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Abstract: One of the practical challenges of simulation-based dynamic risk assessment is to minimize 
the number of simulations that impels computationally expensive code runs such as thermal-hydraulic 
system codes. To tackle this challenge, this research introduces a guided simulation algorithm inspired 

by a human reasoning process. This approach utilizes deep learning methods including a deep neural 
network and Monte-Carlo dropout. A deep neural network is employed as a surrogate model predicting 
the consequences of the postulated scenarios based on the code run results, and a Monte-Carlo dropout 
is applied to estimate the predicting confidence. These predicted consequences and their confidence 
guide a user to sample and simulate the scenarios close to the boundary intensively, and ultimately, to 
identify the success or failure of all scenarios with minimized code runs. We verified the applicability 
of the suggested approaches with data sets of simulation results of a loss of coolant accident scenarios. 

These deep learning approaches could be utilized as a simulation optimizing engine for an advanced 
dynamic risk assessment framework, alongside a probability-based optimizing framework. 

 

 

1.  INTRODUCTION 
 
Over the past decades, various research has suggested dynamic methodologies to supplement static 
assumptions of a probabilistic risk assessment (PRA). These methodologies attempt to enhance the 
realism of PRA results by considering the possible temporal and partial behavior of plant operators and 
components. To this end, they divide a single scenario in static PRA into several scenarios based on the 
dynamic behavior of the operators and components, which means the number of scenarios that should 

be deterministically analyzed by a physical model, such as a thermal-hydraulic (TH) system codes, 
dramatically increased. To effectively address these scenarios, the currently developed ones, such as 
analysis of dynamic accident progression trees (ADAPT) [1], risk analysis virtual environment 
(RAVEN) [2, 3], and dynamic integrated consequence evaluation (DICE) [4, 5], provide an 
environment where a probabilistic scenario generator is integrated with a deterministic consequence 
analyzer using the physical model. 
 

One of the practical challenges of these simulation-based dynamic PRA is that the consequences of an 
enormous number of scenarios should be identified by the physical model runs, which are 
computationally expensive. This challenge is also existing in other domains such as a structural 
reliability assessment. In this domain, the most common approach for estimating system reliability is 
the Monte Carlo Simulation (MCS). MCS estimates the probability of failure as the ratio of the failure 
scenarios among the random population sampled by the predefined distributions of scenario configuring 
parameters. If a system failure is a rare event, this crude approach inevitably requires a large random 
population of scenarios to ascertain the estimation, consequently, impels the excessive executions of a 

complex engineering model [6]. To tackle this problem, Echard et. al. proposed an active learning 
reliability method combining Kriging and Monte Carlo Simulation (AK-MCS) [6]. This method aims 
to minimize the execution of the engineering model by predicting a consequence (i.e., success or failure) 
of each scenario with a metamodel. AK-MCS is active learning and adaptive sampling process for the 
metamodel and scenarios, respectively, where the scenarios close to a decision boundary (i.e., limit 
surface) are sampled and simulated, the training data sets are updated by the simulation results, and the 
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metamodel is trained and locates the boundary, iteratively. The metamodel trained through this process 
becomes robust against the narrowest success/failure scenario, therefore, it can accurately predict the 
outcome of each scenario and ultimately estimate the probability of failure. The metamodel of AK-
MCS is a kriging model (i.e., Gaussian process regression) which generates predictive uncertainty along 

with the prediction. Taking this advantage, AK-MCS improves the sampling efficiency by prioritizing 
the scenarios with not only closeness to the boundary but also high predictive uncertainty. AK-MCS 
has been applied to a safety assessment of a nuclear power plant. Puppo et al. employed AK-MCS to 
identify the operational conditions of a passive safety system that cause unsafe conditions [7, 8]. Turati 
et al. also employed this method to explore accident scenarios of a lead fast reactor (LFR) [9].  
 
AK-MCS can be applied to a dynamic PRA since it can minimize the number of simulations by locating 
a decision boundary. For this, a different metamodel should be employed. In contrast to MCS, the 

scenario population of a dynamic PRA consists of the scenarios with their probabilities. In this case, a 
decision boundary should be estimated by the simulation records of more than thousands of adjacent 
success and failure scenarios even if the failure is a rare event. However, the Gaussian process is hard 

to address more than thousands of data sets since it has a cubic time complexity 𝑂(𝑛3) where 𝑛 is the 
size of the training data sets [10].  
 
This research introduces a guided simulation algorithm named Deep learning-based Searching 
Algorithm of Informative Limit Surface/State/Scenarios (Deep-SAILS) for a  dynamic PRA [11-13]. 
Deep-SAILS is analog to AK-MCS, however, employs a deep neural network as the metamodel. In this 
algorithm, the deep neural network is a high-fidelity surrogate model that learns more than tens of 
thousands of data sets of simulation records and estimates the consequence of more than millions of 
scenarios. We also increase the scenario sampling efficiency by utilizing the predictive uncertainty of 

the deep neural network quantified by a Monte Carlo Dropout [14]. The feasibility study of Deep-
SAILS was conducted by simulation records of dynamic scenarios of small break loss of coolant 
accident (LOCA) and, as a result, the algorithm identified the success or failure of each scenario with 
more than 99.9% accuracy while referring to the records of only 11.13% of total scenarios in average. 
 

2. Deep-SAILS: GUIDED SIMULATION ALGORITHM WITH DEEP-LEARNING 
 
For decades, selective simulations of interesting ones among a scenario population have been discussed 
to alleviate the computational cost necessitated by a dynamic PRA. Interesting scenarios depend on the 
purpose of the analysis; however, the widely accepted ones are the scenarios where the consequence is 
success or failure by a narrow margin since these scenarios can locate the limit surface/states (LS) 
between the success and failure regions and make a conservative assumption about the remaining 
scenarios. Figure 1 shows the example of simulation results of dynamic scenarios configured by the 

delayed time of an engineering safety function actuation signal (ESFAS) generation (x-axis) and 
percentile performance of safety injection (y-axis) under large break LOCA [13]. Success and failure 
scenarios are colored by green and red, respectively and the peak cladding temperature (PCT) of each 
scenario is denoted. In this case, the scenarios in the yellow shaded area can be of primary interest. If 
the results of these scenarios are given, we can reasonably assume the success or failure of the remaining 
ones, and therefore, save the cost for the physical model runs. This approach has been researched by 
the Idaho National Laboratory (INL). They adopted a metamodel including classifier models [3] such 

as support vector machine [15] and k-nearest neighborhood classifier [16] and developed an adaptive 
sampler that finds a limit surface and samples the scenarios close to the founded surface.   
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Figure 1: Simulation results of dynamic scenarios configured by the delayed time of ESFAS 

generation and percentile performance of safety injection [13]
*
 . 

 
 
Deep-SAILS is in line with the previous research on simulation optimization for a dynamic PRA. The 
first purpose of Deep-SAILS is to simulate risk-sensitive scenarios (i.e., close to the limit surface) 
preferentially. To this end, the deep neural network predicts the consequences (e.g., PCTs) of all 

postulated scenarios and identifies the scenarios that are estimated to be close to the limit surface. The 
second purpose of the algorithm is to train the deep neural network to be robust for the scenarios close 
to the limit surface. This surrogate model may generate inaccurate predictions for the consequences of 
the scenarios far from the limit surface, however, the success or the failure of the scenario can be 
accurately identified because the model is aware of the limit surface. In other words, the trained deep 
neural network can establish conservative assumptions for non-simulated scenarios. Ultimately, a user 
of Deep-SAILS can figure out the success and failure of all postulated scenarios accurately with the 

minimized execution of a physical model. 
 
Deep-SAILS is an iterative process of scenario sampling and neural network training. Figure 2 is a flow 
diagram of the algorithm [13]. It consists of five steps; initialization, training of the deep neural network, 
scenarios sampling, stopping condition check, and simulation of sampled scenario. The initialization 
includes a generation of a population of scenarios configured by the parameter (e.g., delayed time or 
performance of a safety system) and a preferential simulation of extreme scenarios as initial training 
data sets for the deep neural network. The extreme scenarios are the scenarios configured by the 

maximum and minimum values of each parameter. For instance, if three parameters are given, the 

number of the extreme scenarios is 23 = 8.  
 
After learning the consequences of the extreme scenarios, the network makes initial guesses about the 

consequences of non-simulated scenarios. Next, the algorithm samples the scenarios estimated to be 
close to the limit surface. The sampling method is the most important part of Deep-SAILS and is 
detailed in the next sections. With the sampled scenarios, the algorithm checks for a stopping condition. 
The stopping condition is satisfied when the proportion of already simulated scenarios out of the 
sampled ones exceeds a set point. Unless the stopping condition is satisfied, the algorithm simulates the 
sampled ones with the physical model and adds the simulation results to the training data sets of the 
network. The network is trained by the data sets and predicts the consequences of non-simulated 
scenarios again. 

  

 
* Reprinted from Applied Soft Computing, 124, Junyong Bae, Jong Woo Park, Seung Jun Lee, Limit surface/states searching 

algorithm with a deep neural network and Monte Carlo dropout for nuclear power plant safety assessment, Copyright (2022), 

with permission from Elsevier. 
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Figure 2: Flow diagram of Deep-SAILS [13]

†
 

 

 
 
 
2.1.  Deep neural network and Quantification of Predictive Uncertainty  

 
A neural network is a set of interconnected logical units. When a plurality of units is interconnected and 
stacked, the network has a deep structure and can solve a complex problem. With advanced logical units 

(e.g., recurrent neural network) and connection designs (e.g. attention algorithm), a deep neural network 
is widely being applied in a nuclear field [17-19]. The logical units of a neural network are connected 
to each other according to their weights. Based on the training data sets, the weights are adjusted to 
achieve the desired output for a given input. 
 
A deep neural network can generate a poor performance when it overfits trained cases and its outputs 
are varied only by some weights. Regularization techniques such as batch normalization and a dropout 
aim to mitigate this overfitting problem by training the weights uniformly. Especially, dropout is most 

widely used due to its simplicity and effectiveness [20]. For each training trial, it randomly omits some 
weights and adjusts the remaining weights, as shown in the below figure [13]. Once trained, a deep 
neural network infers with all weights. 
  

 
† Reprinted from Applied Soft Computing, 124, Junyong Bae, Jong Woo Park, Seung Jun Lee, Limit surface/states searching 

algorithm with a deep neural network and Monte Carlo dropout for nuclear power plant safety assessment, Copyright (2022), 

with permission from Elsevier. 
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Figure 3: Example of a deep neural network with a dropout [13]
‡
. The weights for the black-

colored nodes are omitted. 

 

 
 
The research conducted by Gal and Ghahramani showed that a deep neural network with a dropout can 
approximate the Gaussian process [14, 21]. If a dropout is activated in the inference phase, a network 
produces different outputs depending on the dropout configurations. The means and variance of these 
outputs can be interpreted as the prediction and uncertainty, respectively. This uncertainty is strongly 
influenced by the number of data sets similar to the given input. This process with a dropout is named 

Monte Carlo Dropout. 
 
Deep-SAILS utilizes a deep neural network as a surrogate model and quantifies the predictive 
uncertainty using MCDO. For a given scenario, the deep neural network predicts the consequences (e.g., 
PCT) multiple times with a random dropout configuration. Since this process is iterative for every 
scenario, this process should be implemented by efficient machine learning libraries such as Tensorflow 
or PyTorch and accelerated by the devices optimized for vectorized computations. 

 
2.2.  Scenario Sampling with U-learning function 

 
Deep-SAILS scores each scenario by the U-learning function, suggested by the AK-MCS [6]. The U-

learning function, 𝑈(𝑋𝑖), is defined in Equation (1), where 𝑋𝑖 is scenarios configuration, 𝑦𝑖̂ and 𝜎𝑦𝑖̂
 are 

consequence prediction and uncertainty, respectively, given by the deep neural network, and 𝑎 is a 
failure criterion (e.g., PCT limitation) 
 

𝑈(𝑋𝑖) =
|𝑦𝑖̂ −  𝑎|

𝜎𝑦𝑖̂

 (1) 

 
This function gives a lower score for the scenarios where the estimated results are closer to the failure 
condition (i.e., the numerator) and have higher uncertainty (i.e., the denominator). Especially, the 
denominator helps the algorithm sample the scenarios more meticulously since the given scenarios will 

be prioritized when there are no simulation results of the scenarios adjacent to the given one. The 
sensitivity study with or without the denominator can be found in the previous research [6, 12, 13]. 
 

Next, the scenarios with scores lower than the predefined distance, 𝐷, are identified as suspicious 

scenarios. The distance, 𝐷, is a critical hyperparameter determining the behavior of the algorithm. 
Lastly, 𝑁 scenarios are randomly sampled from the suspicious population to encourage exploration 
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3.  CASE STUDY 
 

3.1.  Dynamic Scenario SLOCA 

 
As a case study, Deep-SILAS was applied to the dynamic scenarios of small break LOCA [13, 22]. We 
used a TH system code that replicates the behavior of the Zion nuclear power plant, a representative 
Westinghouse 4-loop pressurized light water reactor with an electric power generation of 1000 MW. 
We assumed a 2-inch break (1.86 ×10−3 m2) in the one cold leg and the dynamic behavior of two safety 
systems: High-pressure safety injection (HPSI) and atmospheric dump valve (ADV). For HPSI, delayed 
time of HPSI actuation and degraded performance are considered. For ADV, delayed open time is 

considered. The uncertain domain and discretization of these time and performance are detailed in Table 
1. Consequently, 10,143 dynamic scenarios are generated. For efficiency, we simulated these scenarios 
ahead. A scenario is classified as the core damaged (i.e., failure) when PCT exceeds 1478K and as a 
success when vice versa. 
 
Table 1: Uncertain domains and discretization of scenario configuring parameters under small 

break LOCA [13]
§
. 

 

Parameter Unit Uncertain domain Discretization 

HPSI delayed time min (0, 60) 21  

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 

33, 36, 39, 42, 45, 48, 51, 54, 57, 60) 

HPSI performance min (0, 60) 21  

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 

33, 36, 39, 42, 45, 48, 51, 54, 57, 60) 

ADV open time % (0, 100) 23  

(100, 92, 88, 83, 79, 75, 71, 67, 63, 58, 

54, 50, 46, 42, 38, 33, 29, 25, 21, 17, 

13, 8, 0) 

 
3.2.  Results 

 

We set the distance 𝐷 as 2.0 and 𝑁 as 101 (i.e., 1% of the number of dynamic scenarios). The proportion 
for the stopping condition was assumed as 0.9. We executed the Deep-SAILS 10 times and Table 2 
shows the results. The algorithm scored more than 99.98 % accuracy while simulating only 11.13 % of 
all postulated scenarios. 
  

 
§ Reprinted from Applied Soft Computing, 124, Junyong Bae, Jong Woo Park, Seung Jun Lee, Limit surface/states searching 
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Table 2: Classification results for each execution of Deep-SAILS. 

 

Execution Simulated 

Scenarios 

Treu result = Success  Treu result = Failure  Error rate  

Classified 

as Success 

Classified 

as Failure 

Classified 

as Failure 

Classified 

as Success 

1 1040 3772 5 6362 4 0.09 % 

2 1187 3777 0 6366 0 0 % 

3 1116 3774 3 6365 1 0.04 % 

4 1232 3777 0 6365 1 0.01 % 

5 1140 3776 1 6364 2 0.03 % 

6 1129 3776 1 6365 1 0.02 % 

7 1159 3776 1 6366 0 0.01 % 

8 1119 3776 1 6365 1 0.02 % 

9 1067 3777 0 6365 1 0.01 % 

10 1099 3777 0 6366 0 0 % 

Average 1129 

(11.13%) 

3776 1 6365 1 0.02 % 

 
Figures 4 and 5 show the scenario sampling process and estimation of the deep neural network for 
iterations of execution 1 in Table 2. The x and y-axis are a delayed time of HPSI and ADV open time, 
respectively, and HPSI performance was assumed to be 75%. The green and red dots represent the 
sampled success and failure scenarios, respectively. The background colors also represent the success 

(blue-colored region) and failure region (red-colored region) and the limit surface (white-colored region) 
estimated by the trained deep neural network for each iteration. As shown in iteration 19 (last iteration) 
in figure 5, the majority of the sampled scenarios lie on the limit surface.  
 

Figure 4: Sampled scenarios (green and red dots) and the LS (white region) pinpointed by the 

DNN metamodel for iterations 0, 1, 2, and 6 when HPSI performance is 75% 
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Figure 5: Sampled scenarios (green and red dots) and the LS (white region) pinpointed by the 

DNN metamodel for iterations 7, 9, 15, and 19 when HPSI performance is 75% 

 
 
Both figures also show how the algorithm found the limit surface. With simulation results of the extreme 
scenarios, the network made a loose guess about the surface (Iteration 0 in figure 4). After several 
iterations, the network successfully found a rough location of the limit surface (Iteration 6 in figure 4). 
From this point, the algorithm exploited the limit surface and corrected the details of the surface. 

Comparing the plots of iteration 7 and iteration 19, the boundary when HPSI delayed time is roughly 
40 ~ 50 min became more sophisticated. 
 

4. CONCLUSION 
 
This research introduced a guided simulation algorithm of a dynamic PRA, named Deep-SAILS. To 

overcome the limitation of previous including AK-MCS and an adaptive sampler, the algorithm 
employed a deep neural network as a high-fidelity surrogate model. In addition, the algorithm retains 
the strong point of AK-MCS, that is utilization of uncertainty information for a meticulous sampling of 
scenarios. To this end, the predictive uncertainty is quantified by the Monte Carlo Dropout technique.  
 
This algorithm aims to sample and simulate the scenarios close to the limit surface and train a deep 
neural network that can estimate the consequence of the non-simulated scenarios. Combining the 

simulation results and the ability of a deep neural network, Deep-SAILS can accurately identify the 
success and failure of the scenarios with the minimized number of physical model runs. The result of 
the case study for a small break LOCA shows that Deep-SAILS classified the success and failure of 
10,143 scenarios while simulating only 11.13 % of the scenarios. 
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