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Abstract: Advancements in nuclear system designs with automated control features provide many 

benefits, but can lead to complex coupled systems and dynamic failure scenarios. This is especially true 

for microreactor designs where components are not expected to be replaced during the reactor’s lifetime. 

Hence, the life of the system, in addition to the safety, needs to be evaluated. Modeling these sequences 

of time-dependent events requires addressing cyclical processes and changing failure rates in ways that 

represent the actual system dynamics in contrast to a single sampling for a component’s time to failure. 

This research presents two distinct analytical methods for several failure distributions that evaluate a 

final time to failure used for different scenarios where the time to failure must be sampled multiple 

times. The first method is used when evaluating a component whose failure rate increases due to an 

outside event after the initial sampling but before the initially sampled time to failure. The second 

method is used when evaluating multiple identical components or a component that has been replaced 

with a new identical version before the second sampling. The two methods were implemented in a few 

representative case studies developed in the dynamic probabilistic risk assessment tool Event Modeling 

Risk Assessment using Linked Diagrams. Overall, this paper provides guidelines on how these 

approaches give a more realistic and accurate dynamic probabilistic risk assessment of complex 

systems. 

 

 

1. INTRODUCTION 
 

Dynamic probabilistic risk assessment (PRA) provides a range of analysis capabilities that allow for 

more realistic behavior modeling of nuclear facilities. As these features are used in new scenarios, care 

taken while modeling and during simulation will ensure appropriate probabilistic failure modeling is 

achieved. A recent research project at Idaho National Laboratory evaluated combining multiple 

methods into the dynamic PRA tool Event Modeling Risk Assessment using Linked Diagrams 

(EMRALD) [1]. One postulated scenario involved a change in the component failure rate depending on 

if it is in a given condition and how to determine a new time to failure in the simulation. This paper 

outlines some plausible modeling scenarios and how to both correctly model and quantify the failure 

probabilities in the simulation. 

 

The ability to change or reset the failure rate or inputs to different distributions for PRA is an important 

feature needed in many scenarios: 

• Aerospace modeling uses different mission phases and changing component or system failure 

rates for different phases of the mission, such as launch, orbit, and reentry. [2]  

• Degraded components or other conditions can induce other failure modes, causing a change in 

the failure rate. 

• Seasonal environmental conditions at nuclear installations can cause events, such as algae 

blooms, that could cause heat sink reduction, reduce output capabilities, or affect support 

systems. [3] 

• Risk modeling considering degradation and preventative maintenance is used for predictive 

monitoring of nuclear plant components. [4] 
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2. BACKGROUND 
 

EMRALD is based on a three-phase discrete event simulation that uses Monte Carlo simulation 

techniques to sample when random events occur over time. No fixed duration time steps are used in the 

systems modeled. The simulation jumps to the next event’s time because nothing that affects the model 

will happen until the next event. When the simulation runs out of events or hits a terminal event, it is 

complete. 

 

This event-driven methodology is different from the static PRA using discrete event trees, where each 

path in the event tree is explicitly explored. Each method has its advantages and disadvantages; one 

advantage of the discrete event is that it makes it easy for an analyst to model looping behaviors or 

dynamically adjust time-dependent failure rates. 

 

Dynamic PRA modeling promises new ways to more accurately represent facility behavior; however, 

it is also easy for an analyst to unknowingly cause unintended behavior in the model. This also means 

that the dynamic PRA tool must provide the features necessary to generate the desired behaviors. For 

example, this paper goes over why the dynamic PRA software must not ignore or only resample for a 

new failure time if failure parameters change, as this could have dramatically different outcomes. This 

is easily seen when parameters change inside a cyclic process. An example of this would be systems 

designed to load-follow that hypothetically have a component with higher failure contributions when at 

the maximum output. The analysis assumed the component can be modeled with a constant failure rate, 

lambda, of 0.01 per 24 hours and the system enters peak production an average of once every 24 hours. 

To illustrate the error in resampling for this example, the same lambda of 0.01 per 24 hours is used for 

the peak production but still causes a resampling event. As shown in the table below, resampling causes 

the mean time to failure (MTTF) to drastically reduce compared to no resampling. If the goal is to 

determine the probability that the system will fail before the desired life span, given a frequency of use 

at max operating level, an adjustment, not resampling of the lambda, is needed. 

 

Table 1: Fixed versus resampled results 

Method using 1,000 Runs MTTF (Days.Hours) 

Fixed Lambda (0.01 per 24 hours) 90.23 

Resample Lambda (0.01 per 24 hours) 11.14 

 

An accurate analysis would need both sets of failure data. However, if there is no failure data for altered 

component running conditions, estimated data could be used to determine if additional testing data, and 

at what level, would be significant in the overall system results. 

 

If the failure rate or distribution input value can change, the analyst must decide if they want to ignore 

any rate changes; resample the failure time, if a component is being replaced; or adjust the failure 

time, if it is running in an abnormal condition. In EMRALD, this is done in the user interface by 

selecting the appropriate dropdown item if a variable is used in the parameter of the sampling method. 

This interface is shown in Figure 1. 

 

If the user wants to “Resample,” that is a simple calculation for the simulation, which repeats the 

calculation but with the new frequency/rate. To “Adjust” the event time, the simulation determines a 

new time using a calculation that takes into account that the event has not occurred up until the current 

time due to the previous failure rate or distribution values. These methods depend on the distribution 

type being sampled. The following section describes the methods that determine the new event times. 
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Figure 1: EMRALD failure rate event interface 

 
 

 

3. METHODOLOGY 
3.1. Scenario 1—Adjust 

3.1.1. Description 

The first method is used to determine the time of failure when evaluating a component whose failure 

rate changes after an initial sampling but before the initially sampled failure time. This updated time 

of failure will be referred to as newOccurTime. Other relative points in simulation time, t, and the 

differences in time, Δt, are outlined in Table 2 and Table 3, respectively. They are shown graphically 

in Figure 2. This figure describes an increase in failure rate, but this could also be applied to a 

decrease in failure rate. 

 

Table 2: Points in time, t, for Scenario 1 

 

Table 3: Sampled lengths of time, Δt, for Scenario 1 

Reference Name Known? Description 

sampledTime Known Original time sampled- datum 

curTime Known Current simulation time, time of change in failure rate 

oldOccurTime Unknown Sampled time of failure given just the first failure rate 

newOccurTime Unknown Sampled time of conditional failure given the new failure rate 

following the elapsed time with the initial failure rate 

Lengths 

of Time 

In Terms of t Description 

Δt1 curTime – sampledTime Sampled time to transition back to the state that samples 

failure 

Δt2 oldOccurTime – sampledTime Sampled time to failure using the first failure rate from time 

first sampled 

Δt3 newOccurTime – sampledTime Conditional sampled time to failure given new failure rate 

following the elapsed time with the initial failure rate 

relative to sampledTime 

Δt4 newOccurTime - curTime Conditional sampled time to failure with new failure rate 

following the elapsed time with the initial failure rate minus 

Δt1 elapsed 
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Figure 2: Simulation times of interest for Scenario 1 
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Using the outlined points in time, the scenario can be described as: 

curTime < oldOccurTime (1) 

 

For the following methodology to be applicable, the following equivalent inequality must be true: 

newOccurTime > curTime 
or 

Δt3 > Δt1  

(2) 

 

(3) 

Inequality (2) and (3) have a difference of sampledTime. 

 

If the result of newOccurTime falls outside of that range, newOccurTime should be considered as 

follows: 

λC = curTime, newOccurTime ≤ curTime (4) 

 

Throughout this description, we have used the term “failure rate.” t will be described in terms of λ of a 

Poisson distribution but can be replaced with whatever distribution parameters are needed for the type 

of failure distribution that best describes the component’s failure behavior. This is mathematically 

described with Equation (5), given Table 4, and graphically with Figure 3. This figure describes an 

increase in failure rate, but this could also be applied to a decrease in failure rate. It also shows two 

constant failure rates because of the nature of a Poisson distribution, but if another distribution was 

used, the distribution parameters could be functions of time as well as external event occurrence. 

 

λC = {
λ1, t < curTime
λ2, t ≥ curTime

 (5) 

 

Table 4: Failure rates, λ, for Scenario 1 

 

Figure 3: Failure rate as a function of simulation time for Scenario 1 
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Failure Rate Description 

λC Failure rate of the single specific component being analyzed 

λ1 First failure rate, before being affected 

λ2 Second failure rate, at and after being affected 
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3.1.2. Methodology 

 

Using basic rules and probability methods, a relationship of failure probabilities in terms of Δt can be 

written to solve for newOccurTime. The general steps are as follows and can be applied to any failure 

distribution, F(Δt). 

 

1. Use probability integral transformation on the failure distribution with the initial failure 

distribution parameters to sample for oldOccurTime. 

 

2. Given the following definitions of conditional probability and reliability and failure, develop 

an equation relating the probability of failure due to the change in failure rate and parameters 

given some time has already elapsed (F(Δt4|Δt1)) to other probabilities. 

a. Conditional probability [1]: 

R(Δt4|Δt1)  =
R(Δt3)

R(Δt1)
 ↔  R(Δt3) =  R(Δt4|Δt1) ∗  R(Δt1) (6) 

  

b. Reliability and failure:  

R(Δt)  =  1 –  F(Δt)  ↔  F(Δt)  =  1 –  R(Δt) (7) 

  

where R(Δt) is the reliability, F(Δt) is the failure probability, and Δt is the time to 

transition to an event. 

 

c. Combine to create an equation in terms of failure probability since the failure 

distribution is known. 

F(Δt3) = 1 − [1 −  F(Δt1)] ∗ [1 −  F(Δt4|Δt1)] (8) 

  

3. Substitute in the failure distributions on the right-hand side. 

 

4. Use probability integral transformation on the resulting equation for failure probability to 

sample for newOccurTime. 

 

5. Repeat Steps 2–4 as often as failure parameters change. 

 

 

If it is assumed that the failure probability can be described using a Poisson distribution, the following 

description of failure probability is true: 

𝐹(𝑇 <  𝑡)  =  1 − 𝑒−𝜆𝑡
 (9) 

 

where λ is as described in Equation (5) and t is time to transition to failure. An analytical result can be 

achieved following the general steps outlined above. 

 

1. Use the initial value for the failure rate to sample for oldOccurTime. 

Substitute the appropriate variable values into Equation (9): 

𝐹(Δ𝑡2)  =  1 − 𝑒−𝜆1Δ𝑡2
 (10) 

 

Invert the failure probability to get an equation for t2: 

𝛥𝑡2  =  
𝑙𝑛[1 −  𝐹(Δ𝑡2)]

− 𝜆1
 (11) 

 

By the probability integral transformation theorem, the failure probability is a uniform 

random variable with domain [0,1] [6]: 

1 −  𝐹(Δ𝑡2)  =  𝑈  (12) 
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Substitute Equation (13) into Equation (12) understanding that Equation (14) is also true 

because U is on the domain [0,1]: 

𝛥𝑡2  =  
𝑙𝑛[𝑈]

− 𝜆1
 

 

(13) 

 

𝑈 = 1 − 𝑈 (14) 

  

Sample U to yield a value for t2, then use that sampled value and definition of t2 (Row 2 of 

Table 3) to solve for oldOccurTime: 

𝑜𝑙𝑑𝑂𝑐𝑐𝑢𝑟𝑇𝑖𝑚𝑒 =  𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑇𝑖𝑚𝑒 + 𝛥𝑡2 (15) 

 

2. Utilize Equation (8). 

 

3. Substitute the appropriate variable values into Equation (9): 

𝐹(Δ𝑡1) =  1 − 𝑒− 𝜆1Δ𝑡1 

 

(16) 

 

𝐹(𝛥𝑡4|Δ𝑡1) =  1 − 𝑒− 𝜆2Δ𝑡4   (17) 

  

Then substitute those equations into Equation (8). 

𝐹(Δ𝑡3) = 1 −  [1 −  (1 − 𝑒− 𝜆1Δ𝑡1)] ∗ [1 −  (1 − 𝑒− 𝜆2Δ𝑡4  )] (18) 

  

4. Invert Equation (18) to solve for t4 and use the probability integral transformation theorem as 

detailed in Step 1 when solving for oldOccurTime: 

𝛥𝑡4  =  
𝑙𝑛[𝑈] +  𝜆1𝛥𝑡1

− 𝜆2
 (19) 

 

Sample U to yield a value for t4, then use that sampled value and definition of t4 (row 4 of 

Table 3) to solve for newOccurTime: 

𝑛𝑒𝑤𝑂𝑐𝑐𝑢𝑟𝑇𝑖𝑚𝑒 =  𝑐𝑢𝑟𝑇𝑖𝑚𝑒 + 𝛥𝑡4 (20) 

 

5. Repeat as necessary. 

 

3.1.3. Example Model Scenario 

 

In this example, the operation and failure of the Intelligent Automation module of a fission battery 

plant is modeled as shown in Figure 3. Since the fission battery will be operated in remote areas with 

minimum human intervention, intelligent automation and decision-making capabilities are vital to its 

operation [7]. Here, the intelligent automation module is housed in a dedicated computer, which 

dissipates considerable heat due to the real-time monitoring, processing, and remote communication 

of the battery’s sensor data. For that reason, the computer’s failure rate depends on the room’s cooling 

as regulated by the heating, ventilation, and air conditioning (HVAC) system. The HVAC has a fixed 

failure rate, and its failure increases the computer’s failure rate from 1E-3/hr to 5E-3/hr, as shown in 

the “Update_ComputerFailureRate” action in Figure 4. The change in failure rate is modeled in the 

“Computer_Failure_Rate” event by using a variable, “ComputerFailureRate,” and the “Adjust” option 

when the value changes, as seen in Figure 5. This option incorporates the dynamic failure, as modeled 

in Equation (18) – (20). 
 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Figure 3. EMRALD diagram of fission battery intelligent automation module 

 
 

Figure 4. EMRALD model of HVAC system 

 
 

Figure 5. Computer’s failure event using a dynamic failure rate 
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3.2. Scenario 2—Resample 

3.2.1. Description 

 

The second method determines the time to failure of distinct instances of a component with identical 

behavior. This would include sampling multiple similar components at different times or sampling a 

component that was recovered or had a similar replacement for a component that previously failed. 

This newly sampled time to failure will also be referred to as newOccurTime. The names of all other 

points in time will be consistent with Table 2 but have slightly different descriptions, as shown in 

Table 5. 

 

Table 5: Points in time, t, for Scenario 2 

 

Unlike in the first scenario, newOccurTime does not necessarily have to occur before oldOccurTime. 

For the replacement scenario, oldOccurTime will occur before newOccurTime by nature of the 

scenario. The first and second sampling to obtain oldOccurTime and newOccurTime, respectively, are 

now independent of each other, see the change in definition of the failure rate shown in Table 6. Now 

that they are independent of each other, their failure rate values are also independent of each other. 

They could be identical if the component being sampled has identical failure rates, or they could be 

slightly different from each other either from variance in component manufacturing or other external 

factors. 

 

Table 6: Failure rates, λ, for Scenario 2 

 

3.2.2. Methodology 

 

The methodology for this is to simply sample each instance independently using the probability 

integral transformation on the failure distributions with the appropriate failure distribution parameters 

to solve for oldOccurTime and newOccurTime. 

 

If the failure probability of each component can be described using a Poisson distribution, Equation 

(9), using the values defined in Table 6 and applying the probability integral transformation, can yield 

an analytical result. This is done using Equations (10) – (15) with the appropriate substitutions. 

 

3.2.3. Example Model Scenario 

 

In this example, the intelligent automation of a fission battery uses redundant CPUs, as shown in 

Figure 5. When the main CPU fails, the system switches to the backup CPU as seen in the interaction 

between the “If_CPUs_Available” event in the “CPU_Switching” state and the “CPU_Fails” event in 

the “Automation_On” state. For this illustration, the main CPU has 1E-3 failures/hour while the 

backup unit has 5E-3 failures/hour. These values are arbitrarily selected to highlight the difference in 

failure timings due to different failure rates. Switching from the main to backup CPU requires a 

resampling of failure time. The simulation ends when the backup CPU eventually fails, causing the 

loss of the intelligent automation capability as seen in the state transition under the 

“If_CPUs_Unavailable” state. 

 

Reference Name Known? Description 

sampledTime Known Original time sampled- datum 

curTime Known Current simulation time, time of second sampling 

oldOccurTime Unknown Sampled time of failure of the first sampled component 

newOccurTime Unknown Sampled time of failure of the second sampled component 

Failure Rate Description 

λ1 First failure rate of first sampled component 

λ2 Second failure rate of second sampled component 
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Figure 5. EMRALD diagram of automation failure 

 
 

4. RESULTS AND DISCUSSION 
 

A series of 10,000 EMRALD runs was simulated for both models. A summary of simulation 

conditions is shown in Table 7 and the failure time probability density results are shown in Figure 6.  

The figure shows the bins when the fission battery lost its intelligent automation capability, assuming 

the computer unit had a static failure rate λ1 of 1E-3, λ2 of 5E-3 or a dynamic failure rate. The results 

of the static failure rate λ1 and λ2 are identical between models. The results of the dynamic failure rate 

are necessarily only a result of the model described in Section 3.1.3 that uses the “Adjust” 

methodology. 

 

Table 7: EMRALD model inputs 

 

As seen in Figure 6, more early failures are observed in the backup CPU with the λ2 failure rate than 

the more reliable main CPU. Meanwhile, the dynamic failure methodology shows estimates between 

the two failure timings. The cumulative probability of failure time from 10,000 EMRALD runs is 

presented in Figure 7 and shows a similar trend. The figure conveys a similar message that the 

proposed methodology in this work can estimate the change in failure time due to a change in failure 

rate, which may be caused by environmental conditions. 

 

Another important observation from Figure 6 and Figure 7 is that the component initially behaved 

following the initial failure rate λ1, with a lower failure density at the start of operation. However, this 

behavior gradually changed as the HVAC fails, causing an undesirable operating condition, and the 

computer's failure density started to reflect that of the degraded computer with the λ2 failure rate. This 

explains why the initial sections of the dynamic lambda cumulative failure probability curve and the 

failure with λ1 coincide with each other. 

 

The three sets of data shown in Figure 6 and Figure 7 reveal the practical application of the 

conditional probability formulation presented in this paper and the significance of differentiating the 

methodologies. The distributions are all significantly different, thus representing significantly 

different estimated times to failure depending on the way the changed failure rate is considered. Since 

the result of the dynamic lambda has influence from λ1 and λ2, it is reasonable that it has a distribution 

that lies between the static λ1 and λ2. When the influence of the changed failure rate was not 

considered, the result was just the data sets of the static λ1 and λ2, which over and underestimate the 

time to failure, respectively. 

 

 

Parameter Value 

Number of Runs 10,000 

λ1 1E-3 

λ2 5E-3 
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Figure 6. Probability density of failure time from 10,000 runs 

 
 

Figure 7. Cumulative probability of failure time from 10,000 runs 
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5. CONCLUSION 
 

As exemplified in the methodology and examples, discretion between scenarios is critical for 

appropriately estimating the time to failure. If the inappropriate methodology is used, it can lead to 

skewed results due to an under or overestimation of the time to failure of the component. 
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