
Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Risk Based Reliability Demonstration Test Planning for Decision Making 

Under Uncertainty 

 
Martin Dazera, Alexander Grundlera, Philipp Mella, Achim Benza and Marco Arndta 

aInstitute of Machine Components, University of Stuttgart, Stuttgart, Germany,  

dazer@ima.uni-stuttgart.de 

 

 

Abstract: Reliability assurance by empirical data collected from lifetime tests is always subject to 

uncertainty and thus to a risk of making wrong decisions. The type-I statistical error is quantified and 

minimized over the generally known confidence interval to ensure that the reliability of the population 

in field operation is valid. The type-II statistical error quantifies the risk of a failed reliability test and 

thus the risk of the product developer. A failed test generally means further iteration loops in the 

verification process and should be avoided accordingly. However, in the context of reliability 

demonstration, the type-II error is often neglected and consequently it is not known how high the 

probability of successful reliability demonstration is with the chosen test strategy. In this paper, a 

method is presented that allows a calculation of the type-II error based on prior knowledge, which is 

called probability of test success (Pts). Pts enables the objective comparison of available test strategies 

for scenarios with a wide variety of boundary conditions such as accelerated testing, system and 

component testing or different reliability targets. In the end, the test strategy and the required number 

of specimens can be determined, which has the lowest remaining risk under the available budget. 

 

 

1.  INTRODUCTION 

In reliability engineering and especially in reliability demonstration, life tests are still used because 

failure mechanisms of new technologies cannot be fully understood and thus cannot be described 

physically. I.e. there is always the problem that the limited information from the sample must be 

transferred to the population [1]. This lack of information in the sample poses a challenge to engineers 

because there is always uncertainty in decision making [2]. It is not possible to simply use a point 

estimator, because the information only corresponds to a certain confidence level, most of the times to 

50 %. Especially for reliability demonstration, this confidence is much too low to send thousands of 

potentially safety-critical products into field operation. In order to safeguard against the worst case, 

interval estimators are used consequently, which have a confidence interval as their result [1]. From a 

statistical point of view, this concerns the type-I error. For the calculation of the confidence interval, 

many different approaches are known as state of the art. Thus, approximative solutions like the Fisher 

confidence interval or numerical-simulative methods like bootstrapping exist to estimate the confidence 

interval [4]. The risk of misestimation can thus be reduced to a defined and acceptable level and prevent 

from disastrous field failure behavior. With this, the customer risk can be limited. 

From a statistical point of view, we know that in addition to the type-I error, there is also the type-II 

error [3]. The uncertainty of the tested sample also affects directly the life test itself, which means that 

wrong decisions are made due to uncertainty in testing. Imagine that a test strategy with only 3 

specimens is chosen to demonstrate a very high reliability target. It is obvious that the probability of 

this test being able to achieve the desired target will be very small even without doing any mathematical 

calculation.  

In contrast to the type-I error, procedures and calculation approaches for the type-II error are almost 

completely missing in reliability demonstration. Although, it is established practice e.g., in the area of 

Design of Experiments (DOE). Few calculation approaches for the type-II error exist, which are also 

by no means able to deal with different boundary conditions. Beside the approaches of DOE like e.g., 

from Montgomery, some few approaches by Meeker exist, but only for zero failure testing [3,4]. 

However, calculating the type-II error is almost inevitable to determine a suitable test strategy for the 

corresponding reliability target. In addition to many available test strategies that differ greatly in their 

essence, the risk of a failed test must also be calculable in order to keep it to a minimum. Without 
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considering the uncertainty of the sample for decision making, a failing test would almost exclusively 

lead to classifying the tested product as inadequate. This is due to the uncertainty allowing the 

possibility for the test to fail, although the product meets the reliability requirement in reality. Such a 

failed decision results in unnecessary additional development stages and increased time to market [5]. 

Furthermore, it can motivate unnecessary oversizing of products and therefore increase the carbon 

footprint as well as the product development cost. 

 

2.  PROBABILITY OF TEST SUCCESS FOR DECISION MAKING UNDER 

UNCERTAINTY 

From the considerations described, it can be deduced that life tests are statistical tests with non-normally 

distributed data. The planning and the results of the tests can therefore be treated and evaluated as 

hypothesis tests [6]. From the reliability demonstration point of view, the test is "only" performed to 

collect data that shows the product meeting the reliability target. From the classical hypothesis testing 

point of view, it should be shown that the product is as least as good than the requirement or the null 

hypothesis. Plotted on the life scale, the dependencies are shown in Fig. 1. The blue line shows the 

distribution of lifetimes under validity of the null hypothesis 𝐻0 with the required lifetime 𝑡𝑟, the yellow 

line shows the distribution under validity of the alternative hypothesis 𝐻1  of the test results 𝑡𝑅𝑟
. 

Figure 1: Life tests for reliability demonstration from a hypothesis testing point of view 

 

The null (H0) and alternative hypotheses (H1) can be expressed in terms of the corresponding life values. 

The null hypothesis represents the developmental starting point, where the developers do not know 

whether the product will achieve the required service life 𝑡𝑟 or not. Accordingly, the worst case has to 

be assumed, saying that the service life actually achieved 𝑡𝑅𝑟
 falls short of the required service life 𝑡𝑟. 

The null hypothesis is then written as: 

𝐻0: 𝑡𝑅r
< 𝑡r        (1) 

The life tests are performed in order to be able to reject the null hypothesis with the help of the empirical 

life data. At the same time, the alternative hypothesis is accepted, which consequently confirms that the 

product meets or exceeds the required service life: 

𝐻1: 𝑡𝑅r
≥ 𝑡r        (2) 

Confidence results from the complement of the significance level 𝛼 to: 

𝐶 = 1 − 𝛼         (3) 

and has been generally known under this term.  

Since the hypotheses in the context of the reliability demonstration can always be written in the same 

way, the statistical power of such a reliability demonstration test was defined as the Probability of Test 

Success 𝑃ts [2, 6] for better comprehensibility and in analogy to the confidence 𝐶. 𝑃ts can be written as: 

𝑃ts = 1 − 𝛽         (4) 

Accept H0 Accept H1
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According to Dazer et al. [2, 7], 𝑃ts is the probability with which a reliability test is able to demonstrate 

the required service life of a product with given reliability and confidence. Therefore, it is linked to the 

remaining risk of the manufacturer or producer. With this consideration, the planning of reliability tests 

corresponds consistently to the hypothesis testing idea thought. Both the risk for the type-I error (field 

risk) and that for the type-II error (test risk) can be quantified. Both risks can be used accordingly in the 

context of development activities. Similar to the context of DOE, the confidence interval is used for 

field assurance while the 𝑃ts serves as a basis for effort planning and selection of the best test strategy. 

As an objective measure of risk, it can be used to compare different testing strategies such as end-of-

life testing, zero failure testing, etc., including the required sample size. 

 

2.1.  Risk based end-of-life test planning 

The Pts can be calculated for a given sample size as the integral of the distribution function of the 

alternative hypothesis H1 [8]. 

𝑃ts = ∫ 𝑓𝐻1
 d𝑡𝑅r

+∞

𝑡crit
       (5) 

In Eq. 5. 𝑡𝑐𝑟𝑖𝑡 is the lifetime quantile linked to the selected confidence level. However, the distribution 

of the alternative hypothesis is required for the calculation, which makes the planning of End-of-Life 

(EoL) tests more complex than for the zero failure tests, see section 2.3. This is due to the scattering 

failure times, which means that the test time also scatters and thus the costs incurred must be statistically 

evaluated in the planning process. Since the exact same failure times never occur, a slightly different 

test result is always obtained - even if the test is performed with exactly the same conditions and sample 

size. Due to the scattering failures, the confidence interval also scatters. Therefore, no exact sample size 

can be determined for which the requirement can be demonstrated with 100 % confidence [8]. 

For the reasons mentioned above, prior knowledge about the expected failure behavior is required for 

test planning to give an estimation about the test result. Predecessor products, simulations or expert 

estimates can be used for this purpose. To calculate the 𝑃ts for a given test configuration of an EoL test, 

the test is simulated multiple times using a Monte-Carlo-Simulation. With a parametric or also non-

parametric bootstrap approach, the distribution functions of the null and alternative hypothesis are 

determined. Fig. 2 shows the procedure for the calculation with Parametric Bootstrap, i.e. the prior 

knowledge is available as distribution function (in this case Weibull distribution). When the prior 

knowledge is coming directly out of a sample than non-parametric bootstrap should be applied. 

Figure 2: Parametric Bootstrap Approach for the Calculation of 𝑷𝐭𝐬 of an EoL Tests [8] 

 

 

The procedure starts with prior knowledge. Prior knowledge is always linked to the alternative 

hypothesis H1. If it were already apparent that the reliability requirement cannot be met by prior 

knowledge, a life test would be obsolete. From the prior knowledge, which in this case is available as a 

Weibull distribution F*(t), n pseudo-random failure times are generated. The sample size corresponds 

to that of the test to be planned. From these pseudo-random numbers, which then represent simulative 

failure times, the failure distribution F1(t) is determined. From this, the lifetime quantile corresponding 

to the required reliability 𝑡𝑅r,𝐻1
can be calculated in the next step under the validity of the alternative 

hypothesis. Since the estimated failure distribution F1(t) contains the uncertainty of the sample, a Monte 

Carlo iteration is performed until the remaining numerical error is small enough. Finally, a calculated 

lifetime quantile is available from each iteration, describing the distribution of the test result (alternative 

hypothesis). The lifetime quantiles of the null hypothesis H0 are calculated using the location of the 

alternative hypothesis and the lifetime requirement 𝑡𝑟. Since the lifetime requirement is connoted with 

the null hypothesis, the random numbers already generated can be shifted [6, 8]. Since only the location 

Calculate lifetime

quantiles under validity of 

H0 and H1:
Prior knowledge:

Shape parameter b

Scale parameter T

Weibull distribution F*(t)

Sampling of n pseudo-

random failure times ti
using prior knowledge

Estimate failure
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Calculate tcrit with C

and Pts using Eq. (5)

Iterate
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of the lifetime quantiles should be changed, they are shifted by the ratio of lifetime requirement 𝑡𝑟 and 

estimated lifetime from the prior knowledge 𝑡∗ = 𝐹∗−1(1 − 𝑅𝑟), so that the following applies: 

𝐹0
−1(0,5) =̂ 𝑡𝑟        (6) 

Because the real reliability is obviously unknown we assume that the information from prior knowledge 

is a good estimate, stating that: 

𝑡𝑟(1 − 𝑅𝑟) ≅ 𝑡∗(1 − 𝑅𝑟)      (7) 

The ratio of lifetime requirement and assumed attainable lifetime from prior knowledge can also be 

referred to as design safety margin, since it relates requirement and real attainable service life (assuming 

correct prior knowledge) [2]. The design safety margin can be expressed and calculated as the 

following: 

𝑆 = 1 −
𝑡𝑟(1−𝑅𝑟)

𝑡𝑟𝑒𝑎𝑙(1−𝑅𝑟)
       (8) 

with 𝑡𝑟𝑒𝑎𝑙(1 − 𝑅𝑟) being the real but unknown lifetime of the product for required reliability 𝑅𝑟.  

Even if the Monte Carlo simulation means a high computational effort, it has the advantage that all test 

configurations can be simulated and there are almost no restrictions. Different censored tests can be 

easily represented in an analogous way to the EoL test. Special test rig conditions or other infrastructural 

restrictions can also be represented with the Monte-Carlo-Simulation of the test. Resulting duration and 

cost of the test can be supplemented by the required specimens and the running times. 

 

2.2  Risk based accelerated end-of-life test planning 

A test with equivalent field load is not possible for all products. This applies in particular to products 

with very long service lives for which it is not possible to accelerate sufficiently in time. In these cases, 

acceleration by using an increase of load is necessary. The test load is therefore deliberately increased 

in order to provoke failures more quickly. With the help of the determined lifetime model, it is possible 

to extrapolate the demonstrated lifetime to field load, which can be used for reliability demonstration 

as well. The method of 𝑃ts has also been extended for accelerated reliability demonstration tests. In 

essence, the calculation of 𝑃ts is based on the approach in Fig. 2, but the lifetime model of the particular 

failure mechanism must be taken into account [9]. 

Many lifetime models such as Wöhler and Arrhenius can be described as straight lines by logarithmic 

transformation. While the shape parameter must still be estimated as a variance measure, the scale 

parameter is now dependent on the load and can thus be expressed as a function of the lifetime model. 

For the log-linear case, the following applies: 

ln(𝑇) = ln(𝑚2) − ln (𝐵) ∙ 𝑚1       (9) 

In Eq. 9, 𝑚2 is the baseline, 𝑚1 is the slope parameter, and B is the acceleration variable. The likelihood 

function for Weibull distributed failure times with shape parameter 𝑏 just needs to be extended for the 

estimation for all load levels of the acceleration variable B. 

ln 𝐿 = ∑ ln (
𝑏

𝑚2∙𝐵−𝑚1
∙ (

𝑡𝑖

𝑚2∙𝐵−𝑚1
)

𝑏−1
∙ 𝑒

−(
𝑡𝑖

𝑚2∙𝐵−𝑚1
)

𝑏

)𝑛
𝑖=1    (10) 

The test planning procedure is shown in Fig. 3. It starts once again with the prior knowledge, this time 

extended by the lifetime model. Pseudo-random failure times are then generated for the specified 

increased test levels. From these, the parameters of the lifetime model and the shape parameter are 

determined from the likelihood function, see Eq. 10. The estimated lifetime model is then extrapolated 

to field load level. Thus, the model can be used to determine the field-level failure distribution F1(t) 

corresponding to the alternative hypothesis. Since the sampling error needs be considered as well, 

iteration must also be performed in a Monte-Carlo-Simulation. The remaining procedure is identical to 

the test planning on field load level. Due to the large number of parameters, the question quickly arises 

of how to select them for optimal test planning. Especially the location of the test levels and the 

allocation of the specimens to them have a significant influence on the 𝑃ts. Herzig examined accelerated 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

test planning in great detail in his work in a parameter study and gives general recommendations for 

application [9, 10, 11]. 

Figure 3: Parametric Bootstrap Approach for the Calculation of 𝑷𝐭𝐬 of an accelerated EoL Tests 

 

 

2.2  Risk based zero failure testing 

The Success Run Test is the best-known representative of the zero failure test procedures and is used 

very frequently in practice. It is a test with predefined running times to provide reliability demonstration, 

i.e. to verify that the product or system has a certain minimum reliability. It is common that no failure 

is expected during test run, therefore it is called Success Run Test. The Success Run Test could therefore 

also be seen as a special case of a right-censored test, where all test items are censored, i.e. all specimen 

are still intact at end of the test time. 

In contrast to EoL test strategies, the Success Run Test cannot be used to make statements about failure 

behavior. Since the test should have only few or no failures, no life data analysis can be performed and 

thus no lifetime distribution can be determined. For this reason, the Success Run Test is also limited to 

reliability demonstration, because it is used exclusively to verify a minimum level of reliability and can 

thus only confirm reliability requirements. This may sound like a minor limitation, but in fact it has 

quite far-reaching constraints, because no statement can be made about the actual location (scale) of the 

service life with Success Run Testing. 

Reliability demonstration is based on the binomial distribution with binary classification. Confidence 

is calculated as: 

C =1- ∑ (
𝑛𝑆𝑅

𝑖
) ∙ (𝑅𝑟(t𝑟))

nSR−𝑖𝑓
𝑖=0 ∙ (1 − 𝑅𝑟(t𝑟))

𝑖
   (11) 

Success Run is only able to estimate reliability, lifetime cannot be determined. Therefore, the 

hypotheses for calculating 𝑃ts  cannot be defined on the lifetime scale. Thus, reliability is used for 

defining the hypotheses [8]: 

𝐻0: 𝑅(𝑡r) < 𝑅r(𝑡r)     (12) 

𝐻1: 𝑅(𝑡r) ≥ 𝑅r(𝑡r)     (13) 

The binomial distribution can also be used to calculate the 𝑃ts . However, instead of using the 

requirements, the estimated failure probability or reliability at test time of the products is used coming 

from prior knowledge. Thus, one calculates the total probability that all test items survive the test 

according to their probability of survival at test time coming from prior knowledge 𝑅∗(t𝑟). The 𝑃ts is 

given by [5]: 

P𝑡𝑠= ∑ (
𝑛𝑆𝑅

𝑖
) ∙ (𝑅∗(t𝑟))

nSR−𝑖𝑓
𝑖=0 ∙ (1 − 𝑅∗(t𝑟))

𝑖
   (14) 

𝑛𝑆𝑅  being the necessary sample size for reliability demonstration using the Success Run Test. If 

planning is done without tolerating failures, Eq. (14) reduces to: 

 

P𝑡𝑠= (𝑅∗(t𝑟))
𝑛𝑆𝑅      (15) 
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The reliability of the required service life can be calculated from prior knowledge. If this is available as 

a Weibull distribution, the result is: 

𝑅∗(t𝑟) ≈ 𝑒
−(

𝑡𝑟
𝑇∗)

𝑏∗

     (16) 

with T* and b* being scale and shape parameter of the prior information Weibull distribution. 

 

3.  CASE STUDIES FOR RISK-BASED DEMONSTRATION TEST PLANNING 

USING 𝑷𝐭𝐬 

The scope of the study of optimal test planning is very large due to the large number of influencing 

factors. For example, reliability objectives (R, C, t𝑟), prior knowledge, design safety margin and many 

other parameters can change. For this reason, Mell trained neural networks for universal application of 

risk-based test planning [12]. In the following, the possible applications of risk-based test planning are 

illustrated using specific scenarios. 

 

3.1  End-of-life test planning 

In an investigation, the necessary sample size is usually needed at first, with which it is possible to 

demonstrate the reliability target with sufficient probability. 

Reliability demonstration is to be carried out for a gearwheel. The reliability requirement for tooth 

fracture is R = 90 %, C = 90 % with 𝑡𝑟 = 2 million revolutions. An EoL test should be used for 

demonstration purpose. The failure behavior can be estimated by early prototype testing with 𝑏 = 3 

and 𝑇 = 6,060,606  revolutions and thus serves as prior knowledge for test planning. Since the 

prototype does not represent the final production status and the production has been adjusted, the 

prototype tests cannot be used to demonstrate reliability. However, this prior knowledge is very useful 

for planning the reliability demonstration test. For an EoL test, the Bootstrap approach from Fig. 2 is 

used to obtain the curve of the 𝑃ts as a function of the sample size, shown in Fig. 4.  

Figure 4: Probability of Test Success for different sample sizes of an EOL test 

 

With this result, the necessary sample size can now be determined for the individual accepted risk of a 

failed test. In this context, a failed test means that reliability demonstration for the requirements cannot 

be provided. However, it should be noted, that a failure of the EoL test can be corrected very easily by 

performing a few additional tests. To achieve a 𝑃ts of 80%, at least 21 specimens are required. 

For comparison, if a Success Run test were planned, 22 specimens would be needed for demonstration, 

see Eq. 11, but the 𝑃ts would be only 45.4% and would not be suitable in this case. Realizing that the 

Success Run is unsuitable here is only possible using the concept of 𝑃ts. However, it remains to be 

verified that the 21 specimens of the EoL test can be run to failure by the available budget. For this 
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purpose, the simulated failure times can be used for estimation. For example, if it is concluded that the 

test budget would be used more than 50% of the time, a censoring time could be introduced if necessary 

to limit the run times of the specimen and thus reduce the run time costs. However, this could change 

the required number of specimens for a consistently high 𝑃ts.  

 

3.2  Accelerated test planning 

For the example shown above, in addition to the EoL test with field load, an accelerated test can also 

be used for the reliability demonstration. For this, the 𝑃ts is calculated using the procedure in Fig. 3. 

The reliability target remains the same and a Wöhler exponent of 𝑘 =  5 was assumed. The field load 

level and the test load levels are given in normalized notation to: 

𝐵𝐹𝑖𝑒𝑙𝑑 = 1 

𝐵𝑇𝑒𝑠𝑡,1 = 1,2 

𝐵𝑇𝑒𝑠𝑡,2 = 4 

The normalization basis is the field level with 𝐵𝐹𝑖𝑒𝑙𝑑 = 1. The low load level is tested with 1.2 times 

the field load. The high load level at 4 times the field load. According to Herzig's recommendations, 

60% of the specimen are tested at the high load level, because this corresponds to the most economic 

test, which at the same time gives statistically very good results [11]. For a test sample size of 21, this 

results in a 𝑃ts of about 65 %, see Fig. 5. This contrasts with the 80 % of the pure EoL test. This effect 

is mathematically justifiable and arises from extrapolation to the field level, which introduces additional 

uncertainty and thus reduces the 𝑃ts. In the pure EoL test, no extrapolation is necessary due to the field 

load level. For this reason, an EoL test will always achieve the highest 𝑃ts  under comparable boundary 

conditions.  

Nevertheless, it must always be considered for decision making process that the strong acceleration can 

reduce the testing effort. Due to the significantly shorter test time, more specimen can be tested than 

within the EoL test. Accelerated tests are therefore particularly suitable for tests with cost-intensive test 

durations. 

Figure 5: Probability of Test Success for different sample sizes of an accelerated EoL test 

 

3.3  Failure free test planning  

Reliability demonstration for a switching relay with a Success Run Test is to be provided. The 

requirements are as follows: 

𝑡𝑟 = 30,000 𝑐𝑦𝑐𝑙𝑒𝑠 

𝑅𝑟 = 90 % 

𝐶 = 90 % 

Sample size n
10

1
10

2
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Using the binomial distribution, the required number of samples is 𝑛 =  22. Since this is only a small 

product update, the failure distribution can be estimated from the field data of the predecessor product, 

which is: 

𝑏∗ ≈ 3 

𝑇∗ ≈ 96,000 𝑐𝑦𝑐𝑙𝑒𝑠 

The design safety margin in this example is also about 𝑆 ≈ 30 % as it is in the previous examples. 

According to Eq. 16, the survival probability per test specimen is as follows: 

𝑅∗(t𝑟) ≈ 𝑒
−(

𝑡𝑟
𝑇∗)

𝑏∗

= 𝑒
−(

30,000

96,000
)

3

≈ 97 %    (17) 

Eq. 15 can now be used to calculate the 𝑃ts:  

P𝑡𝑠= (𝑅∗(t𝑟))
𝑛𝑆𝑅

= (0,97)22 ≈ 51 %    (18) 

If this test was carried out in exactly this configuration, there would only be a chance of success of just 

over 40%. In addition, it should be considered for decision making, that a failure in the Success Run 

cannot be easily corrected. Either significantly more specimens would have to be tested without further 

failure or even more failures would have to be generated in order to perform an EoL life data analysis. 

Both variants are associated with considerable additional effort in the event of a failed test. 

 

3.4. Comparison of different test strategies regarding 𝑷𝐭𝐬 

As it can be seen from the case studies, it is possible to calculate the remaining risk of a failed test 

utilizing 𝑃ts for all common test strategies. This remaining risk should always be the basis for decision 

making. It became apparent that zero failure test strategies have considerable disadvantages from a 

statistical point of view. With comparable design safety margin, one will always achieve lower 

probabilities of test success. Grundler, Herzig and Dazer already carried out very extensive parameter 

studies on this topic [2, 5, 6, 7, 9, 10, 11]. Furthermore, a failing zero failure test entails further 

disadvantages, since it cannot be improved simply by a few additional specimens.  

If economic aspects such as test costs and time are added, the performance of zero failure tests improves 

slightly. With high design safety margins, high probabilities of test success can be achieved at very low 

cost, since the specimen all have to be tested only up to the required test time. As soon as the design 

safety margin decreases, the accelerated EoL tests are to be preferred in particular. 

 

4.  CONCLUSION 

Reliability test planning and reliability demonstration always take place under uncertainty. Due to the 

scattering lifetime (aleatory uncertainty) and the lack of information (epistemic uncertainty), decisions 

can only ever be made with a probability and therefore also with a remaining risk. For this reason, it is 

even more astonishing that the consideration of type-II error in reliability test planning has still not 

become well established. The 𝑃ts gives a tool with which the entrepreneurial risk of a failed reliability 

test can be evaluated. Furthermore, all known reliability test strategies can be evaluated with this 

objective statistical metric. This gives the possibility to identify the best possible test strategy for the 

individual use case just before decision making. 
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