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Abstract: In the U.S., the Nuclear Energy Institute (NEI) guidance document NEI 04-10 describes 
methods to extend the time interval between inspections of surveillance test intervals (STIs) for risk-
informed applications. One example of this is the surveillance frequency control program (SFCP). The 
methodology includes a step to account for a periodic reassessment of the overall program impact. Here, 
data collection and statistical analysis are required to remove modeling conservatism. Because of the 
scarcity of failure events for some components, the availability of failure data to perform statistical 
analysis may be limited (insufficient evidence). This lack of data could limit the implementation of this 
step under the SFCP to conservative assumptions. To this end, this paper presents a technical basis to 
establish a Bayesian framework to assess the periodic failure rate re-assessment under the SFCP that 
could form the basis for a practical approach to be utilized under NEI 04-10. Bayesian updating, past 
plant-specific test/inspection, operational records, and failure mode assessment are considered in a 
general framework for how a relevant technical basis can be derived for further use. Actual plant data 
information from a U.S. nuclear power plant utilizing the SFCP was leveraged to support the 
development of a mathematical framework. It is expected that this framework can be used for further 
piloting by considering practical implications of its use with a PRA model currently being used for 
SFCP, as well as broader industry data utilization to further calibrate its inputs. At this time, this effort 
represents an initial formal investigation into a basis for future practical use, in an area that was not 
previously explored with mathematical rigor. 
 
 
1.  INTRODUCTION 
 
Inspection and surveillance procedures are essential to ensure the safety and optimal operation of any 
system. Performing inspections periodically at nuclear power plants (NPPs) comes at the cost of labor, 
system operation interruption, among other undesired costs. Ideally, NPP operators aim to reduce the 
number of inspections while maintaining safety standards.  However, extending the time interval 
between inspections could potentially lead to an increase in the component’s failure rate due to unseen 
or in-progress failure mechanisms. 
 
In the U.S., programs such as the surveillance frequency control program (SFCP) include guidance on 
addressing the potential impact of a component’s failure rate due to unseen and/or in-progress failure 
mechanisms when extending the time interval between inspections of surveillance test intervals (STIs) 
for risk-informed applications. The STI extension methods described in the Nuclear Energy Institute 
(NEI) guidance for SFPC (NEI 04-10) provides details in terms of addressing the overall impact of the 
SFCP on the NPP’s risk profile by modelling STI-modified components in a probabilistic risk 
assessment (PRA) model [1]. 
  
For many U.S. NPPs, the selection and prioritization of specific target STI extensions in accordance 
with NEI 04-10 is documented in surveillance test risk-informed documented evaluation (STRIDE) 
packages. The scope of these STRIDE packages includes PRA case studies (among other things such 
as deterministic assessment evaluations and, where required, instrument drift evaluation). More 
specifically, STRIDEs include the results of assessment of the changes in plant risk associated with 
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proposed changes in STIs for specified surveillance tests. The evaluation covers the potential changes 
in predicted baseline core damage frequency (CDF) and large early release frequency (LERF) that could 
result from the proposed STI changes. Furthermore, its goal is to determine whether the proposed STI 
changes explicitly or implicitly impact the calculation of plant risk by evaluating the functional impact 
of the proposed STI changes on the PRA model logic and data elements. 
 
The guidance in NEI 04-10 includes a step (Step 19) to account for a periodic reassessment of the 
overall program impact. Part of the periodic reassessment also includes evaluating the SFCP with 
updates in the PRA model (see Figure 3 of NEI 04-10). One possible outcome of this periodic 
assessment is the exclusion (removal) of the component’s failure rate increase from the PRA model. 
This is the desired outcome of SFCP program managers in order to remove the burden of carrying an 
increased risk from the conservative assessment of STI-modified components once sufficient time 
and/or operating experience has been accumulated to justify exclusion of that component from the PRA 
model. 
 
Within Step 19, NEI 04-10 provides two options for performing a periodic reassessment of STI-
modified components into the base PRA model. The first option is to use the original conservative data 
assumptions that were utilized in performing the initial STI assessment. The second option is to utilize 
data collection and statistical analysis to show that the reliability of the component affected by the STI 
change has not been impacted (or has improved) from the revised STI frequency value. This second 
option has the potential to support the exclusion of components from the PRA model. 
 
However, there are currently limitations preventing implementing of this second statistical option: 

- The statistical method is not explicitly defined in NEI 04-10, and 
- Data are sparse (insufficient evidence), particularly on a plant-specific basis. 

 
These challenges could limit the implementation of Step 19 to conservative assumptions under the first 
option. For example, the STRIDEs reviewed within the scope of this study adjust the constant failure 
rate of the affected component using a factor proportional (1:1) to the increase in STI, which is 
conservative and consistent with option 1 of NEI 04-10 Step 19.  
 
Since the failure rates of components of interest are typically very small, sufficient data for traditional 
statistical analysis for reliability estimation may take several years to accumulate. In this paper, we 
investigate and recommend an approach to analyze the possible impacts of change in failure rate rates 
due to changes in STI without requiring such long duration data collection. 
 
The remainder of this paper is structured as follows. Section 2 describes the proposed Bayesian 
methodology to assess the impact of STI changes in the component’s failure rate. Section 3 describes 
data collection and analysis. Section 4 provides a sensibility analysis on the failure rate for different 
STIs. Finally, conclusions are presented in Section 5. 

2.  METHODOLOGY 

This section presents a methodology to infer the change in a component’s failure rate based on limited 
failure data, expert knowledge, and varying STIs. An adjustment value is also presented to correct the 
prior knowledge, which allows for the evaluation of the methodology in the context of different 
component and failure mode types.  
 
2.1.  Framework 

The base framework for the proposed approach is to leverage past performance data in creating a 
database of extended STI conditions. That evidence can then be used in standard statistical analysis 
(such as Bayesian) to estimate the expected failure rate associated with the extended STI.  
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When considering a component for STI extension, it is necessary to assess the corresponding impact 
(increase) in its hazard rate 𝜆𝜆𝜃𝜃, where 𝜃𝜃 is a set of parameters that define the probability density function 
(PDF) for a given failure distribution (e.g., Exponential or Weibull). Let this new inspection interval be 
(𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒). Assume that, to date, N intervals have been observed (that is, (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖 with 𝑖𝑖 = 1, 2, … ,𝑁𝑁) and 
that the number of failures observed at each inspection interval is 𝑘𝑘𝑖𝑖. The likelihood of observing 𝑘𝑘𝑖𝑖 
failures in (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖 can then be expressed by the following Poisson distribution: 

𝑃𝑃(𝐸𝐸𝑖𝑖|𝜃𝜃) =
[𝜆𝜆𝜃𝜃(𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑠𝑠)𝑖𝑖]𝑘𝑘𝑖𝑖

𝑘𝑘𝑖𝑖!
𝑒𝑒−𝜆𝜆𝜃𝜃(𝑡𝑡𝑒𝑒−𝑡𝑡𝑠𝑠)𝑖𝑖 (1) 

where the instantaneous hazard rate 𝜆𝜆𝜃𝜃 is assumed to be constant in (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖 and is evaluated in the 
interval’s mid-point. 

Assume that the engineering judgement on the impact of a change in the inspection interval on the 
hazard rate 𝜆𝜆𝜃𝜃  is elicited (or obtained through “data mapping” described in Section 2.3) as the 
adjustment factor 𝑐𝑐 with an uncertainty distribution given by 𝑃𝑃(𝑐𝑐) (the expert’s uncertainty over 𝑐𝑐). 
Then, the impact on the hazard rate 𝜆𝜆𝜃𝜃 is assessed by modifying the observed numbers of failures 𝑘𝑘𝑖𝑖 as 
follows: 

𝑘𝑘𝑖𝑖′ = 𝑐𝑐 ∙ 𝑘𝑘𝑖𝑖 (2) 

where 𝑘𝑘𝑖𝑖′ is the (new) expected number of failures in the modified inspection interval (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖, with 𝑖𝑖 =
1, 2, … ,𝑁𝑁. 

Now, the likelihood function for the i-th modified inspection interval 𝐸𝐸𝑖𝑖 = (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖  in terms of the 
adjustment factor 𝑐𝑐 and the hazard rate’s parameters 𝜃𝜃 is given by: 

𝑃𝑃(𝐸𝐸𝑖𝑖|𝜃𝜃) = �𝑃𝑃(𝐸𝐸𝑖𝑖 , 𝑐𝑐|𝜃𝜃) ∙ 𝑃𝑃(𝑐𝑐)𝑑𝑑𝑐𝑐
𝑐𝑐

 (3) 

Therefore, for a given number of failures 𝑘𝑘𝑖𝑖′ in an interval (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒)𝑖𝑖, the term 𝑃𝑃(𝐸𝐸𝑖𝑖, 𝑐𝑐|𝜃𝜃) is given by the 
probability density function, 𝑓𝑓𝜃𝜃  of the corresponding time to failure probability model. Important 
information from the censored data can also be extracted, considering the reliability function 𝑅𝑅𝜃𝜃 =
𝑅𝑅(𝑡𝑡,𝜃𝜃) in the likelihood function. Thus, 

𝑃𝑃(𝐸𝐸|𝜃𝜃) = �� �𝑃𝑃(𝐸𝐸𝑖𝑖 , 𝑐𝑐|𝜃𝜃) ∙ 𝑃𝑃(𝑐𝑐) 𝑑𝑑𝑐𝑐
𝑐𝑐𝑖𝑖

� ⋅� 𝑅𝑅�𝐸𝐸𝑗𝑗�𝜃𝜃�
𝑗𝑗

 (4) 

𝑃𝑃(𝐸𝐸|𝜃𝜃) = � ���𝑓𝑓𝜃𝜃�𝑡𝑡𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑒𝑒𝑖𝑖 ��
𝑘𝑘𝑖𝑖
′

∙ 𝑃𝑃(𝑐𝑐) 𝑑𝑑𝑐𝑐 
𝑐𝑐

�
𝑖𝑖

⋅� 𝑅𝑅𝜃𝜃�𝑡𝑡𝑠𝑠
𝑗𝑗, 𝑡𝑡𝑒𝑒

𝑗𝑗�
𝑗𝑗

 (5) 

The loglikelihood is then given by: 

Λ(𝐸𝐸,𝜃𝜃) =  � log���𝑓𝑓𝜃𝜃�𝑡𝑡𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑒𝑒𝑖𝑖 ��
𝑘𝑘𝑖𝑖
′

∙ 𝑃𝑃(𝑐𝑐)  𝑑𝑑𝑐𝑐 
𝑐𝑐

�
𝑖𝑖

+ � log �𝑅𝑅𝜃𝜃�𝑡𝑡𝑠𝑠
𝑗𝑗, 𝑡𝑡𝑒𝑒

𝑗𝑗��
𝑗𝑗

 (6) 

Thus, 

Λ(𝐸𝐸,𝜃𝜃) =  � log�� �𝑓𝑓𝜃𝜃�𝑡𝑡𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑒𝑒𝑖𝑖 ��
𝑘𝑘𝑖𝑖
′

∙ 𝑃𝑃(𝑐𝑐)
𝑐𝑐

�
𝑖𝑖

+ � log �𝑅𝑅𝜃𝜃�𝑡𝑡𝑠𝑠
𝑗𝑗, 𝑡𝑡𝑒𝑒

𝑗𝑗��
𝑗𝑗

 (7) 

Regardless of the chosen alternative, the posterior distribution of the component’s hazard rate is as 
follows: 

𝜋𝜋(𝜃𝜃|𝐸𝐸) =
 Λ(𝐸𝐸,𝜃𝜃) ⋅ 𝜋𝜋𝑜𝑜(𝜃𝜃)

∫ Λ(𝐸𝐸, 𝜃𝜃) ⋅ 𝜋𝜋𝑜𝑜(𝜃𝜃)𝑑𝑑𝜃𝜃𝑖𝑖
 (8) 
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where, 𝜋𝜋𝑜𝑜(𝜃𝜃) is the prior distribution over the hazard rate’s set of parameters. 

An estimate of the component’s hazard rate can be obtained by averaging over all possible values of 𝜃𝜃, 
which results in: 

𝜆𝜆𝜃𝜃���(𝑡𝑡) = � 𝜆𝜆(𝑡𝑡|𝜃𝜃) ∙ 𝜋𝜋(𝜃𝜃|𝐸𝐸) ∙ 𝑑𝑑𝜃𝜃
𝜃𝜃

(9) 

2.2.  The Cases of the Weibull and Exponential Distributions 

For the case of a Weibull Distribution, the hazard rate 𝜆𝜆𝜃𝜃 and the PDF 𝑓𝑓𝜃𝜃 are replaced in the previous 
equations as follows: 

Hazard rate: 

𝜆𝜆(𝑡𝑡) =
𝛽𝛽
𝛼𝛼
𝑡𝑡𝛽𝛽−1 (10) 

Probability density function: 

𝑓𝑓(𝑡𝑡) =
𝛽𝛽
𝛼𝛼𝛽𝛽

𝑡𝑡𝛽𝛽−1𝑒𝑒−�
𝑡𝑡
𝛼𝛼�

𝛽𝛽

(11) 

where 𝛼𝛼 and 𝛽𝛽 are the scale and shape parameters, respectively.  

A similar and simpler case would consider an Exponential distribution (i.e., constant hazard rate) with 

𝜆𝜆(𝑡𝑡) = 𝜆𝜆 (12) 

and probability density function: 

𝑓𝑓(𝑡𝑡) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑡𝑡 (13) 

Once the PDF is selected, one can use Markov Chain Monte Carlo (MCMC) simulation through 
Metropolis Hastings [2], [3] to sample from Equation 8 and obtain the posterior distribution of the 
hazard rate parameters based on the evidence presented in the inspection data. 

2.3.  Assessment of the Adjustment Factor 

As discussed in the previous sections, the adjustment factor c can be assessed based on engineering 
knowledge and through the interpretation of the available plant specific and industry reliability data. 
One approach is to review past inspection results and for each inspection period assess the 
inspection/test outcome (Failure, Success, Degraded State), and also assess whether the outcome would 
have been different if the inspection interwall was longer.  
 
For this sample study, data were obtained from the RADS - PRA Data Calculations webapp [4] for 
three sample plants. Table 1 includes those events considered and illustrates the process of data re-
interpretation and engineering judgement. Failure data were collected from 1998 until 2020. In this 
sample study, the number of failures is increased from 3 to 4.7, meaning the c factor in Equation 2 is 
𝑐𝑐 = 4.7/3 = 1.56. 
 
Note that data interpretation via adjustment factor c is based on the probability of observing a given 
event. For example, for the second event in Table 1, the analyst has assigned a probability of 70% of 
observing a failure when considering the increased inspection interval even though no failure was 
observed. In practice, this assessment would be based on engineering knowledge and observed physical 
evidence of degradation such as noise and elevated vibration in the original plant record.  This approach 
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is similar to the data mapping method used in development of database for common cause failure 
probability assessment [5], [6].  
 

 

3.  DATA COLLECTION AND IMPLEMENTATION 

The methodology presented in Section 2 is tested using the data from Table 1. The Turbine-driven pump 
(TDP) component in the auxiliary feedwater (AFW) system is analyzed for plants which reported failure 
detection during inspection procedures. The “failure to start” failure mode is considered. These plants 
share a common characteristic – each had only one failure detected during inspection in a period of over 
20 years.  

The following assumptions were made: 
• It is assumed that the system follows a Renewal Process. That is, after a failure is detected during 

inspection, the component is set back “as-good-as-new” condition for the failure mode under study. 
• To analyze and combine data from different plants simultaneously, the populations are considered 

to be homogeneous (that is, they follow the same failure distribution). 
• Failures are considered only if detected during inspection. Therefore, the starting time (𝑡𝑡 = 0) for 

the reliability function is reset from the last detection of a failure.  
• It is assumed that the failure event occurs at the end of the interval (𝑡𝑡 = 𝑡𝑡𝑒𝑒).  
• If a failure is detected during inspection, then it is assumed that the provided date corresponds to 

an inspection and, therefore, dates for the inspection intervals can approximately be defined based 
on the reported failure date. 

• Consistent with common practice in PRA, the Exponential distribution will be considered for the 
failure distribution function.  

Thus, for an exponential distribution, Equation 7 becomes: 

Λ(𝐸𝐸, 𝜆𝜆) = � log�� (𝜆𝜆 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆𝑡𝑡))𝑘𝑘𝑖𝑖,𝑗𝑗 ⋅ 𝑃𝑃𝑗𝑗
𝑗𝑗

�
𝑖𝑖

−� 𝜆𝜆𝑡𝑡𝑧𝑧
𝑧𝑧

  (17) 

Considering that the expert knowledge adjustment value does not have any uncertainty, then: 

Table 1: Expert knowledge evaluation for failure events. 

Event 
Terminate

d in 
Failure? 

Failure Cause 
Would it Fail if 

Inspection Time is 
Increased? 

Would it 
Fail if 

Inspection 
Time is 

Increased? 
1.0 (Yes) Internal to component; 

piece-part 
1.0 (Yes) 1.0 (Yes) 

0.0 (No) Observed higher than 
normal vibration after start 
* 

0.7 (Yes) 0.7 (Yes) 

1.0 (Yes) Internal to component; 
piece-part 

1.0 (Yes) 1.0 (Yes) 

0.0 (No) Pumped at low flow rate * 0.5 (Yes) 0.5 (Yes) 
1.0 (Yes) Inadequate maintenance 1.0 (Yes) 1.0 (Yes) 
0.0 (No) Pumped at low flow rate * 0.5(Yes) 0.5(Yes) 

3.0   4.7 
*  Degradation was assumed for illustrative purposes  
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Λ(𝐸𝐸, 𝜆𝜆) = � log�(𝜆𝜆 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆𝑡𝑡𝑖𝑖))𝑘𝑘′𝑖𝑖�
𝑖𝑖

−� 𝜆𝜆𝑡𝑡𝑧𝑧
𝑧𝑧

 (18) 

Λ(𝐸𝐸, 𝜆𝜆) = � 𝑘𝑘′𝑖𝑖(log(𝜆𝜆 )− 𝜆𝜆𝑡𝑡𝑖𝑖)
𝑖𝑖

−� 𝜆𝜆𝑡𝑡𝑧𝑧
𝑧𝑧

 (19) 

Note that, even though failure on demand events are used in this illustrative example, the approach 
holds as the failure on demand at a given point in time can be obtained as a function of the component’s 
exposure and the corresponding failure rate during standby periods: 

𝑄𝑄(𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑑𝑑 𝑜𝑜𝑓𝑓 𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑒𝑒 𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 𝑇𝑇) = 1 − exp (𝜆𝜆𝑇𝑇) 

MCMC simulation is performed to estimate the 𝜆𝜆  (hazard rate) parameter for the Exponential 
distribution. The prior distribution 𝜋𝜋𝑜𝑜(𝜆𝜆) in this calculation is taken to be a Uniform distribution 
between 𝜆𝜆1 = 10−4 and 𝜆𝜆2 = 10−2. This can be substituted with other forms of prior distribution such 
as lognormal distribution. Using the data from Table 1, the posterior distribution is estimated 
considering an inspection interval of three months (i.e., 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑠𝑠 = 3 𝑚𝑚𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑖𝑖). Figure 1 illustrates the 
accepted and rejected samples from the Metropolis Hastings method when applying Bayesian inference. 
The distribution of values converges after only a few iterations.  

 
Figure 1: Accepted and rejected samples Bayesian inference process for a uniform prior distribution. 

Figure 2 presents the histogram for the posterior 𝜆𝜆 values after the last iteration. For an inspection 
interval of 3 months, the estimated hazard rate of the Exponential distribution average is 2 ⋅ 10−3.  

 
Figure 2: Hazard rate parameter distribution histogram for a uniform prior distribution. 

As stated earlier, a different distribution for the prior 𝜋𝜋0(𝜆𝜆) can be considered. As a first approximation, 
the frequentist approach can be used to estimate the mean value of 𝜆𝜆. In this case,  �̂�𝜆 ∼ 1

20
= 0.05 1/yr. 
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Then, considering a Lognormal distribution with 𝜇𝜇 = �̂�𝜆 and 𝜎𝜎 = 0.2 ⋅ �̂�𝜆, the Bayesian inference results 
in an average hazard rate of  �̅�𝜆 = 7 ⋅ 10−3 , as shown in Figures 3 and 4. 

 
Figure 3: Accepted and rejected samples Bayesian inference process for a lognormal prior distribution. 

 
Figure 4: Hazard rate parameter distribution histogram for a lognormal prior distribution. 

4.  IMPACT OF CHANGE IN INSPECTION INTERVAL 

With the capability to obtain a hazard rate parameter for any given time interval between inspections, 
the hazard rate 𝜆𝜆 changes for different time intervals can then be analyzed. This is shown in Figure 5, 
where the average 𝜆𝜆 is estimated for 3-, 6-, 9-, and 12-month inspection intervals for different values of 
𝑐𝑐.  As expected, for higher 𝑐𝑐 values, the increasing hazard rate curve shift upwards. Additionally, the 
increase of the hazard rate accelerates with respect to the inspection intervals (that is, curves with higher 
slopes) for higher 𝑐𝑐 values. A nearly linear increase is observed for the hazard rate with respect to the 
inspection interval, regardless of the 𝑐𝑐 value. 

The calculated increase in failure rate as a function of increase in inspection intervals is the result of 
two factors:  

1. Predicted change in the number of failures based on engineering analysis of observed failures 
and detected degradations (through event mapping), resulting in c values greater than 1. 

2. The effect of reducing the number of inspections, thus reducing the opportunity of renewal 
(corrective and preventive actions) provided by each inspection/test episode. This is reflected 
in Equation 4 through the form and number of survival terms (reliability function, R, for 
inspections/tests resulting in success).       
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5.  CONCLUSIONS 

5.1.  Summary of Proposed Procedure 

As described in the Framework section, the base framework for the proposed approach is to leverage 
past performance data in creating a database of extended STI conditions. That evidence can then be 
used in standard statistical analysis (such as the Bayesian approach proposed in this) to estimate the 
expected failure rate associated with the extended STI. The steps for applying the proposed procedure 
are: 

1. Data Source: For the component under consideration for STI extension, use past plant-specific 
test/inspection and operational records. The input information should include: (a) current 
surveillance time interval length; (b) results of such surveillance in the past in terms of any 
observed failures, performance degradations, anomalies, root cause analysis and corrective 
action, if any, and (c) similar information for actual component demands.  This provides the 
raw data and basis for engineering analysis of events in Step 2 (“event mapping”).   Ideally, 
several years of such plant-specific records would be used for this analysis to have a stronger 
statistical basis in Step 3. Crucially, this methodology allows the use of similar data from other 
plants to augment plant specific data if needed (if insufficient evidence does not exist within 
the operating history at the specific NPP).  

2. Event Mapping: For each inspection/test or failure event, assess whether the condition could 
become worse or better under the proposed extended inspection interval. This means a 
subjective assignment of a weight or probability like the examples given in Table 1.  Specific 
guidelines need to be developed to ensure consistent and defensible numerical assessment. Such 
guidelines may be inspired by those developed for creating plant- specific databases of common 
cause failures in references [1]and [2]. 

3. Failure Rate Estimation: The number (i=1, 2, …, n) and lengths of the extended inspection 
intervals in the data base, and the corresponding projected “failure events” ki’ for the extended 
intervals assessed in Step 2 are the basic input to the Bayesian estimation procedure outlined in 
Section 2 (using Equation 19 for the case of constant failure rate). The procedure requires 

 
Figure 5: Sensitivity analysis on inspection interval effect on the hazard rate. Values are normalized 

with respect to 3 months interval. 
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numerical solutions using MCMC or similar methods. This results in an estimated uncertainty 
distribution of the new failure rate for the extended inspection interval (see Figure 4). 

5.2.  Concluding Remarks  

1. As noted above, specific guidelines need to be developed for Step 2 (event mapping) to ensure 
consistent and defensible numerical assessment. Such guidelines may be inspired by those developed 
for creating plant- specific databases of common cause failures in references [1] and [2]. 

2. In practice, the ratio of assessed number of failures, ki’, over observed number of failures, ki ,  
1=1,2,…n, (where n= number of inspection intervals in the database) is not expected to be much larger 
than 1.  Based on limited number of simulations to test the methodology with hypothetical data in this 
paper, it appears that the most important contributor to change (increase) in the failure rate for 
extended surveillance intervals is the decrease in the number of inspections and not increase in 
the increase in k values (see Section 2.5).  The change in the failure rate under the stated assumptions 
in the proposed procedure seems to be nearly linear with respect to change in the inspection interval 
(see Figure 5). Therefore, a practical approximate method could be based on the linear model, thus 
bypassing the proposed data mapping and estimation procedure. That is  

𝜆𝜆𝑝𝑝𝑜𝑜𝑠𝑠𝑡𝑡 = �
𝑇𝑇𝑝𝑝𝑜𝑜𝑠𝑠𝑡𝑡
𝑇𝑇𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝

� 𝜆𝜆𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝 

However, more exercises with a larger data set need to be conducted to confirm this.   

This result, if substantiated by further exploration, would validate one of the current common practices 
of adjusting the constant failure rate of the affected component using a factor proportional to the 
increase in STI. 

3. It may be possible to show a different relationship when considering the number of tests rather than 
the test interval, irrespective of the increased STI. This may be explored further. 
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