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Abstract: This paper summarizes the development, results, and enhancement activity of the Artificial 

Intelligence (AI) based automated nuclear power plant fuel reload optimization platform under the 

guidance of the United States Department of Energy, Light Water Reactor Sustainability Program, 

under the Risk-Informed Systems Analysis Pathway. The research focuses on the optimization of the 

fuel arrangement to maximize fuel utilization. The AI-based Genetic Algorithms work with both convex 

and non-convex, constrained or unconstrained problems. This can help explain the relationship between 

the fuel arrangement and fuel cycle length, in particular, the surrogate models used to reconstruct the 

Multiphysics problem maps the features/inputs of the problem to the fuel cycle length to provide such 

an explanation. The Genetic Algorithm is composed of several evolutionary processes: fitness 

evaluation, parent selection, crossover, mutation, survivor selection, and termination. Crossover and 

mutation are the main steps responsible for injecting randomness/heuristics to prevent the algorithm 

from getting stuck in local minima. In this paper, roulette wheel parent selection, one-point crossover, 

swap mutation, and fitness-based survivor selection are used for demonstration to convert the fuel 

arrangement problem from the physical world (phenotype space) to the computational word (genotype 

space) via a user performed encoding/decoding step. Here, the search variables (genes) are the fuel 

locations in the core, whereas the values each variable takes, represent the fuel identification that will 

be placed in that specific location. The optimization process was demonstrated with a quarter core initial 

loading problem. In the core, 56 locations are loaded with five types of fuel assemblies, each type has 

different amount of enrichment and burnable poisons. As a result, the fuel cycle length increased to 

over 590 days, which is very close to the expected value. The results and enhancements in the 

optimization algorithm are also discussed in this paper. 

 

 

1.  INTRODUCTION 
 

In U.S., as of 2019, the fuel represented about 20% of the total generating cost. The cost of typical fuel 

reload for a light water reactor (LWR) is about 50 million dollars [1]. To reduce the fuel cost, loading 

pattern optimization has been one of the most important considerations to reduce the amount of fuel 

used in the core. However, loading pattern cannot be optimized by itself. Fuel performance analysis and 

system analysis results also need to be considered to determine the loading pattern, which leads to long 

computational time. In this regard, artificial intelligence (AI) based genetic algorithm can largely reduce 

this burden using the physics code results as verification stage. 

 

There were other methods that showed similar or better performance under specific cases for loading 

pattern optimization. However, the genetic algorithm can generate multiple solutions to the optimization 

problem, so that it has maintained its reputation as a reference method in the loading pattern 

optimization fields [2]. In a previous study on pin lattice optimization, the authors compared the 

performance of five heuristic optimization methods: ant colony system, artificial neural networks, 

genetic algorithm, greedy search, and a hybrid of path relinking and scatter search. The authors 
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proposed that genetic algorithm and path relinking coupled to scatter search shows the best results in 

terms of global cost [3]. 

 

In this regard, a modular optimization framework (MOF) was proposed in a previous study. MOF aims 

to facilitate the application of other optimization methods as well as the genetic algorithm using object-

oriented programming [4]. Meanwhile, in this paper, Risk Analysis and Virtual Environment (RAVEN) 

[5] was utilized as a main controller as well as the reloading pattern optimization platform. RAVEN’s 

capability is not just limited to optimization, but it can also provide input decks to other physical codes 

and perform post-processing of the simulation results. This extensibility of RAVEN facilitates the 

coupling with other physical codes such as RELAP5-3D, which can lead to creating a unified 

framework considering physical phenomena. For example, thermal-hydraulic analysis and fuel 

performance analysis results can be used to identify if the optimized core meets the safety requirements 

or not. 

 

Therefore, plant reload optimization project has launched as a part of U.S. Department of Energy (DOE) 

Light Water Reactor Sustainability (LWRS) program Risk-Informed Systems Analysis (RISA) pathway 

[1]. As shown in Figure 1, the framework developed in this project consists of several elements: core 

design, system analysis, fuel performance analysis as well as the loading pattern optimization platform 

implemented in RAVEN. The entire framework is explained in more detail in a separate paper [6]. This 

paper is more focused on the methods and demonstration of the loading pattern optimization platform. 

 

Figure 1: Schematic Diagram of Plant Reload Optimization Platform. 

 

 

2.  GENETIC ALGORITHM  
 

2.1.  Overview of Genetic Algorithms 

 

Most of the terminologies in genetic algorithms are inspired from evolutionary theory in biology. For 

clear explanation, terminologies of genetic algorithm are described in Table 1 and schematic diagram 

is shown in Figure 2.  Chromosome, comprised of several genes, is a fundamental unit to reflect the 

object to optimize. Allele can be any type of data for each gene, binary, integer, real number, or values 

from discrete or continuous distributions. RAVEN [7] has capability for assigning different 

distributions to each allele. 

 

In the loading pattern optimization, for example, different types of fuel rods can be represented as alleles, 

and they can be assigned to spatial location which can be represented as genes. The arrangement of 

different types of fuel rod in the core, core configuration, can be represented as chromosome. To find 

optimal solution/chromosomes, i.e., optimal core configuration, the chromosomes are included in the 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

population to undergo optimization using genetic algorithm. As described in the example above, the 

real problem solution space, phenotype space, can be encoded to computational space, genotype space. 

 

Table 1: Terminology of Genetic Algorithm 

 
Figure 2: Schematic Diagram of Genetic Algorithm 

 
 

Figure 3 shows the optimization process using genetic algorithm step by step. First of all, the 

optimization starts with an initial population composed of several arbitrary chromosomes. Then the 

fitness of each chromosome is evaluated. To make new offspring, two chromosomes in the population 

are selected as parents and crossover and mutation are performed. Then the newly born offspring are 

included in the new population. Among the chromosomes in the population including the old 

chromosomes and new offspring from selected parents, survivors should be selected to develop the next 

population. If there is any constraint violated, the chromosomes can be replaced or repaired to meet the 

requirements. This entire process, from fitness evaluation to repair, is repeated until the final 

chromosome meets the termination criterion or iteration limit. 

  

Terminology Description Loading pattern 

optimization 

Phenotype space The actual real problem solution space, comprising of 

solutions in the raw (non-computational) 

representations. 

 

Genotype space The computational space comprising of all candidate 

solutions after encoding to a computational 

representation. 

 

Decoding and 

encoding 

The optional process to convert phenotype 

representation (real variables) into genotype 

(computational) representation. 

 

Population A subset of all candidate solutions in the genotype 

(encoded) space. 

Pool of possible 

solution (fuel rod 

arrangement) 

Chromosomes 

(Individuals) 

A single possible solution of the problem at hand 

taken from that population. 

Fuel rod arrangement 

Gene A single element in the chromosome. Location of fuel rod 

Allele The value in the gene. Different types of fuel 

Mating/Reproduction 

pool 

A collection of parents used to create a new 

generation. 

 

Fitness function The function used to rank the solutions (elitism). It 

might or might not be the same as the objective 

function. 

 

Reproduction 

operation/operators 

Operations that alter the composition of a certain 

chromosome, i.e., crossover, mutation, and selection. 
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2.2.  Fitness Evaluation 

Fitness evaluation is an essential element of the genetic algorithm which quantifies how the different 

solutions/chromosomes at the current iteration/population meet the design and performance goals and 

hence ranks the solutions accordingly. 

 

Figure 3: Genetic Algorithm Flow Chart 

 
Specifically, fitness is usually a function of the objective function and constraints and is sought to be 

maximized as the solution reaches the optimal solution. To achieve such functionality, fitness 

algorithms should satisfy several requirements such as: 

 

1. Evaluation function should be efficiently implemented, and fast to compute. 

2. Clearly defined such that the best and worst candidate should have the best and worst fitness 

scores respectively. 

3. Maximum fitness in the last population will be declared as the best candidate. 

4. As a candidate violates a constraint its fitness should become worse (less) to make it less likely 

to be selected in the next generations. 

 

In the Genetic algorithm implementation in RAVEN, several finesses have been considered including 

an inverse Linear fitness that is a linear combination of the objective function and the penalty in case 

any explicit and/or implicit constraints are violated. Another available fitness was inspired by [8] and 

was called `feasibleFirst`.   

 

2.3 Parent Selection 

 

To generate offsprings in the genetic algorithm, elitist parents should be selected before they enter the 

mating pool for the next generation based on specific rules. There are several algorithms implemented 

for parent selection including roulette wheel, rank selection, tournament selection, etc. For example, the 

roulette wheel algorithm assigns the probability that each chromosome is selected based on their fitness. 

These algorithms are already implemented in RAVEN so that analysts can pick any algorithm or build 
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their own algorithm for their specific problem. Figure 4 illustrates the roulette wheel algorithm. The 

roulette wheel algorithm assigns each parent to a portion of the wheel dictated by the fitness score of 

that parent, i.e., the area assigned to that parent is just the fitness divided by the sum of fitness. And 

while that gives a larger probability to the highest fittest individuals, the pointer of the wheel is 

randomly rotated and can still select a different parent. This helps avoiding getting stuck in local minima 

and keep selecting the same parents over and over. 

  

Figure 4: Roulette wheel parent selection. 

 
 

 

2.4. Crossover   

 

After the parents are selected, crossover operation generates the offspring from the parents. For instance, 

as a chromosome is made up of a series of genes, two parent chromosomes can exchange their genes at 

a specific location(s) to form the offsprings. Again, several algorithms are implementd including One 

point cross over, two points crossover, and uniform crossover. Figure 5 shows the one-point crossover 

as an example of the crossover evolutionary operation. 

 

Figure 5: One-Point crossover 

 
Figure 6: Scramble Mutation 

 
2.5.  Mutation 

 

After the generation of offspring, the genes in each chromosome can also be randomly altered. Several 

mutation algorithms are implements to offer the user a vast spectrum of options to perform mutations 

such as swap mutation, scramble mutation, inversion mutation, and bit flip mutation. The randomness 

induced by these algorithms helps escape from valleys and local minima in nonconvex problems. Figure 

6 depicts one of these mutation mechanisms namely the scramble mutation.  
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2.6.  Survivor selection and repair 

 

To fill the population with the most elite chromosomes, the algorithm selects which chromosomes will 

survive in the next generation. For example, in fitness-based parent selection, a few chromosomes with 

lower fitness can be removed from the population and replaced with fitter children, so that the next 

generation has higher overall fitness. Once survivors are identified, a reoair process is carried out to 

make sure the crossover and/or mutation did not cause any violations, for instance if the problem should 

not allow repeated values or the fuel inventory allows for limited number of a certain fuel id, but the 

crossover lead to violating these design specs, a repair process should fix these issues by replacing the 

violating gene by a random value withdrawn from the associate discrete distribution [1]. Figure 7 

outlines the fitness based survivor selection mechanism. 

 

Figure 5: Fitness-based survivor selection 

 
2.7.  Convergence Criterion  

 

After going through numerous iterations to find the optimum chromosome, specific criteria should be 

determined to terminate the iterations. The genetic algorithm can have multiple termination criteria. For 

example, the iteration can be stopped (1) if it reaches the maximum number of iterations or (2) if it 

meets a specific termination criterion such as p-averaged Hausdorff distance between two consecutive 

generations [1]. 

 

2.8.  Optimization Methodology Enhancement 

 

Unlike gradient-based methods, metaheuristic methods such as Genetic algorithms exploit randomness 

to pick the next candidates. On one hand this reduces the likeliness of getting stuck in local minima, but 

on the other hand will cause slower convergence. This problem is magnified for Multiphysics problems 

such as the problem at hand. Multiple enhancements are suggested to mitigate this issue. In this 

subsection, enhancements are outlined to demonstrate the upcoming directions of this work.  

 

Ideas to enhance the optimization framework include - but are not limited to – exploring active 

subspaces hosting search directions that increase the fitness and then contain the evolutionary 

operations (i.e., crossover, mutation, etc.) to pick the offspring from those subspaces [9]. Another 

potential enhancement is to accelerate the genetic algorithm using Markov Chains [10]. Moreover, 

hybridization with other metaheuristic optimizers such as Particle Swarm, Ant Colony, and Bee 

algorithms has proven to offer deep enhancement to the optimization framework [11]. Finally, recasting 
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the problem as a reinforcement learning problem can be used to compare and benchmark the results 

from the genetic algorithms [12].  

 

3.  DEMONSTRATION OF PLANT RELOAD OPTIMIZATION FRAMEWORK 
 

3.1.  Core Design Optimization Process 

 

The genetic algorithm is the optimization method involved in the plant reload optimization framework. 

The framework is composed of system analysis, core design, fuel performance analysis, and 

optimization platform as shown in Figure 1. The components are connected closely to each other, and 

exchange information required for calculation. More detailed explanation of the plant reload 

optimization framework is presented in a separate paper [6] as mentioned above. 

 

This paper is more focused on the optimization platform using RAVEN [5]. The core design process is 

shown in the flowchart in Figure 8. The process starts with initial guess core configuration. In this 

project, a nodal code SIMULATE-3 [13] and a lattice code CASMO-4E [14] are used for reactor core 

simulation and cross section calculation. 

 

Figure 8: Flowchart of Core Design 
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Based on the initial core configuration, equilibrium core or cycle can be computed after multi-cycle 

analysis for 3 refueling cycles. If the fuel reloading pattern (i.e., same composition and spatial loading 

of the fuel batches) remains almost constant, it can be considered as the equilibrium cycle [1]. In this 

paper, it is assumed that the equilibrium cycle is reached after 8th reload. 

 

Then this equilibrium cycle can be used as a starting point for the optimization of the core configuration. 

The optimization is performed using the genetic algorithm described in Section 2, and more detailed 

information about the optimization condition and results are explained in Section 3.2 with a toy problem 

for demonstration. After the optimization, the optimized core configuration is analyzed if it satisfies 

design and performance goals. For example, the design goal can be minimization of fuel load and the 

performance goal can be desired cycle length. 

 

If the optimized core configuration is required to be adjusted to meet the design and performance goals, 

the equilibrium core should also be computed again owing to the design differences. Even though the 

design and performance goals were satisfied with the equilibrium core before optimization, the layout 

of the assemblies will change during the optimization process. For example, the assemblies will face 

different neighbors, different enrichments, etc. Therefore, the cross section associated with those 

assemblies will also change, which is required to be recalculated. In other words, equilibrium cycle 

requires (1) core design which meets the design and performance goals and (2) cross section for the 

core design. If the optimization of core configuration makes any difference to meet these requirements, 

then it should be recalculated until it converges as shown in the flowchart in Figure 8. 

 

3.2.  Demonstration Results 

 

In this paper, demonstration of optimization method using genetic algorithm is performed on an ¼ core 

initial loading problem. As shown in Figure 9, there are 5 types of fuel assemblies which will be loaded 

to 56 locations. In terms of genetic algorithm, a core configuration (i.e., chromosome) is loaded with 

fuel assemblies located at each location (i.e., genes). The composition of five types of material is 

presented as follows: 

 

• Material 1 – Enrichment 2.2% in U-235, no burnable poisons 

• Material 2 – Enrichment 2.5% in U-235, no burnable poisons 

• Material 3 – Enrichment 2.5% in U-235, burnable poisons (8.0E-6 #/cm·barn) 

• Material 4 – Enrichment 3.5% in U-235, no burnable poisons 

• Material 5 – Enrichment 3.5% in U-235, burnable poisons (8.0E-6 #/cm·barn) 

 

Figure 9: Layout of possible materials in quarter core 
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The design goal of the optimization is minimization of the fuel load. The performance goals are (1) 

desired cycle length and (2) minimizing the radial and axial power peaking to make it less than 1.3. 

Additional performance goals can be set as constraints by safety bases from fuel performance analysis 

results such as maximum oxidation or soluble boron concentration, however the former two 

performance goals are only considered for the demonstration in this paper. 

 

In this paper, an objective function is set to maximization of the cycle length to meet the design goal 

which is minimizing the amount of fuel required to be used to meet the performance goals. To find an 

optimum core configuration (chromosome), population size is set to be 100 and 40 parents are included 

in the mating pool. More detailed condition is presented in Table 2 shown below. 

 

Table 2: Genetic Algorithm Used for Plant Reload Optimization 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the convergence of cycle length computed by the genetic algorithm. The results showed 

that the cycle length converged to an optimal value, around 600 days. Even though the material 

composition is not realistic enough, these results shown that the genetic algorithm can be used as a part 

of the entire plant reload framework.  

 

Figure 10: Optimized Cycle Length Using Genetic Algorithm 

 
 

Procedure for genetic algorithm Plant reload optimization 

Fitness evaluation invLinear function 

Parent selection Roulette wheel 

Crossover One-point crossover 

(80% crossover probability with randomly chosen 

crossover location) 

Mutation Swap mutation 

(90% mutation probability with randomly chosen 

mutation location) 

Survivor selection Fitness-based survivor selection 

Termination criteria 1) Maximum number of iterations 

2) P-averaged Hausdroff distance between two 

consecutive generations 
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4.  CONCLUSION 
 

As a part of RISA pathway in the LWRS program, plant reload optimization project has launched to 

develop a plant reload optimization framework. In the framework, RAVEN takes a role as a main 

controller of the entire framework as well as the optimization platform. This paper proposed the 

optimization platform using genetic algorithm and explained the optimization procedure step by step. 

In section 3, the genetic algorithm is demonstrated using a simple quarter core problem. The results 

showed that it converges reasonably to the expected optimum value. However, the optimization 

conditions such as material composition and constraints are not realistic enough to represent the 

physical phenomena. Therefore, the genetic algorithm will be improved using more realistic conditions 

in the future.  
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