified via motor current increase (also, though far less frequently, 

motor current decrease), inlet pressure increase, waterbox differential temperature (DT) increase, and 

condenser thermal performance loss. 

 

Figure 4 (top) shows an instance of waterbox fouling diagnosed in Plant Site 1 Unit 2’s CWP 22B. An 

upward drift in DT and motor current was identified on 23 July 2018. Consequently, the gross load 

began to dip. Note that in Figure 4 (top), the CWP 22B motor current increased from 231 to 245 amps, 
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and the DT increased from 14°F to 16°F, with the gross load not trending as expected. The motor current 

and DT decreased to 220 amps and 14°F, respectively, following the waterbox cleaning on 

25 August 2018, resulting in a 30–40 MWe improvement in gross load. The waterbox fault and 

approximate date of the shutdown were found by searching the work order database and narrative log 

information. 

 

In the case of Plant Site 2, waterbox fouling is not a major fault, yet still of interest. The cause of 

waterbox fouling for Plant Site 2 is once again debris (limited grassing) in the water circulated in and 

out of the cooling tower basin. Figure 4 (bottom) shows an instance of waterbox fouling in Plant Site 2 

waterbox A. Under normal operating conditions with no faults, the DP across the Plant Site 2 CWPs 

are, on average, 40–41 pounds per square inch gauge (PSIG). Note that in Figure 4 (bottom), on 

23 December 2017, CWP A’s DP began trending upward and spiked above 43 PSIG. Following the DP 

trend, the DT across the north and south ends of waterbox A also trended upward in the same amount 

of time. These slow, steady increases in differential pressure and DT trends are indicative of waterbox 

fouling. Following a waterbox cleaning around 23 January 2018, the DP reduced to near 41 PSIG and 

the DT stabilized as well. 

 

These two examples show that different fault features can indicate the same fault. Developing a 

comprehensive fault signature for each fault mode is key to achieving scalable, accurate predictive 

models. For other CWP fault signatures, see reference [2]. 

4.2 Feature Extraction 

To develop the FTL-based predictive model, features were extracted based on the identified fault 

signatures: 

 

1) Plant Site 1: From the CWS-associated plant operational data, the following features are extracted 

for each motor and pump (M&P) set: 

• DT is calculated as the difference between the outlet water temperature associated with the 

M&P set and the inlet river temperature. 

• The measured motor inboard (MIB) temperature, motor outboard (MOB) temperature, and 

motor stator temperature. 

• The M&P run-hours from one replacement to the next are considered in calculating the motor 

age (MAge) and pump age (PAge), as determined from historical CWS M&P 

replacement/refurbishment dates. 

• To consider the seasonal effects on the data, the week of the year (WoY) is calculated for every 

timestamp and is used as a feature. 
 

Thus, a total of seven features are extracted from the CWS plant operational data for each M&P set. 

Detailed information on the feature extraction from the plant operational data—as well as from the 

vibration data—can be found in reference [2]. For model development, plant operational data after 

2016 were considered because Plant Site 1 adopted a new six-year CWP replacement PM at that 

time. Since 2016, each unit of the Plant Site 1 NPP has periodically replaced their CWPs as per the 

updated PM strategy. Based on the replacement date of each CWP, the age of the M&P set is 

estimated. If any faults in the M&P are identified after their replacement, the data corresponding to 

that fault and time period is labeled as unhealthy; otherwise, it is labeled as healthy. 

 

2) Plant Site 2: From the Plant Site 2 CWS-associated plant operational data, the DT, MIB 

temperature, MOB temperature, motor stator temperature, and WoY features are extracted for each 

M&P set. As there were no historical CWS M&P replacement/refurbishment dates available for 

Plant Site 2, the MAge and PAge are not calculated. There are other faults represented in the CWP 

data prior to 2016 that are not discussed here for clarity; however, the approach is extendable to 

those faults as well. 
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4.3 FL-based CWP Motor Health Prediction 

FL was demonstrated using an SVM, which classifies whether a CWP is in a healthy or unhealthy state, 

on the Plant Site 1 data with each local model being developed for a pair of CWPs connected to a 

common waterbox, as shown in Figure 3 (left). Since there are three waterboxes for each Plant Site 1 

Unit, this gives six local models that will be combined into a master model via the FL approach, as 

observed in Figure 5. The samples were grouped based on the CWP combinations and split into training 

and test samples in accordance with an 80:20 ratio, as shown in Table 3. 

 

Table 3. Data Split into Training and Test Sets Among Groups for CWP Condition Prediction. 

Data Group Training Samples Test Samples 

Group 1 (CWP 11A and CWP 11B) 6174 974 

Group 2 (CWP 12A and CWP 12B) 8303 1309 

Group 3 (CWP 13A and CWP 13B) 4366 822 

Group 4 (CWP 21A and CWP 21B) 1720 288 

Group 5 (CWP 22A and CWP 22B) 2356 476 

Group 6 (CWP 23A and CWP 23B) 1496 358 

 
The results of the SVM-based individual learning and FL on Plant Site 1 are given in Table 4. From 

Table 4, it is seen that individual models from each group achieved a performance of close to 100% in 

most of the SVM models. This is a clear indication of overfitting in individual models, with the models 

being unable to predict other datasets or unseen data with the same accuracy. In addition, for some 

models, the accuracy of the test samples is higher than that of the training samples, since the test data 

were sometimes easier for the model to predict than the training data. After applying FL-based model 

aggregation (by averaging the kernel matrix from all the local models) and retraining each individual 

model, the accuracy levels came down for most of the models, but the performances remained at 

acceptable levels. FL aggregation over several iterations can further improve overfitting, while 

maintaining acceptable performance of the diagnostic model. This exemplifies that FL-based model 

aggregation enables aggregation of diagnostic models from the component level to the plant level. In 

addition, the fact that the models are trained with limited datasets also impacts the performance of FL. 

It is anticipated that FL performance will improve with larger training datasets. 

 

As a parallel method to FL via SVM, we explored the feasibility of using artificial NNs to perform FL 

on the Site 1 data. As with the SVM approach, we trained six different local models, one for each CWP 

combination at Site 1. For consistency, the same full dataset and training/testing splits used for the 

SVMs were used in the NN model. In NN model, an aggregated model is generated by averaging the 

weight and bias parameters from all the six local models. 

 

The high training accuracies of the individual models for NNs suggest that several of the current 

individual models are overfit to the training data. Future iterations should focus on further regularization 

techniques. This overfitting is at least partly reflected in the low-test accuracy displayed by many of the 

models. (Note that an extremely high individual test accuracy can indicate a high level of model bias 

and poor generalizability of the model to new observations.) Further work must be done to build more 

robust individual models that generalize more readily to previously unseen data. However, as noted 

above, a sufficiently high accuracy is obtainable while retaining a uniform (and thus simpler) 

architecture for all individual models. 

 

For the FL approach, we see much stronger test set performance on the CWPs that previously showed 

low accuracy in the individual phase. The added information afforded by examining all pump data en 

masse provided clear advantages to the federated-model building process. 
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Table 4. Individual Training and FL Performance on Plant Site 1 Data Using SVM and NN. 

CWP 

Combination 

SVM NN 

Individual 

Learning 
FL 

Individual 

Learning 
FL 

 Train Test Train Test Train Test Train Test 

11A and 11B 97.11% 95.58% 98.32% 93.73% 100% 88.30% 97.96% 96.30% 

12A and 12B 100% 99.92% 100% 99.92% 93.75% 97.33% 98.71% 96.02% 

13A and 13B 100% 98.90% 100% 98.90% 100% 97.57% 100% 94.28% 

21A and 21B 100% 99.30% 100% 99.30% 100% 75% 100% 96.88% 

22A and 22B 100% 98.94% 98.64% 91.80% 100% 75% 100% 98.118% 

23A and 23B 100% 98.32% 99.26% 99.16% 100% 82.12% 98.54% 99.72% 

 

4.4 TL-based CWP Motor Health Prediction 

TL aims to train a model on data from one domain in Plant Site 1 and adapt that model to another 

domain in Plant Site 2 by partial or full retraining. For the demonstration of TL on the Plant Site 2 data, 

binary classification was considered with the healthy and unhealthy class labels being determined based 

on the plant operational data. For the unhealthy state, waterbox fouling fault data were extracted; data 

prior to the occurrence of waterbox fouling were considered healthy. Healthy and unhealthy samples 

extracted from CWPs A and C are shown in Table 5. For the extracted samples, the master model from 

FL is used—both with and without retraining for comparison—to predict the condition of the CWP 

using the Plant Site 2 data. Note that for TL without retraining, the extracted data are not split into 

training and test data; instead, all the data are considered test data and the FL model will be used to 

predict the labels on the entire dataset. 

 

Table 5. Plant Site 2 Data for TL. 

CWP Date 
Number of Samples 

Healthy Unhealthy 

A November 1, 2017 - March 1, 2018 1916 966 

C April 1, 2017 - April 1, 2018 6502 2558 

 

For SVM-based TL, the overall performance on both CWP A and CWP C data is around 80%. The 

approach involves using all the samples from CWP A and CWP C as test data to classify health using 

the master model from the FL framework. The performance dictates that the SVM parameters must be 

further optimized to improve prediction accuracy. Typically, in TL, a small set of sample data is used 

to retrain the transferred model to fine-tune the model parameters for the new environment in 

Plant Site 2. For example, only 10–20% of the total number of samples will be used to retrain the model 

and optimize the parameters of the SVM for the Plant Site 2 data. After retraining with 20% of the data, 

the performance of CWP A did not improve, whereas the performance of CWP C significantly 

improved—to higher than 95% accuracy. The performance of CWP A with TL indicates there were 

insufficient samples for building the ML model. 

 

For comparison with TL, individual models were also trained on the Plant Site 2 data, with an 80:20 

split between the training and test data. Individual model performance—particularly for CWP A—

clearly shows the same overfitting trend as seen in the FL case. More samples for training are required 

to generalize the model and avoid overfitting. 

 

The same overall Plant Site 2 dataset from SVM was used as the starting point for TL with NNs. The 

classification target of healthy or unhealthy is the same as was described previously. Unlike with the 

SVM approach, the NN approach to TL amounts to more than merely applying the raw FL model from 

Plant Site 1 to the new data. Furthermore, no model is fit solely to the Plant Site 2 data. This affords us 
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the benefit of truly transferring knowledge from one domain to another. After examining the initial 

results from the FL model developed above, we then further trained the FL-associated NN by using 

some of the Plant Site 2 data. We used a standard 80:20 train-test split of the Plant Site 2 data. No 

further training was done on the FL model for this step; it was “raw” and was employed as though the 

Plant Site 2 data were merely yet unseen Plant Site 1 data: the overall average accuracy was just above 

75%. Wanting to take advantage of the benefits of TL, we then used the FL results presented here as a 

weight initialization (initial model) to further train the NN only for the five epochs for both CWP A and 

CWP C. The results given in Table 6 for CWP C are the result of this TL training step. For CWP A, we 

obtain around 88% accuracy with the five training epochs. Training for a further 15 epochs yielded the 

training and test accuracies given in Table 6. 

 

Table 6. TL Performance on Hope Creek Using SVM and NN from FL. 

CWP 

Combination 

SVM NN 

Individual 

learning 

TL without 

retrain 

TL without 

retrain 
TL with retrain 

Train Test Train Test Train Test Train Test 

CWP A 99.9% 66.1% - 80.74% - 80.43% 93.93% 94.01% 

CWP C 99.92% 93.1% - 79.92% - 76.90% 97.38% 97.35% 

 

 

4. CONCLUSION 
 

The FL using the Plant Site 1 data and the TL using the Plant Site 2 data were verified using SVM and 

NN. For SVM, the features were grouped based on the type of measurement and trained with separate 

kernel functions. While the performance of SVM for FL is satisfying, the performance of TL can be 

further improved by adopting a partial retraining approach that optimizes transferred model parameters 

without going through comprehensive training. The performance of NN is comparable on FL with 

SVM. But TL for NN performed better than SVM when TL is performed with retraining. The 

performance can be improved using more training samples. This demonstrated the significance of FTL 

approach and avoids building of exclusive predictive models for each NPP and each system. 
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