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Abstract: To evaluate the risk of NPP, PSA analysis is widely conducted. Static PSA is powerful to 
consider the potential risk of the plant. However, the method is difficult to consider dynamic 
interactions. For the Dynamic PSA (DPSA) several analysis methods were developed and suggested. 
One of the widely used analysis methods is discrete dynamic event tree-based DPSA. However, the 
bottleneck in performing DPSA based on the discrete dynamic event tree method is the physical process 
model. The conventional physical process model is hard to consider the dynamic interaction in 
reasonable calculation time. Therefore, we suggested a data-driven simulation method for DPSA. The 
model consists of a model generator and a solution generator. The model generator dynamically 
generates governing equations with given data. And solution generator predicts the solution based on 
the generated equation from the model generator. By using the suggested method, the dynamic 
interaction considered prediction can be conducted. 
 
 
1.  INTRODUCTION 
 
Since nuclear power plant (NPP) is a safety-critical infrastructure, enhancing the safety of NPPs and 
minimizing risk are always important issues. To evaluate the safety of NPPs, the probabilistic safety 
assessment method is widely used. However, despite the strengths, PSA has several limitations. The 
conventional PSA method is hard to consider dynamic interactions. 
 
In the nuclear power plant, dynamic interactions can be classified into two categories. The first is 
dynamic interactions that have long-time constants. Examples that have a long time constant include 
plant aging, configuration changes, environmental variations, organizational changes, etc. To deal with 
dynamic interaction that has long time constants, prognostics research was conducted [1]. The second 
is dynamic interactions that have short time constants. For instance, operator interactions, thermal-
hydraulic processes, interaction within instrumentation and control systems, etc. According to 
NUREG/CR-6942 [2], dynamic interaction with short time constants is classified into type1 and type2 
interaction. For the dynamic probabilistic safety assessment (DPSA), dynamic interaction with short 
time constants should be modeled and simulated (especially type1 interaction). 
 
For the dynamic PSA analysis, several methods were suggested. Monte Carlo-based DPSA method [3] 
can simulate the actual process and random behaviors. However, in the case of an actual NPP, the 
number of possible actions is extensive. Therefore, the method inherently has calculation problems. 
And also, the Markov modeling-based DPSA methods [4] require intensive computation as the state of 
the system increases. A continuous event tree-based DPSA method is also suggested. However, the 
CET method has limitations in that the method requires problem-specific algorithms. A dynamic fault 
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tree-based DPSA methodology [5] using dynamic gates (PAND, SEQ, etc) has been proposed, however, 
the method requires pre-requirement of physical process responses.  
 
One of the widely used analysis methods for DPSA is the discrete dynamic event tree (DET) method. 
The dynamic event tree method consists of the physical process model, equipment model, and operator 
model. However, the bottleneck of DET-based DPSA is the physical process model. In the case of NPP, 
in Korea, multi-dimensional analysis of reactor safety (MARS) code is widely used which is based on 
reactor excursion and leak analysis program (RELAP) code. The MARS code accurately simulates the 
given condition. However, because the analysis is based on a numerical method, the code inherently 
has a time-accuracy tradeoff. To increase the analysis resolution, the mesh size should be finely divided. 
Then the finely divided mesh requires more calculations. And also, the analysis code is hard to reflect 
the change of state due to the operation of the component. 
 
Therefore, we propose a novel AI utilizing Physics Related Information-based Simulation Method (A-
PRISM). A-PRISM consists of a solution generator and an equation generator. Both generators are 
based on physics informed neural network model. The solution generator calculates the simulation 
results according to the given initial and boundary condition. The equation generator creates the 
governing equation that best describes the measured data from the plant. The generated equation 
automatically updates the physics part of the solution generator. As a result, it is possible to calculate 
the data based simulation result considering the dynamic interactions.  
 
2.  PHYSICS INFORMED NEURAL NETWORK (PINN) 
 
The physics informed neural network (PINN) was firstly proposed by M Raissi et al. [6]. The major 
difference between the general artificial neural network and PINN is remarkable in the loss function. 
Fig.1 shows the schematic diagram of the naive neural network and PINN.  
 

 
Fig. 1 Schematic diagram of naive neural network and physics informed neural network 

 
The naive neural network utilizes a single loss which is calculated from the difference between the 
latent vector and target vector. However, PINN not only utilizes a loss from the difference between 
latent vector and target vector but loss from the form of the equation. The detailed description of the 
loss function in PINN is shown in Eq. 1. 
 
 Total loss: 𝐿𝐿(𝜽𝜽,  𝚲𝚲;𝐷𝐷𝑢𝑢,𝐷𝐷𝑐𝑐) = 𝐿𝐿𝑑𝑑(𝜽𝜽;𝐷𝐷𝑢𝑢) + 𝛼𝛼𝐿𝐿𝑝𝑝(𝜽𝜽,𝚲𝚲;𝐷𝐷𝑐𝑐) + 𝛽𝛽‖𝚲𝚲‖0 

Data loss:𝐿𝐿𝑑𝑑(𝜽𝜽;𝐷𝐷𝑢𝑢) 
Physics loss:𝐿𝐿𝑝𝑝(𝜽𝜽,𝚲𝚲;𝐷𝐷𝑐𝑐) 
 

          

Eq.1-1 
Eq.1-2 
Eq.1-3 
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𝜽𝜽 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 𝑝𝑝𝑎𝑎𝑡𝑡𝑎𝑎𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖 𝑖𝑖𝑡𝑡 𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡𝑎𝑎𝑛𝑛 𝑡𝑡𝑝𝑝𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 
𝚲𝚲 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 𝑝𝑝𝑎𝑎𝑡𝑡𝑎𝑎𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖 𝑖𝑖𝑡𝑡 𝑝𝑝ℎ𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 𝑡𝑡𝑝𝑝𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 
 

 
The total loss can be defined as Eq.1-1 and the first term on the RHS is loss from the data which is also 
used in a naive neural network. The second term is physics loss. The physics loss is calculated based 
on the form of the equation. the third term is the regularization term to prevent overfitting. 
 
By using the loss from the equation, the PINN can take several advantages. The first is data efficiency. 
The provided equation can take a role as a restriction. In conventional neural network trained that 
restriction with data. However, in PINN the information is eminently provided as a form of the equation. 
Therefore, data efficiency is improved compared to the conventional neural network. And also, because 
of the equation loss, the PINN has robust characteristics in extrapolation [6]. 
 
3.  AI-utilized Physics Related Information-based Simulation Method (A-PRISM) 
 
3.1.  Architecture overview 
 
The overall architecture of the A-PRISM model is described in Fig.2.  
 

 
Fig. 2 A-PRISM Model 

 
The model consists of two parts. The first part is the Equation generator, and the second part is the 
solution generator. Both generators are based on the PINN algorithm. The solution generator calculates 
the solution with governing equation, initial condition, boundary condition, or arbitrary assumed 
conditions. The role of the solution generator is similar to conventional simulation codes. For instance, 
to imitate the MARS code, the solution generator has six kinds of built-in loss function: continuity loss, 
momentum loss, and energy loss for liquid phase and gaseous phase. However, with only a solution 
generator alone, it is impossible to consider dynamic interactions in NPP. In actual NPP operation, 
multiple components interact dynamically. Therefore, the form of the governing equation and initial 
condition also changes variously. To consider the interaction, the model generator configures a 
governing equation with given data. As a result of the model generator, the governing equation that 
describes the given data will be created. And providing the equation to the solution generator, the model 
estimate and predict parameters including dynamic interactions. 
 
3.2.  Model Generator (Equation Generator) 
 
The form of model generator is inspired from Zhao Chen et al. [7]. The model generator has three 
stages. The first is the conventional deep neural network stage. In this stage, the network calculates the 
latent vector. The second stage is the AutoDiff stage. In this stage, a possible form of governing equation 
is created. The third stage is ranking the candidate function stage. In this stage, the suitability ranking 
is calculated among candidate functions. The schematic diagram of model generator is shown in Fig.3. 
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Fig. 3 Schematic diagram of model generator 

 
The detailed architecture of solution generator is listed in below. 
 

• Neural network part 
o Number of layer: 4 layers 
o Neurons in each layer: 20 neurons 
o Activation function: adoptive rectified linear unit 
o Loss function: mean squared error (MSE) 
o Optimization algorithm: Limited memory-BFGS 

• Physic network part (AutoDiff) 
o Number of layer: 2 layers 
o Neurons in each layer: 3 (partial derivation to t, partial derivation to z, I) 
o Activation function: adoptive rectified linear unit 
o Loss function: MSE from physics loss 

 
3.3.  Solution Generator 
 
The solution generator calculates the result corresponding to the given condition. As an input for the 
solution generator, IC, BC, and governing equations are provided. And the output from the network is 
the calculation result (simulation result) of the given condition. The schematic diagram of solution 
generator is shown in Fig. 4. The detailed architecture of solution generator is listed in below. 
 

 
Fig. 4 Schmatic diagram of solution generator 

 
• Neural network part 

o Number of layer: 4 layers 
o Neurons in each layer: 20 neurons 
o Activation function: adoptive rectified linear unit 
o Loss function: mean squared error (MSE) 
o Optimization algorithm: Limited memory-BFGS 

• Physic network part 
o Number of layer: 2 layers 
o Neurons in each layer: 3 (partial derivation to t, partial derivation to z, I) 
o Activation function: adoptive rectified linear unit 
o Loss function: MSE from physics loss 
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4.  Experiment 
 
The hardware specifications used in the experiment are as follows. 
 

• CPU: Intel® Core™ i7-6990K 
• GPU: NVIDIA GeForce GTX 1080 Ti *2 
• RAM: 128GB 

 
4.1.  Pilot Experiment 
 
To figure out the applicability of suggested model, the pilot experiment is conducted. Using the data 
points generated in Eq.2 as input, the governing equation was inferred, and the prediction based on the 
inferred governing equation was conducted. The points that satisfy Eq.1 are collected. 10,000 points 
were collected. 
 
 𝜕𝜕2𝜙𝜙

𝜕𝜕𝑥𝑥2
− 𝜙𝜙 ∗ 0.5 =

𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

 
Eq.2 

 
 
After the 37.3345sec, the model generator creates the equation as Eq.3. 
 
 

0.99997
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

− 𝜙𝜙 ∗ 0.50011 = 0.99999
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

 
Eq.3 

 
And the solution generator calculates solutions as follows (Fig.5): 
 

 
Fig. 3 Calculation results - Pilot experiment 

 
As shown in Eq.3, the model generator successfully modeled the governing equation with data. Also, 
the solution generator successfully estimated the solutions. 
 
4.2.  Experiment – After the Loss of Coolant Accident 
 
To verify that predictions taking into account dynamic interactions in a nuclear power plant are possible, 
experiments were performed based on data using the Compact Nuclear Simulator (CNS) [8]. Assuming 
the pressurizer LOCA situation, the axial flux of the core was predicted. The prediction was performed 
for the next 45 seconds based on the data acquired for 5 seconds at 23 flux measurement points. The 
Fig. 6,and 7 shows the actual data and generated data. And the Fig. 8 shows error between actual data 
and generated data. The calculation time of the suggested model (equation generation, solution 
generation) was 84.2453seconds. The maximum error was 6.9%.  
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Fig. 4 Prediction results 1 - CNS experiment 

 

 
Fig. 5 Prediction results 2 (Top view) - CNS experiment 

 
 

 
Fig. 6 Errors (Ground truth - prediction) 

 
 
5.  CONCLUSION 
 
The bottleneck in performing DPSA based on the dynamic event tree method is the physical process 
model. The calculation speed of the physical process model is too slow and it is difficult to consider the 
interaction of components in real-time. Therefore, in this study, a data-driven simulation methodology 
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was proposed to solve the problem. The suggested simulation methodology consists of a model 
generator and a solution generator. The conventional simulation is possible with only the solution 
generator itself, but a model generator is added to perform real-time changing calculations in 
consideration of dynamic interaction. 
 
The model generator receives real-time data and generates the governing equation most suitable for the 
current state. The solution generator provides prediction results based on the governing equation 
generated by the model generator. Therefore, using the proposed methodology, both data-based 
simulation and prediction can be performed. 
 
In the case of 1d prediction, the calculation was completed in less than a minute, but in the case of 2d 
prediction (23 by 50), the calculation takes more than a minute, so it seems that the optimization of the 
calculation process is still required. 
 
Using the proposed model, conventional simulation can be performed using only the solution generator, 
and prediction considering dynamic interaction can also be performed by combining the model 
generator and solution generator. 
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