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Abstract: Industry equipment reliability and asset management programs are essential elements that 
help ensure the safe and economical operation of nuclear power plants. The effectiveness of these 
programs is addressed in several industry-developed and regulatory programs. The Risk-Informed Asset 
Management project is tasked to develop tools in support of the equipment reliability and asset 
management programs at nuclear power plants. These tools are designed to create a direct bridge 
between component health and lifecycle data and decision-making (e.g., maintenance scheduling and 
project prioritization). This article provides a guide for specific use cases that the Risk-Informed Asset 
Management project is targeting. We have grouped uses cases into three main areas. The first area 
focuses on the analysis of equipment reliability data with a particular emphasis on condition-based data, 
such as test and surveillance reports and component monitoring data. The second area focuses on the 
integration of equipment reliability into system-plant reliability models to determine system-plant 
health and identify components critical to maintaining an operational system. Lastly, the third area 
manages plant resources, such as maintenance activities and replacement scheduling using optimization 
methods. Here, the primary focus is on supporting typical system engineer decisions regarding 
maintenance activity scheduling and component aging management. This is performed in a risk-
informed context where the term “risk” is broadly constructed to include both plant reliability and 
economics. This framework combines data analytics tools to analyze equipment reliability data with 
risk-informed methods designed to support system engineer decisions (e.g., maintenance and 
replacement schedules, optimal maintenance posture) in a customizable workflow. 
 
 
1. INTRODUCTION 
 
The Risk-Informed Systems Analysis (RISA) Pathway1 [1] of the United States Department of Energy 
Light Water Reactor Sustainability2 [2] program is conducting collaborative research that applies risk-
informed technology to assist operating nuclear power plants (NPPs) to reduce costs and support their 
adaptation to the changing economic and power generation environment. The research is being 
performed within the framework of specific use cases, which are intended to enable rapid technology 
development, deployment, and dissemination throughout the operating U.S. NPP fleet to address 
pressing economic, operational, or safety significance issues. 
 
One area of research in the Risk-Informed Systems Analysis Pathway focuses on developing methods 
and tools to optimize plant operations (e.g., maintenance and replacement schedules, optimal 
maintenance postures for plant structures, systems, and components [SSCs]) in a more cost effective 
manner than current approaches and makes better use of available SSC health and cost data. This is 
accomplished under the Risk-Informed Asset Management (RIAM) project by creating a direct bridge 
between component equipment reliability (ER) data and decision-making (e.g., maintenance scheduling 

 
1 Risk-Informed Systems Analysis website: https://lwrs.inl.gov/SitePages/Risk-Informed%20Systems%20Analysis.aspx  
2 Light Water Reactor Sustainability website: https://lwrs.inl.gov/ 
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and project prioritization). Here, we are supporting typical system engineer decisions regarding 
maintenance activity scheduling and component aging management. 
 
2. USE CASE OVERVIEW 
 
RIAM project capabilities can be grouped into three main areas: 
1. ER data analytics (see Section 4). Targeting the analysis of ER data to adequately measure 

component health. This area includes all methods designed to analyze numeric and text ER data 
(i.e., monitoring data, maintenance activities, work orders, and maintenance and issue reports 
[IRs]), employ historic data to detect abnormal behavior (anomaly detection) and the cause of such 
abnormal behavior (diagnostic), and predict SSC future performances (prognostic). 

2. Plant health digital modeling (see Section 5). Designed to model from a reliability perspective the 
considered system and plant and, more importantly, fully integrate ER data into such models. The 
main feature of these reliability models is that they encompass not only the reliability and 
availability of the system and plant but also economic aspects. The real challenge is to directly 
inform these models with the available ER data (historic and current). 

3. Resource optimization (see Section 6). Targeting the optimization of plant resources. Here, plant 
resources include multiple entities, such as plant operation, maintenance, and capital budgets; 
workforce tasks; and SSC lifecycles. This area is directly linked to the plant decision-making 
process and considers both short- and long-term decisions. 

 
3. RISK ANALYTICS PLATFORM WORKFLOW 
 
This section provides a more detailed guide on how the methods and tools developed under the RIAM 
project can be used to bridge ER data with decisions. We refer here to Figure 1, which graphically 
describes a complete risk analytics platform data workflow. The starting point is the set of ER data 
generated by the SSC monitoring system (bottom left of Figure 1), available for example from the plant 
monitoring and diagnostic center. The steps of this workflows are as follows: 
1. Analyze ER data using methods presented in Section 4 to track SSC health (i.e., performance and 

degradation) and identify possible anomalies in the SSC behavior (see Section 4 and lower left 
portion of Figure 1). 

2. Measure SSC health by determining the margin of specific SSC failure modes given current SSC 
conditions and historic data (see Section 5 and top-left portion of Figure 1). 

3. Determine margin values for the failure modes of the chosen SSC and propagate them through 
classical reliability models (e.g., fault trees) to determine the margin at the system-plant level (i.e., 
plant system and health) and the risk importance measure for each SSC failure mode (see Section 
5 and top-left portion of Figure 1) 

4. Choose the optimal set of projects (e.g., maintenances activities) given plant system and health 
information determined in Step 3 and follow one of two possible paths (see mid-left portion of 
Figure 1): 
a. Ranking-based path: Select the failure modes with highest consequences and importance 

measures and use economic constraints to filter the chosen project list 
b. Multi-objective optimization path: Choose projects based on both reliability and economic 

factors simultaneously (e.g., through a Pareto frontier analysis as indicated in Section 6.1) 
5. Set the optimal schedule for the projects chosen in Step 4 (see mid-right portion of Figure 1) and 

use the methods presented in Section 6.2 and [3] to set the optimal project actuation schedule based 
on reliability and economic constraints (i.e., medium- and long-term decisions) 

6. Partition each project into tasks and determine the optimal schedule of each task (i.e., short-term 
decisions) (see right portion of Figure 1) using the methods presented in Section 6, where tasks that 
might be provided by plant system engineers are added to the list of tasks for the projects chosen in 
Step 5. 
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Figure 1. RIAM toolkit as bridge between ER data to decisions: graphical representation of 

the workflow starting with SSC monitoring data (bottom left) to reliability modeling (top 
left) to project prioritization (center) and task scheduling (right). 

 
4. ER DATA ANALYTICS 
 
Typically, a single component SSC is part of a system of components (see Figure 2 [left]) where such 
a system is designed to provide a designed function, that is, emergence (such as electric power 
generation for a power plant). Each component contributes to the system emergence by providing a 
specified functionality used by other components through a set of connections where operands (e.g., 
mass, energy, or data) are exchanged. The goal of a system health program is to monitor not only the 
correct operation of each component but also health parameters, such as aging and degradation 
(indicated as 𝐹(𝑡) in Figure 2 [right]). In addition, a system health program is designed to perform 
appropriate actions to assure component functionality (indicated as 𝑇(𝑡) in Figure 2 [right]). In this 
paper, 𝑇(𝑡)  includes all the external stressors that contribute to altering component aging and 
degradation. 
 

  
Figure 2. System (left) and component (right) representation. 

 
When moving in more detail to the component level, it is vital to understand the relationships between 
monitoring and testing data, maintenance activities (MAs), and failure modes (FMs). Figure 3 provides 
a detailed functional-form description of a generic SSC by employing an object process methodology 
(OPM) diagram [4]. An SSC OPM diagram provides an essential description of the SSC from both a 
form and functional perspective. This diagram explicitly indicates how SSC internal functions 
(𝐹𝑢𝑛𝑐! , 𝑓 = 1,… , 𝐹) process and act upon operands and how the elemental components (𝑠𝑠𝑐" , 𝑟 =
1,… , 𝑅) support these functions. 
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Figure 3. SSC representation through an OPM diagram. 

 
From an ER perspective, monitoring and testing activities (i.e., 𝐹(𝑡)) act on both SSC functional (e.g., 
rpm recorded for an induction motor) and form (e.g., blade corrosion of centrifugal pump) elements. 
Degradation processes (i.e., 𝑇(𝑡)) directly alter the form-related elements of the component (i.e., 𝑠𝑠𝑐") 
that consequently affect SSC functional elements (i.e., 𝐹𝑢𝑛𝑐! , ). Typically, from a reliability 
perspective, component FMs are described in term of loss of function, and, hence, in the OPM diagram, 
FMs are only directly linked to the functional elements of the component (i.e., 𝐹𝑢𝑛𝑐! ,). Lastly, note 
that MAs (such as component replacement, refurbishment, or reconditioning), indicated as 𝑀𝐴  in 
Figure 3, act on the form elements of components (i.e., 𝑠𝑠𝑐"). 
 
For the scope of this article, the OPM diagram of a component represents the key point to automatically 
understand and analyze health data 𝐹(𝑡). In particular, it clearly links monitored and recorded data with 
FMs that might affect component performance and MAs that would restore component functionality. 
We are employing model-based data analysis methods with the goal of linking component models with 
data rather than using machine-learning methods, which solely rely on the available data in order to 
perform diagnostic and prognostic operations. Note that an OPM diagram extends FMs and effect 
analysis tables by providing a form and functional description of the considered system in a graphical 
form. 
 
The next step is to characterize a generic component SSC from a data scientist point of view. This is 
shown in Figure 4 where three levels are identified: the component level (which would correspond to 
what is shown in Figure 3), a sensor and monitoring level (which retrieves and records portions of 𝑇(𝑡) 
and 𝐹(𝑡) in digital form), and data level. Data retrieved from 𝑇(𝑡) (i.e., 𝜃(𝑡)) can be either textual (e.g., 
work orders) or numeric (e.g., environment temperature). We indicate here with “num” the portion of 
𝜃(𝑡) that is numeric while we indicate with “NL” the portion of 𝜃(𝑡) that is textual (NL here stands for 
natural language). Data retrieved from 𝐹(𝑡) has been portioned in two portions, component health and 
performance monitoring (𝜚(𝑡) and 𝛾(𝑡)), which can be numeric or textual in nature as well. 
 

 
Figure 4. System health program: component representation from a data point of view. 
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ER data can be of different formats (i.e., numeric and textual). In addition, the events and logs recorded 
in 𝜃#$(𝑡) or 𝛾#$(𝑡) can be defined over an interval or a single time instant. These two observations led 
to a challenge when we analyzed ER data: identifying a common data structure that can be employed 
to represent numeric and textual data and events defined over time instants and time intervals. The 
advantage of having a common data structure is that it considerably simplifies the causal representation 
of events and monitoring data for condition-based monitoring applications. 
 
This challenge has been resolved here by representing all elements of 𝜃(𝑡), 𝜚(𝑡), and 𝛾(𝑡) (numeric 
and textual) in symbolic form (i.e., a series of symbols). This approach has the advantage that it 
simplifies the integration of numeric data with recorded events to identify patterns and outliers. In more 
detail, the method is structured in the following four steps: 
1. Create a symbolic conversion of numerical time series using the SAX method [5]. Data 

preprocessing (e.g., identification of anomalous behavior) may be required depending on the 
situation. 

2. Create a symbolic representation of textual data by characterizing events and logs into a graph form 
using natural language processing (NLP) methods [6]. A graph form has the advantage that it easily 
captures the structural relationship among text objects (i.e., nouns, verbs). 

3. Combine data from Steps 1 and 2 into a common symbolic data structure. In our case, this is 
performed by creating a multivariate symbolic time series. 

4. Apply model-based causal inference methods on the structure generated in Step 3 by coupling data 
analysis methods with component OPM diagrams to infer component health, its FMs, and related 
maintenance activity that should be performed. 

 
4.1 Analysis of Textual Data 
 
Most methods found in the literature [6] process text reports using supervised learning to predict the 
report nature (e.g., failure, operating). Here we are following a different path by analyzing the sentence 
structure of logs and reports, organizing information in a structured form, and creating a structural 
relationship among text objects (i.e., understand who and what did what, when, why, and where). This 
is being accomplished by employing NLP methods to perform two main tasks, syntactic and semantic 
analysis. 
 
As a starting point, we are characterizing the content of a generic IR or a maintenance report. Note that 
maintenance report content is fairly straightforward since it basically reports component replacement 
or restoration activity. Thus, we can define two classes of IRs: 
• Class 1 IR: When the IR reports either an event (e.g., SSC malfunction) or data regarding the 

component health (e.g., excessive corrosion on pump impeller). 
• Class 2 IR: When the IR reports a causal relation between two nodes, the content of these nodes 

can be any combination between events and SSC health information linked by a causal relationship. 
Note that this classification scheme defined by these two mutually exclusive classes needs to be 
validated with NPP actual data to measure its validity (i.e., the degree to which the two classes are in 
actuality mutually exclusive). In the validation process, we can measure the percentage of actual NPP 
IRs that falls in each class and, more importantly, the percentage of IRs that do not fall in either class. 
Note that the classifications provided above are relevant to IRs related to plant equipment performance. 
Since IRs can be written on a wide variety of topics (e.g., issues related to programmatic performance, 
human performance, etc.), we expect that a substantial fraction of IRs would not be classified as one of 
the two classes related to the plant system and equipment health defined above. 
 
The first step in the analysis of text data is to perform a syntactic analysis [6] of the raw text by 
employing the rules of formal grammar. Here we have assumed that the text is in a digital form 
(typically in a string form) and performed the syntactic analysis through the following main steps: 
1. Sentence segmentation and word tokenization: translate each sentence into a list of string elements 
2. Part of speech tagging: identify grammatic elements in each string (e.g., nouns, verbs) 
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3. Named entity recognition: classify text entities (e.g., names, dates, events) and identify them (e.g., 
component ID, event occurrence time) 

4. Relation extraction: create a knowledge graph where entities identified in Step 3 are linked together 
in a graph that reflects the structure of the original sentence. 

While Steps 1–3 listed above are common in any NLP analysis, our approach deviates from the standard 
NLP method in Step 4 where we identify the elements of the SSC OPM model (i.e., operands, forms or 
functions) in the text. From each SSC OPM model, we can generate a set of textual elements that lists 
not only all OPM elements but also their relationship. 
 
In Step 4, we infer the causal relationship between elements of the IR. These relationships are in the 
form of cause and consequence. Here, we exploit the observations reported in the IR by plant system 
engineers and trace back causal relationship with other IRs using the SSC OPM models. 
 
The methods designed to extract information from IRs that belong to Class 1 has been structured in a 
similar way to the one presented in [7]. We, in fact, based our methods on a new set of rule templates 
based on specific trigger words and relations. At its initial stage, our work focused on developing status 
nouns and verbs that would indicate a degradation of SSC functions or SSC internal elements. The 
chosen set of status words includes verbs, adjectives, and nouns obtained again from the WordNet3 
database. For Class 1 IRs, we have identified an initial list of status relations encoded using STANZA, 
which are listed in Table 1. 
 

Table 1. Set of status relations. 

Relation 
A (noun) “status verb” “status adjective” 
A (noun) “status verb” “status verb-ing” 
“Status adjective” B (noun) “status verb” 
“Status noun” “status verb” prep. B (noun) 

 
These status relations were coded in a Python-based code that relies on the Stanford NLP library 
STANZA. Once the IR has been processed using all the NLP steps listed above, a set of tuples is created 
from each sentence in the form (SSC, form, function, health status). These tuples are designed to 
represent the sentence in digital form as follows: 
 

SSC; subject = ‘OPM function/form’; health status = ‘ok, ‘degraded’ or ‘anomalous’ 
 
As an example of Class 1 IR is provided as follows: 
 

Oil puddle was found in proximity of CCW Pump 1B. 
 
By using the NLP analysis in Steps 1–4 listed above using STANZA and NLTK Python libraries, the 
resulting grammatical structure of the IR is shown in Figure 5. This figure shows the part of speech tags 
represented on top of each word and the grammatical dependencies4 between words (represented with 
arrows). 

 
Figure 5. Grammatical decomposition and analysis of the example Class 1 IR. 

 
3 WordNet official website: https://wordnet.princeton.edu/  
4 Refer to https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf for a complete description 

of each Stanford dependency 
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Step 4 is accomplished by looking in the IR for specific SSC tags (i.e., CCW pump 1B). Here we have 
also assumed that SSC tags are unique and given. Once the SSC tag has been identified, its OPM model 
can identify OPM elements in the sentence that refer to such a model. Next, NLP analysis identifies the 
verb “find”  (i.e., verb being part of anomalous status). The following tuple is constructed: 
 

(SSC = CCW Pump 1B; subject = ISO VG100 oil; health status = anomalous) 
 
5. PLANT HEALTH DIGITAL MODELING 
 
Current reliability models are based on Boolean logic structures [8] (e.g., fault trees), which describe 
the deterministic functional relationship between SSCs and human interventions. Each basic event in a 
reliability model represents a specific elemental occurrence (e.g., failure of a component, failure to 
perform an action by the plant operators, recovery of a safety system, etc.), and a probability value is 
associated with each basic event, which represents the probability that the basic event can occur. 
However, maintenance and surveillance operations are typically not completely integrated into a 
probabilistic risk analysis (PRA) structure. In addition, a probability value associated with an event is 
thus an integral representation of the past operational experience for such an event, and it does not 
incorporate information on the present health status of SSCs (e.g., from diagnostic and condition-based 
data) and health projections (when available from prognostic data) on anticipated changes in SSC 
condition and performance in the near future. 
 
A possible alternate path can start by redefining the word “reliability” to encompass a broader meaning 
that better reflects the needs of a system health and asset management decision-making process. Rather 
than focusing on how likely an event is to occur (in probabilistic terms), we think in terms of how far 
this event is from occurring [9]. This new interpretation of risk transforms the concept from one that 
focuses on the probability of occurrence to one that focuses on assessing how far away (or close) an 
SSC is to an unacceptable level of performance or failure. This transformation has the advantage that it 
provides a direct link between the SSC health evaluation process and standard plant processes used to 
manage plant performance (e.g., the plant maintenance and budgeting processes). The transformation 
also places the question into a form that is more familiar and readily understandable to plant system 
engineers and decision makers. When dealing with condition-based data (actual and archived data), 
margin 𝑀6  is defined here as the distance between actual SSC observed past conditions (e.g., oil 
temperature, vibration spectrum) that lead to failure (see Figure 6). 
 

 
Figure 6. Margin in a condition-based maintenance context: evolution of an SSC condition as a 

function of time and margin definition. 
 
Consider now two components (𝐴 and 𝐵). The 𝑀6 for both components can be visualized in a 2D space, 
as shown in Figure 7. Starting with brand-new components (i.e., 𝑀6%, 𝑀6& = 1), aging degradation that 
affects both can be represented by the blue line of Figure 7, which parametrically represents the 
combination of the normalized margins (𝑀6%(𝑡),𝑀6&(𝑡)) at a point in time t. Note that, if no maintenance 
(whether preventive or corrective) was ever performed on either component, this path would move from 
the coordinates (1,1), components 𝐴 and 𝐵 at the beginning of life to the coordinates (0,0) where both 
components had failed. We can identify these regions in Figure 7: the occurrence of both events where 
𝑀6% = 0  and 𝑀6& = 0  and the occurrence of either event when 𝑀6% = 0  or 𝑀6& = 0 . Now we can 
calculate the 𝑀6	for the events listed above. This is accomplished by following the definition of margin: 
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by measuring the distance between the actual condition of components 𝐴 and 𝐵  and 𝑀6  conditions 
identified by the event under consideration (e.g., the occurrence of both or either events): 
 

𝑀6(𝐴	𝐴𝑁𝐷	𝐵) = 𝑑𝑖𝑠𝑡>?𝑀6%, 𝑀6&@, (0,0)A 
𝑀6(𝐴	𝑂𝑅	𝐵) = 𝑚𝑖𝑛?𝑀6%, 𝑀6&@ 

(1) 

 
The function 𝑑𝑖𝑠𝑡[𝑋, 𝑌] is designed to calculate the Euclidean distance between points 𝑋 and 𝑌. 
 
Hence, exact solutions can be obtained extremely fast. More precisely, reliability calculations using 𝑀6-
based data can be performed by completing these four steps: 
1. Construct the fault tree (FT): at this point, an FT only contains deterministic information about the 

architecture of the system under consideration (i.e., it simply models how the basic events are 
related to each other from a functional perspective). 

2. Generate the minimal cut-sets (MCSs) from the FT: as also indicated in Step 1, an MCS still 
represents the minimal combinations of basic events that lead to the TE. 

3. Assign 𝑀6	to each basic event. 
4. Calculate the 𝑀6	of the union of the MCSs. 
As part of system reliability modeling, it is always important to determine the importance of each basic 
event. In a PRA setting, this is performed by relying on risk importance measures [8], such as Birnbaum 
or Fussell-Vesely. Given the different nature of 𝑀6 , it is possible to perform a risk importance ranking 
by relying on a classical sensitivity measure (derivative based) for each basic event 𝐵𝐸 defined as: 
𝑆&' =

(	*+(-')
(	*+(&')

. In other words, 𝑆&' indicates how a small variation of 𝑀6(𝐵𝐸) directly affects 𝑀6(𝑇𝐸). 
 

 
Figure 7. Graphical representation of event occurrences based on a margin framework. 

 
6. PLANT RESOURCE OPTIMIZATION 
 
6.1 Project Prioritization 
 
The FMs with a higher 𝑆&' (see Section 5) are the ones selected as candidates to be subject to MAs (see 
Figure 3). A list of possible options to address each failure mode is available where costs (e.g., 
procurement costs for a new or refurbished component) and benefits (e.g., increased margin for loss of 
production) are readily available or can be numerically determined. Given the candidate MAs and their 
options, we can now identify the best set of activities and options that give “the most bang for the buck.” 
 
This is accomplished by identifying the Pareto frontier [10] out of the all the possible MAs and options. 
The Pareto frontier is defined as the set of non-dominated solutions that are characterized by the highest 
value in at least one dimension. Let’s assume a decision can be taken from a set of options by 
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considering the utility and cost of each option. Using a graphical representation (see Figure 8), it is 
possible to plot each option as a point in a 2D space of cost vs. utility5: 
• Cost: this axis represents the cost associated with each option ranging from 0 (i.e., cheapest option) 

to a maximum value 𝐶/01 (i.e., the most expensive option). 
• Utility: this axis represents the added value (or the performance) associated with each option 

ranging from 0 (i.e., lowest performance option) to a maximum value 𝑈/01  (i.e., option with 
highest performance). 

 
Figure 8. Pareto frontier obtained from a set of options plotted in a cost vs. utility space and 

imposition of cost and utility constraints (right). 
 
Once the complete set of options have been generated and the utility and cost values have been 
determined for each option, the next step is the determination of the Pareto optimal frontier, which is 
fundamentally an envelope of options that dominates (in terms of both utility and cost) the set of 
remaining options (see Figure 8). 
 
6.2 Long-Term Decisions: Project Scheduling Given Budget Constraints 
 
The method described in Section 6.1 does not explicitly consider project actuation scheduling but 
instead focuses on the optimal subset of projects that provide higher value through a multi-objective 
optimization lens. In practical settings, project scheduling is done in phases (e.g., monthly, quarterly) 
wherein each phase budget is allocated, and the goal now is to choose the optimal project actuation 
schedule that minimizes costs and satisfies budget constraints [11]. 
 
6.3 Short-Term Decisions: Maintenance Activity Scheduling Given Personnel Constraints 
 
Once the project schedule has been finalized (see Section 6.2), each project is divided into tasks where 
each task is characterized by a set of parameters (e.g., duration, number of personnel required, list of 
required tasks that need to be performed prior to starting this task, skillset required, completion 
deadline). Plant resources are now constituted by a set of crews where each crew is characterized by the 
number of people, schedule availability, and available skill set. The goal is to minimize the time to 
complete all jobs [3] and tasks provided the constraints that the order of tasks for each job must be 
preserved and one task can be assigned to each crew [11]. 
 
7. CONCLUSION 
 
In this paper, we have presented a series of methods and models designed to create a direct bridge 
between ER data and ER related decisions. Even though this type of bridging is not new, we are here 
presenting a different structure for such a bridge. First, we have introduced a novel approach to analyze 
ER data that integrates logs and event data with numeric data available from plant monitoring and 
diagnostic centers in a common data structure (symbolic in nature). Rather than focusing on machine-

 
5 As indicated earlier, the number of attributes considered in complex settings can be 𝑁 > 2. Thus, in such cases, the space 

would be 𝑁-dimensional. 
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learning heuristics, the system view of the component (through a OPM diagram) provides the required 
knowledge to our data analysis methods to extract knowledge from text data retrieved by logs or 
workorders. A challenge of this class of methods is their reliability to effectively analyze large amounts 
of reports and correctly extract the information contained in them. Processed data can then be integrated 
into classical reliability models (e.g., fault trees) that are solved not by using a probability-based but a 
margin-based language. The main advantages of this method are that it allows a much better use of ER 
data and provides a more adequate risk importance ranking of the FMs for the considered set of SSCs. 
Lastly, the decision-making step is carried through by determining the set of projects and operations 
that provide “the most bang for the buck” (i.e., the Pareto frontier), prioritizing the actuation schedule 
for the selected projects (medium-term decisions), and identifying the optimal schedule that minimizes 
the completion time of the required maintenance tasks (short-term decisions). This is performed in a 
risk-informed context where the term “risk” is broadly constructed to include both plant reliability and 
economics. 
 
Acknowledgements 
 
This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-
05ID14517 with the U.S. Department of Energy. The United States Government retains and the 
publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a 
nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of 
this manuscript, or allow others to do so, for U.S. Government purposes. 
 
References 
 
[1] R. Szilard, H. Zhang, S. Hess, J. Gaertner, D. Mandelli, S. Prescott, and M. Farmer, “RISA 

Industry Use Case Analysis,” Idaho National Laboratory Technical Report, INL/EXT-18-51012 
(2018). 

[2] U.S. Department of Energy, “Light Water Reactor Sustainability Program Integrated Program 
Plan,” Idaho National Laboratory Technical Report, INL/EXT-11-23452 (2020). 

[3] D. Mandelli, C. Wang, M. Abdo, K. Vedros, J. Cogliati, J. Farber, A. Al Rashdan, S. Lawrence, 
D. Morton, I. Popova, S. Hess, C. Pope, J. Miller, S. Ercanbrack, “Industry Use Cases for Risk-
Informed System Health and Asset Management,” Idaho National Laboratory Technical Report, 
INL/EXT-21-64377 (2021). 

[4] D. Dori, E. Crawley, Object-Process Methodology: A Holistic Systems Paradigm, Springer ed. 
(2002). 

[5] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A Symbolic Representation of Time Series, with 
Implications for Streaming Algorithms,” 8th ACM SIGMOD Workshop on Research Issues in 
Data Mining and Knowledge Discovery, San Diego, June, pp.2-11 (2003). 

[6] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, O'Reilly Media 
(2009). 

[7] S. Doan, E. W. Yang, S. S. Tilak, P. W. Li, D. S. Zisook, M.Torii, “Extracting health-related 
causality from twitter messages using natural language processing,” BMC Medical Informatics 
and Decision Making, 19, pp. 71–84 (2019). 

[8] J. Lee and N. J. McCormick, Risk and Safety Analysis of Nuclear Systems, Wiley edition (2011). 
[9] D. Mandelli, S. M. Hess, and C. Wang, “On the Language of Reliability: A System Engineer 

Perspective,” in Proceedings of PSA conference (2021). 
[10] C. A. Mattson, A. Messac, “Pareto Frontier Based Concept Selection Under Uncertainty, with 

Visualization,” Optimization and Engineering, 6, pp. 85–115 (2005). 
[11] D. Mandelli and C. Wang, S. M. Hess, D. Morton, I. Popova, “Development and Application of 

Risk Analysis Toolkit for Plant Resource Optimization,” in Proceedings of PSA conference 
(2021). 


