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Abstract: Bearings are indispensable equipment in complex machinery. Many studies developed 
analyses to improve the effectiveness of predictive maintenance for these components. Thus, Deep 
Learning (DL) models for diagnosis and prognosis of equipment failure modes can be highlighted. For 
this purpose, many applications have used supervised learning methods, such as Support Vector 
Machine, Multilayer Perceptron, and Convolutional neural networks. However, in practice, labelled 
data connected to the conditions of real-time systems can be more complex and costly to obtain. In this 
sense, we highlight unsupervised learning models, where the algorithm discovers by itself through data 
exploration, the possible relationships between data points. Hence, this paper aims to apply the 
unsupervised Variational Autoencoder method to diagnose failure modes of bearings and gears. The 
role of data preprocessing is also considered, since the data are subject to Short-time Fourier Transform 
and Continuous Wavelet Transform and compared to case by using raw data. Two databases available 
in the literature are used for analyses purposes. Finally, the results will be compared with other methods 
to validate the models’ effectiveness. 
 

 

1. INTRODUCTION 

Higher demands for reliability and operational safety in modern production systems have been driven 
by technological advancements in machine automation, integration, and precision  [1]. Rotating 
machinery, as a critical piece of mechanical equipment in modern industry, operates in a complicated 
environment with high temperatures, fatigue, and a large load. Generated failures may result in serious 
accidents, ensuing in significant financial loss and casualties. Intelligent diagnostics, as a fundamental 
component of Prognostics Health Management (PHM), is designed to detect failures appropriately for 
a wide range of rotating machinery, including helicopters, aviation engines, wind turbines, and high-
speed trains. Traditional intelligent diagnosis methods include feature extraction using signal processing 
methods and defect classification adopting Machine Learning (ML) approaches, for which we have 
seen significant progress [2–4]. 

Bearing defect detection is effectively served by fault classifiers based on decision trees (DT) [5,6], 
support vector machines (SVM) [7], k-nearest neighbour (k-NN) [8], convolutional neural networks 
(CNN) [8], and deep belief networks (DBN) [9]. All of the solutions based on ML that have been 
suggested require historical, labelled failure data for training, i.e., they are supervised, which is difficult 
to come by in industry.   

On the other hand, the technique of f itting models to unlabelled data is known as unsupervised learning, 
which could be achieved with a Variational Autoencoder (VAE) that is a type of generative deep 
learning model. Indeed, a generative model is an unsupervised learning model that can generate new 
data points that were not present during training. By minimizing the reconstruction error and the 
Kullback-Leibler Divergence (KLD) between an encoded sample and a Gaussian standard distribution, 
the VAE performs variational parameter inference using neural networks in an encoder-decoder 
structure, which is equivalent to maximizing the evidence lower bound (ELBO). Moreover, the 
"reparameterization trick" can be used to optimize this goal using gradient descent algorithms. The 
latent variables can be given as a distribution using these generative models [10].  
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Therefore, this paper aims to apply VAE for bearing failure mode diagnosis. Two databases available 
in the literature will be used. In addition, three different architectures will be used in the encoder and 
decoder stages. They are structured from the Multilayer Perceptron (MLP), differentiated by the number 
of layers. It is worth pointing out that in the classification stage, in all three architectures, the network 
also consists of an MLP. In addition, we also evaluate the performance of three different input types, 
namely CWT, STFT and Slice. The results are compared in order to identify the model that best fits the 
databases. 

The remainder of this paper is structured as follows: Section 2 gives a short description of the bearing 
databases, Case Western Reserve University (CWRU) and Jiangnan University (JNU). Section 3 
addresses a theoretical background about VAE, as well as the evaluation metrics. Section 4 describes 
the architectures of the models and the input types. Session 4 presents the results and discussions. 
Finally, Section 5 addresses the conclusions. 

2. DESCRIPTION OF THE DATABASES 

In this paper, two databases were analysed, the CWRU and the JNU. It is important to highlight that 
they have different difficulty levels, the CWRU being the simplest and the JNU the most complex, as 
established by Zhao et al. [4]. With that in mind, we can observe the results for different datasets and 
the model’s performance to each one. 

2.1. CWRU dataset 

The CWRU database consists of vibration data collected from a bearing of an engine in the laboratory. 
Failures are implanted in the motors from electrical discharge machines with test diameter performed 
with the engine load starting from 0 to 3 HP [11]. Table 1 shows the different failure modes, the 
diameters used and the proportion of each class in the dataset. Vibration data are collected at a rate of 
12k samples per second from accelerometers connected to the equipment, at two points, in the upper 
and lower turbine of the device. This test bench was built with the objective of building database from 
the insertion of the main modes of failures present in bearings, which are in general, critical components 
of rotating equipment (motors, rotors, generators, compressors, pumps, among others) present in most 
industries [12]. Similar to [4], we used data collected from the drive end, and the sampling frequency 
is equivalent to 12kHz at 1797 rpm. 

Table 1: CWRU Fault Mode Description 

Mode Description Proportion  

Health State: the normal bearing at 1797 rpm and 0 HP 

Inner ring 1: 0.007 inch inner ring fault at 1797 rpm and 0 HP 

Inner ring 2: 0.014 inch inner ring fault at 1797 rpm and 0 HP 

Inner ring 3: 0.021 inch inner ring fault at 1797 rpm and 0 HP 

Rolling Element 1: 0.007 inch rolling element fault at 1797 rpm and 0 HP 

Rolling Element 2: 0.014 inch rolling element fault at 1797 rpm and 0 HP 

Rolling Element 3: 0.021 inch rolling element fault at 1797 rpm and 0 HP 

Outer ring 1: 0.007 inch outer ring fault at 1797rpm and 0 HP 

Outer ring 2: 0.014 inch outer ring fault at 1797rpm and 0 HP 

Outer ring 3: 0.021 inch outer ring fault at 1797rpm and 0 HP 

20.31% 

10.73% 

6.51% 

8.04% 

8.04% 

7.28% 

8.42% 

13.79% 

9.96% 

6.90% 

2.2. JNU dataset 

The Jiangnan University (JNU) bearing datasets consist of three bearing vibration datasets with three 
different rotating speeds (600, 800, and 1000 rpm) collected at 50 kHz. The JNU datasets show one 
health state and three fault modes (inner ring fault, outer ring fault, and rolling element fault). As a 
result, the total working conditions classes are twelve, as shown in Table 2 with the respective 
proportions for each state. 
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Table 2:  JNU Fault Mode Description 

Mode Speed Proportion Mode Speed Proportion Mode Speed Proportion 

Health 

State 
600 rpm 

17.95% Health 

State 
800 rpm 

14.81% Health 

State 

1000 

rpm 

17.66% 

Inner 

ring 
600 rpm 

5.13% Inner 

ring 
800 rpm 

5.98% Inner 

ring 

1000 

rpm 

4.56% 

Outer 

ring 
600 rpm 

4.27% Outer 

ring 
800 rpm 

5.41% Outer 

ring 

1000 

rpm 

6.27% 

Rolling 

Element 
600 rpm 

5.13% Rolling 

Element 
800 rpm 

7.69% Rolling 

Element 

1000 

rpm 

5.13% 

3. THEORETICAL BACKGROUND  

3.1. Variational Autoencoder 

Autoencoders (AE) are unsupervised methods and were proposed in 1986 as a neural network that is 
trained exclusively to replicate their input. AE are responsible for reducing the dimensionality of inputs, 
and then reconstructing the reduced data to get as close as possible to the original input. These structures 
are composed of two networks, one is called encoder that reduces the amount of data to a latent space 
smaller than the original. The second network, known as decoder, replicates the input data from the 
latent space [12,13]. Through the analysis of the encoder and decoder, it is possible to assume that 
encoders must learn to identify important information and combine it properly, to reduce dimensionality 
with the least loss of information possible, while decoders are trained to translate the information 
present in the latent space [13]. 

The Variational Autoencoder was proposed as a solution for the need for models capable of adjusting 
data with great dimensionality and are meant to map the data input to a multivariate probabilistic 
distribution a priori [14]. Therefore, a VAE model seeks to encode the training data, not in a vector 
space of reduced dimension, but in a probability distribution whose probability density function (PDF) 
which is defined a priori and, during the optimization process, the best parameters for this distribution 
are sought. The space of the a priori distribution is defined by equations already known, the encoder 
converts the data into parameters of the distribution. Comparable to what is done in the AE, the VAE 
training process is based on the replication error, which is measured in the loss function, but in the VAE, 
the loss function also contains on and KLD. This new indicator added represents the difference between 
two probability distributions and is used to assess the difference between the distribution of latent space 
data from the a priori distribution [12]. 

3.2. Variational Autoencoder Model Structure 

The encoder in the VAE model is developed to learn a variational approximation 𝑞φ(𝒵|𝒳)  to the 

posterior distribution 𝑝𝜃(𝒵|𝒳) . Where 𝜑  and 𝜃  denote the encoder and decoder parameters, 
respectively. The VAE objective is written as [13]:  

𝐿(𝜃, 𝜑; 𝑥𝑖) =  −𝐷𝐾𝐿(𝑞𝜑(𝒵|𝒳𝑖)||𝑝𝜃(𝒵)) + 𝐸𝑞𝜑(𝒵|𝒳𝑖)[log𝑝𝜃(𝒵|𝒳𝑖) (1) 

The 𝐷𝐾𝐿(𝑞||𝑝) represents the Kullback-Leibler Divergence. The KLD is a measure of the degree of 

similarity between two probability distributions, while the second term is the data reconstruction error 
[15–17]. The prior over the latent variables is usually set to be the centred isotropic multivariate 
Gaussian 𝑝𝜃(𝒵) = 𝑁(𝒵; 0, 1) . The posterior approximation 𝑞φ(𝒵|𝒳𝑖)  are Gaussian 𝑞φ(𝒵|𝒳𝑖) =

𝑁(𝒵; 𝜇(𝑖) ,(𝜎 𝑖)2). Then the KLD component can be expressed as: 

−𝐷𝐾𝐿(𝑁(𝒵; 𝜇(𝑖), (𝜎 𝑖)
2

)||𝑁(𝒵; 0, 1) =  
1

2
∑(1 + log((𝜎𝑗

(𝑖) )
2

) − (𝜇𝑗
(𝑖))

2
− (𝜎𝑗

(𝑖))
2

)

𝐽

𝑗=1

  (2) 
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The “J” means the dimensionality of 𝒵, 𝜇𝑗
(𝑖) and 𝜎𝑗

(𝑖) represents the j-th element of 𝑞φ(𝒵|𝒳𝑖). The 

difference between the posterior approximation 𝑞φ(𝒵|𝒳𝑖) and 𝑝𝜃(𝒵) = 𝑁(𝒵; 0, 1) is measured by the 

KLD component. The purpose of KLD is for each sample 𝒳𝑖  to calculate a posterior probability 
distribution 𝑞𝜑(𝒵|𝒳𝑖) that approaches the standard normal distribution. When the model converges, 

the encoder's latent variables will follow a normal distribution 𝑝𝜃(𝒵) = 𝑁(𝒵; 0, 1). The parameters 

𝜇(𝑖) and 𝜎(𝑖) are computed by the encoder networks, which can iteratively update with the optimization 

process. However, because 𝒵 (𝑖) is sampled from Gaussian 𝑞φ(𝒵|𝒳𝑖) = 𝑁(𝒵; 𝜇(𝑖), (𝜎 𝑖)2), the model 

is non-differentiable and cannot be optimized due to the latent variables. As a result, a differentiable 
transformation 𝑔φ(𝜀, 𝒳) of a noise variable 𝜀 is used to reparametrize the random variable 𝒵 [13]: 

𝒵 =  𝜇(𝑖) + 𝜎(𝑖)𝜀       𝑤𝑖𝑡ℎ  𝜀 ~ 𝑁(0, 1).   (3) 

Thus, the Eq. 1 can be expressed as: 

𝐿(𝜃, 𝜑; 𝑥𝑖) =  
1

2
∑(1 + log ((𝜎𝑗

(𝑖))
2

) − (𝜇𝑗
(𝑖) )

2
− (𝜎𝑗

(𝑖) )
2

)

𝐽

𝑗=1

+
1

𝐿
∑ 𝑙𝑜𝑔𝑝𝜃(𝒳(𝑖)|

𝐿

𝑙=1

𝒵(𝑖,𝑙) 

  (4) 

And 𝒵(𝑖,𝑙) = 𝜇(𝑖) + 𝜎(𝑖)𝜀(𝑙) ~ 𝑁(0, 1). The network can then be used to carry out the optimization 
procedure. The VAE can learn well-formed latent variables with a significant convergence speed 
without overfitting and reproduces the samples by sampling and decoding since the KL divergence is 
introduced as a loss function during the training process [12,13]. 

In this paper, we design a deep VAE for two-dimension (2D) input data using the MLP. In total, three 
architectures were used for comparison purposes. Three 2D inputs type was used, namely, Short-time 
Fourier transform (STFT), Continuous Wavelet Transform (CWT) and Slicing. They will be explained 
in section 3.3. The latent space dimension used is 8. The basic operating model works as shown in 
Figure 1 for all the different architectures. 

Figure 1: VAE Structure 

 

For the Architecture 1, we use an MLP for the encoder and decoder. The structures and encoder hyper-
parameters have 4 layers that have neurons ranging from 500 to 100. With a range of minus 100 neurons 
between layers. In the encoder, we also have 4 layers ranging from 600 to 100. The last framework 
presented is the one employed for the classification of failure modes for each one of the models 
presented earlier. The classification structure is connected to the latent space in both cases, and it’s a 
network composed by 5 layers, and the last one has the number of neurons equal to the number of 
classes for each dataset, which are 10 for the CWRU and 12 for JNU. 

In the Architecture 2 we also use an MLP with more layers to identify if there are improvements in the 
model. The number of neurons for these layers goes from 50 to 600, and each adjacent layer has a 
difference of 50 neurons, what means that in the de encoder the first layer has 600 neurons, the second 
has 550 until the last one, that has 50. For the decoder, the first layer contains 50 neurons and gradually 
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increases within structure until reaches the last layer with 600 neurons. Architecture 3 has, on the other 
hand, layers with multiple of 2 neurons. The encoder and decoder of this architecture have 5 layers with 
neurons ranging from 512 to 32. This type of structure, with multiples of 2, is the most found in VAE 
applications. But as we will see in the results section, the results, in terms of accuracy, were not the 
best. Therefore, after testing different structures, it was seen that the structures presented earlier 
(architectures 1 and 2) are able to classify better.  

3.3. Input types 

The Short-time Fourier Transform (STFT) is a Fourier-related transform applied to determine the 
sinusoidal frequency and phase content of local sections of a signal as it changes over time. To do it, 
the method for STFT computing is to split a long-time signal into smaller intervals of constant length 
and then compute the Fourier transform separately on each shorter segment [4,18]. This reveals the 
Fourier spectrum on each resulting segment. The chosen length of each sample is 33, resulting in 33 × 
33 images. 

The Continuous Wavelet Transform (CWT) is a widely used technique for signal processing and was 
first proposed for seismic processing. It comes as a solution to the failures of the Fourier Transform — 
since its analysis only occurs in the frequency domain — because it uses variable scale windows to 
process the data in the time-frequency domain [6]. The windows pass through the entire signal and each 
position of the studied spectrum is calculated. This process is repeated for larger and smaller windows, 
and then there is the signal representation in the time-frequency domain. The chosen length of each 
sample is 100, resulting in 100 × 100 images. Finally, the slicing image input consists of reshaping the 
non-processed data, i.e., the time domain input into a 32 × 32 image. 

3.4. Evaluation metrics 

The experiments were run with the proportions of 80% of samples as the training set and 20% of 
samples as the testing set which were randomly selected. To obtain reliable results and show the best 
overall accuracy that the model can achieve, we repeat each experiment five times. Four indicators are 
used to assess the performance of models, including the mean and maximum values of the overall 
accuracy obtained by the last epoch and the mean and maximum values of the maximal overall accuracy. 
For simplicity, they can be denoted as Last-Mean, Last-Max, Best-Mean, and Best-Max, respectively. 

4. RESULTS 

4.1. CWRU dataset 

Table 3 presents the metrics for evaluating the model used according to the type of data processing. For 
CWRU we can identify that the model with the best accuracy is STFT, followed by CWT, and finally 
Slice. In fact, the Slice model is expected to be the worst among the three, since the raw data is only 
transformed into images, without major transformations. Therefore, there is more noise in the diagnosis 
of failure modes. We can also make a comparison between the different architectures used in VAE. 
STFT and CWT had better results in architecture 1, i.e., increasing the layers of the MLP does not result 
in greater assertiveness of the model. While architecture 2 excelled, in terms of accuracy, in relation to 
Slice. Architecture 3 has better results compared to STFT in relation to Architecture 2, but Architecture 
1 still emerges. Finally, we can perform a comparison between the results of our architectures with 
those obtained by Zhao et al. [4] using a CNN. Regarding CWT and Slice, the supervised method has 
better metrics. As for STFT, on the other hand, the results are quite close. It shows that, with this type 
of data pre-processing, the VAE performs as well as the CNN. 
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Table 3: CWRU Accuracy Results for different architectures 

Architecture 1 

Metric STFT CWT Slice 

Last-Mean 0.9925 0.8127 0.3789 

Last-Max 0.9947 0.8199 0.3908 

Best-Mean 0.9966 0.8233 0.3968 

Best-Max 0.9989 0.8262 0.4057 

Architecture 2 

Metric STFT CWT Slice 

Last-Mean 0.7821 0.5757 0.4509 

Last-Max 0.7934 0.5858 0.4792 

Best-Mean 0.8090 0.5892 0.4792 

Best-Max 0.7966 0.5921 0.4641 

Architecture 3 
Metric STFT CWT Slice 

Last-Mean 0.9218 0.1769 0.1802 
Last-Max 0.9297 0.1769 0.1810 
Best-Mean 0.9282 0.1771 0.1857 
Best-Max 0.9361 0.1779 0.1863 

CNN – Zhao et al. [4]  
Metric STFT CWT Slice 

Last-Mean 0.9931 0.9885 0.8552 

Last-Max 1.0000 0.9907 0.9387 

Best-Mean 0.9946 0.9935 0.9464 

Best-Max 1.000 0.9940 0.9655 

Figure 2: CWRU Models Confusion Matrix, (a) STFT – Architecture 1, (b) CWT – Architecture 

1, (c) Slice – Architecture 1 confirms the information presented so far. For Architecture 1, we can see 
that in the confusion matrices, there are more matchings in Figure 2: CWRU Models Confusion 

Matrix, (a) STFT – Architecture 1, (b) CWT – Architecture 1, (c) Slice – Architecture 1a, that is, 
there were more right classifications in this scenario. The STFT model was able to correctly classify all 
normal health state data, i.e., state "0". It also correctly diagnosed all signals of failure modes 1, 6, and 
9, i.e., Inner ring 1, Rolling Element 2, and Outer ring 3. In CWT, there was a complete matching only 
for failure mode 4, i.e., Inner ring 3. Finally, in Slice, there was at least one error in each of the classes. 
Thus, the STFT input is the most appropriate for this database for the scope of this analysis. 

Figure 2: CWRU Models Confusion Matrix, (a) STFT – Architecture 1, (b) CWT – Architecture 

1, (c) Slice – Architecture 1. 
STFT - Architecture 1 

 
(a)  

CWT - Architecture 1 

 
(b) 

Slice - Architecture 1 
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(c) 

4.2. JNU dataset 

The results obtained for this dataset are shown in Erro! Fonte de referência não encontrada., and the 
same accuracy pattern present in the CWRU dataset results appears in the JNU, where the best results 
are found in the STFT pre-processed data, followed by CWT and Slice. But in this case, the accuracy 
is not as high as found in the CWRU data. In terms of architecture, the former was the one with the best 
results in terms of accuracy for all input types. Although the architecture 2 performed a bit better for 
the Slice data in comparison to the CWT, its results did not surpass the ones found in the first model. 
Similarly, architecture 3 performed better than architecture 2, but the first one is still better.  Finally, we 
can compare our results with those of a supervised method (CNN). The results obtained by Zhao et al. 
[4] show that the use of CNN is preferable when pre-processing the data with CWT or Slice. However, 
our three architectures were more effective when preprocessing data in STFT. 

Table 4: JNU Accuracy Results 

Architecture 1 

Metric STFT CWT Slice 

Last-Mean 0.6690  0.3780    0.2730  

Last-Max 0.6659 0.3748 0.2671 

Best-Mean 0.6690 0.3717 0.2587 

Best-Max 0.6598 0.3684 0.2543 

Architecture 2 

Metric STFT CWT Slice 

Last-Mean 0.5960 0.1660 0.1708 

Last-Max 0.6016 0.1720 0.1825 

Best-Mean 0.6082 0.1762 0.1913 

Best-Max 0.6111 0.1798 0.1937 

Architecture 3 
Metric STFT CWT Slice 

Last-Mean 0.6306 0.1670 0.2557 
Last-Max 0.6468 0.1757 0.2619 
Best-Mean 0.6399 0.1766 0.2717 
Best-Max 0.6468 0.1782 0.2746 

CNN – Zhao et al. [4]  
Metric STFT CWT Slice 

Last-Mean 0.4370 0.6974 0.4285 

Last-Max 0.4811 0.7236 0.4644 

Best-Mean 0.4716 0.7231 0.4866 

Best-Max 0.5166 0.7550 0.4957 

The confusion matrixes in Figure 3 gives the information regarding the classification for each class, and 
for the architecture 1 we can observe that the normal health states for each working condition (“1”, “5” 
and “9”) are the ones with more hits, like which is seen in the previous dataset. But the model is not 
good at classifying the fault states in the JNU case, and only class “1”, which corresponds to the health 
state for rotating speed 600 rpm, was a full hit. And for the second architecture, the performance is 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

inferior for all data, and for the CWT and the Slide data, the model classified all the points in only one 
class. 

Figure 3: JNU Models Confusion Matrix, (a) STFT – Architecture 1, (b) CWT – Architecture 1, 
(c) Slice – Architecture 1. 

STFT – Architecture 1 

 
(a)  

CWT – Architecture 1 

 
(b) 

Slice – Architecture 1 

 
(c) 

5. CONCLUSIONS 

In this paper, a VAE model for classification was proposed and two publicly available datasets were 
selected to evaluate its performance. Three data pre-processing techniques were considered in the 
analysis for each dataset, and the STFT input showed the best accuracy. For both datasets, the health 
state modes were the ones best classified by the model, while it struggled on how to determine which 
type of failure was present in the data. Probably the accuracy can be improved if the faults in distinct 
working conditions are consolidated in only one class instead of many, which is possible future step for 
this work. Although the model was able to make a considerable match for the CWRU dataset, this has 
not happened to JNU dataset, what shows that the difficulty presents in the datasets influenced 
considerably the performance. An important remark is that the increase in the number of layers in the 
encoder and in decoder was not directly converted to an improvement for the model’s learning ability, 
which might mean that more sophisticated models are needed. A possible way is to test different 
machine learning models such as Convolution Neural Networks within the VAE structure instead of 
MLP or even combinations of both models. The use of Generation Adversarial Networks can be also  
investigated to generate more data and boost the performance. 
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