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Abstract: The uncertainties of an accident analysis can be addressed by performing Monte Carlo 

simulations within the so-called best-estimate plus uncertainty (BEPU) approach. By varying the 

uncertain input parameters and running the respective simulations of a deterministic code, tolerance 

intervals of the safety relevant simulation result can be calculated using, for instance, the software tool 

for uncertainty and sensitivity analysis, SUSA. However, the analysis of critical combinations of 

parameters resulting in rare undesired events requires a large number of simulations to accurately 

describe the underlying parameter regions and to quantify the probabilities of the undesired events. By 

incorporating adaptive sampling methods in the Monte Carlo simulation, these rare scenarios can be 

evaluated probabilistically with reasonable computational effort. Three adaptive sampling methods 

have been implemented in SUSA to determine parameter regions leading to rare critical events and to 

estimate the corresponding probabilities. The first approach applies a support vector regression 

metamodel in the frame of a subset simulation. The second approach combines a genetic adaptive 

sampling algorithm with an ensemble of classification algorithms, and the third approach uses an 

adaptive Gaussian process. This contribution presents two of the adaptive sampling approaches 

implemented in the GRS software tool SUSA and their application to a loss of coolant accident (LOCA) 

scenario. 

 

 

1.  Introduction 
 

To analyze the influence of uncertain input parameters on accident events Monte Carlo (MC) simulation 

is usually used. However, in classical MC simulation, scenarios with an undesired event (e.g., damage 

or failure event) typically occur only in connection with parameter combinations that define only a 

small portion of the total parameter space and, consequently, do not often get sampled. Therefore, a 

large number of simulation runs are required to determine the parameter regions leading to an undesired 

event and to estimate the probability of occurrence of the parameter region, i.e., the probability of the 

undesired event. Due to the complexity of the modeled accidents in a system such as a nuclear power 

plant (NPP), these simulation runs are often very time consuming. Therefore, using classical MC 

simulation to evaluate a targeted parameter region with low probability of occurrence is 

computationally infeasible. Adaptive sampling approaches can be used to increase runtime performance 

in this context. 

 

In the first part of this paper, an overview of the workflow of the adaptive sampling methods 

implemented in the software tool SUSA (Software for Uncertainty and Sensitivity Analyses) [1] is given 

and one of the implemented procedures is described in more detail. In the second part, the results of an 

application of two of the adaptive sampling procedures in SUSA are described. The exemplary event 

sequence studied is a loss of coolant accident (LOCA), where a peak cladding temperature (PCT) above 

1200 °C defines the undesired scenario. 

 

2.  Adaptive Sampling in SUSA 
 

Adaptive sampling algorithms are an approach to efficiently increase the relative number of samples in 

interesting parts of the admissible parameter space. Their goal is to reduce the number of simulation 

runs required while providing a high level of accuracy for estimating the probabilities of undesired 

scenarios. It should be mentioned that the generated simulation dataset can only be used for analyses 
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interested in the specific region of the parameter space leading to a particular undesired event. The 

interest of other analyses may be in other regions of the parameter space leading to other events and 

would require additional simulation runs. Therefore, adaptive sampling approaches do not always 

reduce the number of simulation runs required, especially when multiple analyses, all interested in 

different parameter regions, can use a common MC data set. However, for a single analysis or multiple 

analyses interested in the same region of parameter space, adaptive sampling of parameters can reduce 

the number of simulation runs by several orders of magnitude. 

 

The requirements for the implemented adaptive sampling approaches are the same as for classical 

sampling: a set of uncertain input parameters together with their probability distributions, and a 

deterministic simulation program calculating the system behavior depending on the input parameters. 

In addition, an algorithm is required to evaluate the usefulness of input parameter combinations for the 

analysis so that useful combinations are sampled more frequently. The classification of an undesired 

event may relate to a single output quantity of the simulation, e.g., the PCT with the critical threshold 

PCT > 1200 °C. In general, however, it can also refer to multiple quantities, which can for instance be 

calculated by applying an algorithm that computes, for example, a score that maps the multivariate 

dependence to a one-dimensional variable. For simplicity and to better understand the concept, only a 

single simulation output variable is considered in this paper to decide if an undesired event occurs or 

not. Furthermore, it is assumed that the undesired event is defined by a region either at the lower or 

upper boundary of the range of the considered output quantity and that the corresponding values can be 

ranked according to their distance from the targeted undesired event. In the following, when referring 

to a selection of samples near the target range, this also includes samples that are already within the 

target region. 

 

The general idea of the iterative approach of adaptive sampling can be described in the following steps. 

 

1. The initial step is to create a training dataset by randomly sampling the uncertain input parameters 

according to their probability distributions and to run the simulations with these samples. Due to 

the long duration of the simulation runs, only a small set of samples, e.g., 20 – 50, should be created 

for efficiency reasons. Since this initial step is not an integral part of an adaptive sampling 

algorithm, the initial training dataset can alternatively be taken from a previous uncertainty analysis 

if the uncertain parameters are the same. 

2. The training dataset created is used to train a single or multiple metamodels, i.e., machine learning 

algorithms, to predict the simulation result for the considered output quantity. 

3. A large set of input parameter values is randomly sampled according to the probability 

distributions, e.g., 104 – 105 samples, depending on the applied adaptive sampling algorithm, but 

instead of running the simulations, the trained metamodel(s) are applied to this sample to predict 

the simulation results. 

4. The predictions of the metamodel(s) are used to identify candidates of parameter combinations that 

are best suited to be added to the training dataset to improve the predictions of the metamodel(s), 

especially in the vicinity of the targeted parameter region. For these candidates the results are 

calculated by the actual simulation code; therefore, only a few samples should be selected, e.g., 

5 – 8 candidates. 

5. Depending on predefined termination criteria, the algorithm either terminates and provides the 

estimated probability of the targeted region, i.e., probability of the undesired scenario or the 

algorithm is repeated and returns to step 2, now with the enhanced training dataset. 

 

This general concept may vary slightly for a particular adaptive sampling algorithm, but the general 

approach remains the same. In SUSA, three adaptive sampling methods have been implemented to 

increase the sampling efficiency for accident analyses that aim to derive an estimate of the probability 

for rare undesired scenarios They are described in detail in [2]. For a better understanding of the 

adaptive sampling procedure, the GASA-PRECLAS algorithm is discussed here. The other two 

approaches, one based on Gauss processes, with a metamodel consisting of Gaussian Kernels, and the 

other based on a combination of subset sampling and support vector regression (SuSSVR), have already 

been discussed in [3], [4] respectively. 
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2.1.  The GASA-PRECLAS-Algorithm 

 

The GASA-PRECLAS algorithm (Genetic Adaptive Sampling Algorithm – Probability Estimation 

using an Ensemble of Classification Algorithms) combines a genetic algorithm and an ensemble of 

classification algorithms with a Bayesian approach. The algorithm was developed to achieve the 

following three goals: 

 

- Generality: The algorithm should be applicable on different kind of complex problems, especially 

on multivariate non-linear functions. 

- Usability: The metamodels should have a robust structure with only a few hyper-parameters, that 

need to be adjusted. 

- Efficiency: The dataset to train the metamodels should be created with small effort, i.e., with as 

few calculations as possible. 

 

In principle, these goals also apply to the other two adaptive sampling approaches since all algorithms 

aim to obtain a stable estimate of the probability of the undesired event. As the name implies, the 

GASA-PRECLAS algorithm is subdivided into two phases. First, the GASA algorithm is used to create 

a dataset with a minimum number of samples within the targeted parameter region leading to the 

undesired event. In a second phase, this dataset is optimized by the PRECLAS algorithm to produce a 

stable probability estimate for the undesired event. The reason for this separation is that the classifiers 

in the second phase require training data that contain at least some parameter samples that lead to an 

undesired event. Otherwise, the data would not allow any differentiation. After the metamodels contain 

at least some samples of both classes (inside and outside the targeted region), the second algorithm is 

applied, which has the main goal of precisely estimating the probability distribution for an undesired 

event. The workflow of both algorithms is illustrated in Figure 1 and described in detail below. 

 

2.2.  The GASA Algorithm 

 

The Genetic Adaptive Sampling Algorithm (GASA) integrates a genetic algorithm into an adaptive 

sampling approach and aims to generate a training dataset biased towards the targeted region with a 

limited number of simulation runs. The general idea of the genetic algorithm is to successively create 

new generations of individuals (observations) by selecting promising candidates as parents, 

recombining the parents´’ characteristics or genes for the new generation, and mutating the children’s 

genes. An overview over genetic algorithms can be found in [5]. 

 

In the GASA algorithm, a gene is equivalent to a sampled parameter value. A chromosome describes a 

combination of genes, i.e., a combination of values of all uncertainty parameters. For both, the GASA 

and the PRECLAS algorithm, not the parameter values themselves are stored in the genes or sampled 

parameter values, but rather the corresponding values of the cumulative distribution functions of their 

probability distributions. This has the advantage for machine learning algorithms that all values are 

normalized between 0 and 1. The conversion of the cumulative distribution function values to the actual 

parameter values is calculated each time before the simulation run. A chromosome or sampled 

combination of parameter values is then used either to run a single simulation or for the predictions of 

the metamodels. The one-dimensional simulation result can be represented by the function 𝐺(𝑥) where 

𝑥 represents the parameter vector used as input for the simulation. 

 

The GASA algorithm starts with a pre-generated sample. This is either a stored dataset, e.g., from a 

previous uncertainty analysis, or an MC sample of small size, e.g., 20 samples, based on the probability 

distributions of the uncertain parameters. For each vector of this initial sample 𝑥, the corresponding 

function 𝐺(𝑥) is calculated by running the simulation code. The training dataset 𝐷, consisting of the 

initial sample of vectors 𝑥  and their corresponding function values 𝐺(𝑥), is used to create a new 

generation of children and train metamodels to predict the function values 𝐺(𝑥) for a new large sample 

(population) of parameter vectors. The metamodels used in the GASA algorithm are a Random Forest 

(RF) Regressor, and a K-Nearest Neighbors (KNN) Classifier. The generation of the children is 

independent of the training of the metamodels, which can in principle be computed in parallel. 
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Figure 1: Flowchart of the Adaptive Sampling Procedure of the Two Parts of the GASA-

PRECLAS Algorithm (RF = Random Forest algorithm, KNN = K-Nearest Neighbors algorithm, 

PDF = Probability Density Function). 

 

 
 

First, an even number of parents is selected from the training dataset 𝐷 that is allowed to create new 

children. Only half of the samples in the dataset 𝐷  whose function values 𝐺(𝑥) are closer to the 

threshold defining the undesired event, are selected as parents. The pool of parents is randomly grouped 

into pairs. Each pair creates 𝑀 children, where for each child, the genes are randomly selected by one 

of the two parent genes. Each gene of a child 𝑥𝑖  is mutated by a value sampled from a uniform 

distribution between xmin =xi – xi(1 – xi) and xmax =xi + xi(1 – xi). To increase the variety of the genes for 

the generated children, the parents are again randomly combined to pairs for generating further children. 

The number of children produced by each pair as well as the number of repetitions for combining pairs 

and producing children can be adjusted. For the examples presented, 25 children are generated by each 

pair and the random combination of parents is repeated once. 

 

The trained metamodels, i.e., the RF and KNN algorithms, are then applied to the children to predict 

their function values 𝐺𝑅𝐹(𝑥)  and 𝐺𝐾𝑁𝑁(𝑥) . In addition, the absolute difference between the two 

predictions δ𝑦 = |𝐺𝑅𝐹(𝑥) − 𝐺𝐾𝑁𝑁(𝑥)| is calculated as well as the distance between the genes of each 

child and its nearest neighbor using the Manhattan metric δ𝑞 = Σ|𝑥𝑖 − 𝑥𝑖,𝐾𝑁𝑁|/𝑁. The predictions  

𝐺𝑅𝐹(𝑥) and 𝐺𝐾𝑁𝑁(𝑥) as well as δ𝑦 and δ𝑞 are considered as fitness parameters, which are used to 

select the children to be most beneficial to add to the dataset 𝐷. 
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The selection procedure of the children is divided into four steps, each selecting two candidates. 

 

- The first two candidates are identified by pre-selecting those five children closest to the targeted 

parameter region according to the prediction of the Random Forest 𝐺𝑅𝐹(𝑥). Out of these 5 children, 

the child with the highest value of δ𝑦 and the child with the highest value of δ𝑞 are selected. If the 

second child is the same as the first one, the child with the second highest value of δ𝑞 is chosen. 

- The same procedure is done for the next two candidates, except that the pre-selection now considers 

the sum of the prediction of the Random Forest and the KNN  𝐺𝑅𝐹(𝑥) + 𝐺𝐾𝑁𝑁. The selection of 

two candidates regarding the highest values of δ𝑦 and δ𝑞 or those next to the highest values, if the 

child has already been selected, is the same as in the first step. 

- In the third step, the pre-selection considers the ten children with the highest values of δ𝑦. Out of 

these children, the two children for which the predicted function values are closest to the threshold 

defining the undesired event according to 𝐺𝑅𝐹(𝑥)  and 𝐺𝑅𝐹(𝑥) + 𝐺𝐾𝑁𝑁 and which have not yet 

been selected as candidates are added to the candidates. 

- The last selection step is similar to the third one, except that the pre-selection considers the highest 

values according to δ𝑞 instead of δ𝑦. The selection procedure of the two candidates is the same as 

in the third step. 

 

This procedure always identifies eight children as the most promising candidates to be added to the 

training dataset 𝐷. The idea behind this is that, on the one hand, the candidates should be close to or 

inside the targeted parameter region and, on the other hand, to increase the variability of the training 

sample in order to identify further regions which are not yet covered by the training data. In case of a 

small training data, many children share the same nearest neighbor and would get the same value of the 

KNN prediction. Therefore, a combination of the Random Forest and the KNN is used here. 

 

For the eight candidates identified, the corresponding function values are calculated by running the 

simulations and added to the training dataset 𝐷. As long as the number of samples inside the targeted 

parameter region is below a number specified by the user, e.g., at least five samples, the algorithm 

continues to the step, where the metamodels are trained and the parents are selected, now using the 

enhanced training dataset 𝐷. If a sufficient number of samples are inside the targeted parameter region, 

the GASA algorithm terminates and the PRECLAS algorithm continues using the training dataset 𝐷. 

 

2.3.  The PRECLAS Algorithm 

 

The Probability Estimation using an Ensemble of Classification Algorithms (PRECLAS) builds on a 

pre-generated sample, e.g., provided by the GASA algorithm, which already includes a sufficient 

number of samples in the targeted region, e.g., five samples. In contrary to the GASA algorithm, the 

aim is not the number of samples in the targeted region. The PRECLAS algorithm aims at a stable and 

converging estimation of the probability distribution for an undesired event. 

 

In the first step of the PRECLAS algorithm, the given training dataset 𝐷 is used to train several machine 

learning algorithms creating metamodels for distinguishing between critical (undesired) and uncritical 

events. Multiple machine learning algorithms are used to compensate uncertainties of a single 

metamodel and identify certain and uncertain predictions. The following metamodels or machine 

learning algorithms are trained: 

 

- Decision Tree Classifier, 

- Decision Tree Regressor, 

- Gaussian Naive Bayes Classifier, 

- Non-Parametric Naive Bayes Classifier, 

- K-Nearest Neighbors Classifier, 

- Random Forest Classifier, 

- Random Forest Regressor. 
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Except of the non-parametric naive Bayes algorithm, all used machine learning algorithms can be found 

in the python library scikit-learn [6] with documentation of their functionality. Since the Gaussian Naive 

Bayes assumes a normal distribution of the input parameters, an additional non-parametric Naive 

Bayesian approach was developed using an underlying histogram distribution created empirically out 

of the training data (cf. [2]). 

 

While the classifiers are trained to distinguish between critical and uncritical events, the regressors are 

trained to predict the value of an output quantity of the actual simulation code. The predicted values of 

the regressors are then used to classify an event being critical or uncritical to get further independent 

predictions that are used to increase the certainty on the classification. 

 

After the training of the machine learning algorithms, a random sample of large size is created, e.g., 

consisting of 100,000 samples. The size of the population should be large enough to cover a large 

fraction of the parameter space, while not being too large that the runtime of the prediction of the 

metamodels would last too long. 

 

Since the Random Forest algorithms are ensemble learners, they take significantly more time to predict 

events, especially for a large population. For that reason, only all fast-running metamodels, i.e., all 

learners except the Random Forest algorithms, are applied to the created large sample in a first step. 

The following rules are applied: 

 

- Disagreement: If the classifications of the fast algorithms provide the same results, it is assumed 

that the predictions of the RF algorithms would provide the same results as the fast algorithms. 

- Similarity: If the mean Manhattan-distance of a parameter vector of the population to the nearest 

parameter vector of the training data is below a threshold (e.g., 5 E-03), the parameter vector of the 

large sample is assumed to be the same as the nearest parameter vector of the training data. 

- Uncertainty: If the average of the prediction probability whether the sample belongs to the targeted 

region is between 0.4 and 0.6 and therefore close to a simple guess, the classification is assumed 

as uncertain. The average of the prediction probability is calculated by the mean of the probabilities 

of two Naive Bayes algorithms. 

 

In a second evaluation step, the RF-algorithms are applied to those parameter vectors of the population 

for which the fast metamodels have been assessed as uncertain or too similar to existing event sin the 

training dataset. The selection of new candidates for the training data 𝐷 starts with a pre-selection 

according to the following criteria: 

 

- Disagreement: The classifications differ between the RF Classifier, the RF Regressor, and the 

KNN. 

- Uncertainty: The average of the prediction probability of the two Naive Bayes and the RF Classifier 

is between 0.4 and 0.6. 

 

Out of the parameter vectors of the population which meet one of the two criteria (disagreement or 

uncertainty) new candidates for the training dataset are selected. A cluster analysis is applied which 

separates the data into five different clusters. The K-Means algorithm is used, which is also 

implemented in the scikit-learn library [6]. The number of clusters is adjustable and should met the goal 

of high entropy between the clusters and low entropy inside the clusters. For each generated cluster, 

that candidate is selected, for which the predicted function values approximate best to the threshold 

defining the undesired scenario Therefore, the number of clusters defines the number of events added 

to the training sample in each iteration of the PRECLAS algorithm. 

 

For the probability estimation, the certain predictions of the fast metamodels are combined with the two 

predictions of the Random Forests for uncertain samples. A Bayesian approach is applied for both 

predictions to estimate the respective probability of the undesired event resulting in two Beta 

distributions. To combine the information of the two Beta distributions, the mean distribution is 

calculated describing the uncertainty about the probability estimation of the targeted region. 
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To retrieve a stable and converging probability distribution and further reduce the uncertainty 

introduced by the machine learning models the following criteria are used to decide, if the PRECLAS 

algorithm should terminate or if the algorithm should reiterate. At least four iterations are required to 

terminate the PRECLAS algorithm. Using the results of the last four iterations, the mean values of the 

probability distribution are calculated. The PRECLAS terminates, if 

 

- the standard deviation of the last four means divided by the mean of the last four means is below 

0.25, or if 

- the difference between the maximum and the minimum of the last four means, relative to the 

minimum, is below 0.5. 

 

Both thresholds can be adjusted, but the idea behind these criteria is to confirm a certain convergence 

of the probability distribution for the undesired event. However, decreasing these thresholds would 

increase the number of required simulation runs. The number of four loops used to calculate the criteria 

are also a trade-off between convergence and calculation effort. 

 

In case of a reiteration, the function values are calculated running the actual simulation code for the 

selected candidates of the cluster analysis, which are added to the training dataset 𝐷. Then, the next 

iteration of the PRECLAS algorithm starts with the training of the metamodels using the updated 

training dataset. 

 

3.  Application to a Loss of Coolant Accident 
 

The objective of the exemplary analysis for adaptive sampling is to localize the region of the input 

parameter space that leads to a peak cladding temperature (PCT) > 1200 °C during a loss of cooling 

accident (LOCA) and to determine its probability. 

 

The simplified reference model of a NPP that is used in this work, is a pressurized water reactor (PWR) 

of 1425 MWe. The accident is assumed to be initiated by a double ended guillotine break in the cold leg 

of the main coolant pipe. For the simulation of the accident, the simulation code ATHLET, version 3.2 

[7] was used. In the underlying data set, the reference NPP was characterized by a 4-loop model. The 

reactor pressure vessel was modelled with seven thermal hydraulic core channels (five normally loaded 

core channels, one highly loaded core channel and one hot channel with the hot rod). For the neutron 

kinetics a point kinetics model was selected. The data used correspond to a core at the beginning of the 

cycle. The initial boron concentration is 1150 ppm. The opening of the leak in the cold leg (Loop 10) 

was initiated at t = 600 s. The performance profile of a conservative deterministic analysis was 

considered, and the highest rod length power was about 460 W/cm (16 x 16 fuel elements). 

 

35 input parameters identified in a previous analysis [8] and used for the ATHLET simulation were 

considered as uncertain. To determine the range in which the PCT value varies as a function of randomly 

selected values for the input parameters, a classical uncertainty analysis was first performed using 

SUSA. A subsequent sensitivity analysis was used to determine the parameters with the largest 

influence on the PCT variation. 

 

3.1.  Classical Uncertainty and Sensitivity Analysis 

 

For the uncertainty analysis, a total of 60 different samples for the uncertain parameters were randomly 

selected and corresponding simulation runs were performed with ATHLET. The interesting result from 

these simulation runs is the temporal PCT curve in Figure 2 and the corresponding maximum value 

from this curve. The empirical distribution function for the maximum value of the PCT is shown in 

Figure 3. An upper (95 %, 95 %) tolerance limit (according to Wilks’ theorem [9]) of 1203 °C is 

obtained, which indicates that at least 95 % of the PCT maximum values are below 1203 °C with a 

statistical confidence of at least 95 %. Main reason for the relatively high PCT values is the conservative 

performance profile considered for the application. 
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Figure 2: Peak Cladding Temperature (PCT) Development over Time of 60 simulation runs. 

 

 
 

Figure 3: Empirical Cumulative Probability Distribution of the PCT with the upper (95 %, 

95 %) tolerance limit using Wilks’ theorem (blue diamond) for 60 simulation runs varied using 

classical Monte-Carlo sampling 

 

 
 

The calculated value of 1203 °C for the upper (95 %, 95 %) tolerance limit suggests that the proportion 

of PCT values below the 1200 °C limit is lower than 95 %. Therefore, upper tolerance limits with 

smaller coverage probability were calculated. The calculation of the upper (92 %, 95 %) tolerance limit 

resulted in a value of 1193 °C. Accordingly, it can be assumed that at least 92 % of the possible PCT 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

values are below 1200 °C and thus at most 8 % above the limit value. Based on the result that one of in 

total 60 PCT maximum values exceeds 1200 °C, the 95 % confidence interval according to Pearson and 

Clopper [10] is given as [4.22 E-04 – 8.94 E-02] for the probability that the 1200 °C limit will be 

exceeded. A more precise estimate of this probability can be determined with practical computational 

effort using adaptive sampling methods. In the following paragraphs, first the application of the GASA-

PRECLAS algorithm is outlined, focusing on the development of the sampling iterations. After that, 

the application of the SuSSVR method is described, focusing on the simulation results. 

 

3.2.  GASA-PRECLAS Application 

 

The initial training dataset consisted of 50 random samples from the previous uncertainty analysis, 

where only one observation was inside the targeted region (PCT > 1200 °C). Therefore, the GASA 

algorithm was performed to increase the samples in the targeted region to at least five samples. After 

two iterations, the GASA algorithm terminated with a total number of five samples inside and 60 

samples outside the targeted region. One simulation run was abnormally ended and yielded no results, 

which was excluded from the probability calculation. Using the generated training dataset of the GASA 

algorithm, the PRECLAS algorithm was applied, which terminated after nine iterations, meaning that 

the probability estimation meets the convergence criteria considering the previous iterations. In total, 

103 ATHLET calculations were required for this estimate in addition to the 50 ATHLET calculations 

for the initial training dataset. The results of the iterations of the PRECLAS algorithm are shown in 

Table 1. 

 

Table 1: PRECLAS Algorithm Results for the Training Dataset and Probability Distribution 

Parameters for the Targeted Region with the standard deviation 𝛔 and the difference between 

the maximum and the minimum 𝛅 of the last four means 

 

The final result of the PRECLAS algorithm provides a mean probability of P̂PRECLAS = 1.54 E-02 for 

the PCT exceeding 1200 °C with respect to the defined scenario. The 5 % and 95 % quantiles of the 

distribution are 1.06 E-02 and 2.07 E-02, respectively. 

 

As stated above, one case occurred in the initial training dataset of 50 samples where the PCT threshold 

of 1200 °C was exceeded. Using a Bayesian approach with a non-informative prior distribution, a mean 

probability of P̂MCS = 2.94 E-02 for the PCT exceeding 1200 °C is calculated from this random sample. 

The 5 % and 95 % quantiles of the estimate are 3.53 E-03 and 7.55 E-02, respectively. 

 

In order to be able assessing the quality of the estimation by the GASA-PRECLAS algorithm, it should 

first be noted that not only the mean probability but also the 5 % and 95 % quantiles of the PRECLAS 

estimation are in the 90 % range of the estimation obtained via the Bayesian estimation approach based 

on the initial training dataset, which indicates the validity of the estimation by the GASA-PRECLAS 

algorithm. 

Itera

tion 

Number of 

Simulations with 

PCT 
Mean 5 % 50 % 95 % 𝛔 δ 

> 1200 ≤ 1200 

0 5 60 4.35 E-03 2.50 E-04 3.65 E-03 9.11 E-03   

1 6 69 4.26 E-03 4.30 E-04 3.51 E-03 8.91 E-03   

2 6 79 6.20 E-03 5.00 E-03 6.17 E-03 7.53 E-03   

3 8 87 5.95 E-03 2.38 E-03 5.53 E-03 1.01 E-02   

4 10 95 9.34 E-03 3.79 E-03 8.89 E-03 1.57 E-02 0.317 1.19 

5 13 101 1.12 E-02 4.43 E-03 1.07 E-02 1.87 E-02 0.266 0.88 

6 16 108 1.24 E-02 9.20 E-03 1.23 E-02 1.59 E-02 0.270 1.08 

7 18 116 1.51 E-02 1.22 E-02 1.50 E-02 1.82 E-02 0.193 0.62 

8 20 124 1.83 E-02 1.48 E-02 1.82 E-02 2.20 E-02 0.203 0.63 

9 22 131 1.54 E-02 1.06 E-02 1.54 E-02 2.07 E-02 0.137 0.48 
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3.3.  Subset-Sampling Support-Vector-Regression Application 

 

In the SuSSVR approach, a machine learning algorithm is applied within a subset sampling. Here, a 

support vector regression is used [3], but other machine learning algorithms could have also been 

applied (cf. [11], [12]). The entire SuSSVR approach was automatically conducted resulting in a total 

of 414 simulation runs, including the initial 50 runs, before the termination criterion of the procedure 

was reached, i.e., until the trained SVR metamodel as well as probability estimator of the undesired 

event (PCT > 1200 °C) were judged to be robust enough. The calculated PCT values for all 414 

ATHLET runs ranged from 1087.21 °C to 1243.95 °C. PCT values exceeding 1200 °C were calculated 

for 318 runs. The distribution of PCT values for the 414 runs is provided in Figure 4. 

 

Figure 4: Empirical PCT Cumulative Probability Distribution (red) and Probability Density 

Function (green) for 414 Simulation Runs (50 runs using classical Monte-Carlo sampling and 

364 varied using the SuSSVR approach) 

 

 
 

The final robust SVR metamodel resulting from the SuSSVR procedure, was used to determine the 

occurrence probability for the targeted parameter region, i.e., the probability of the undesired event. 

The probability 𝑃(𝐷35) obtained from the subset sampling with the robust SVR metamodel, ranges 

from 8.16 E-03 to 9.36 E-03, and the associated variation coefficient is 0.022. 

 

A probability estimate of this magnitude (i.e., of ~ 0.01) is obtained, e.g., if 100 runs are performed as 

part of a simple MC simulation and one of these runs has a PCT value higher than 1200 °C. In this case, 

however, the estimator is subject to a large error, e.g., the associated variation coefficient is 0.995. To 

obtain the very low variation coefficient of 0.022, a total of 204,546 runs would have to be performed. 

Nevertheless, the number of runs with 414 is relatively high for an adaptive sampling approach 

regarding a targeted region that occurs with a probability of ~ 0.01. The reason for the relatively high 

number of 414 computational runs is the high number of 35 uncertain parameters to be considered for 

fitting the SVR model. The more parameters (influencing factors) to be included, the more observations 

(parameter vectors and associated PCT values) are required until a robust regression model is built. This 

suggests the step to perform a sensitivity analysis before applying the SuSSVR procedure and to 

consider only the most important parameters in the adaptive sampling approach. For the application 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

case presented in [3] with six uncertain parameters, the SuSSVR approach was highly efficient. It 

required only 265 simulation runs to predict a probability ranging between 3.5 E-06 and 4.0 E-06. 

 

It should be noted that, compared to the classical MC sampling, the SuSSVR method also provides an 

extensive sample of parameter combinations from the targeted parameter region, which allows to 

analyze this region more precisely and to specify essential characteristics. However, this is out of the 

scope of this publication. 

 

4.  Conclusions and Outlook 
 

In this paper, the adaptive sampling methods implemented for the software tool SUSA have been 

presented. One of the methods, an approach combining a genetic algorithm with an ensemble of 

classification algorithms, was described in more detail. The results of the successful application of two 

of the methods to a LOCA scenario is presented. In the exemplary application case, a total of 35 

uncertain parameters were considered. Therefore, a relatively high number of simulation runs was 

needed to provide a robust probability estimate of the considered undesired event defined by a peak 

cladding temperature exceeding the acceptance limit of 1200 °C.  

 

Generally, the implemented adaptive sampling methods significantly reduce the number of simulation 

runs required for estimating probabilities of rare undesired events as demonstrated in the application 

examples considering a lower dimensional parameter space. In the future, all three adaptive sampling 

procedures in SUSA (including a Gaussian process approach) need to be compared and validated on 

various application examples of different complexity. 
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