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Abstract: The modelling and quantification of seismic loadings, such as earthquakes, to improve the 

safe design of structures is a challenging task. In particular, the unpredictable nature of earthquake 

characteristics like amplitude, dominant frequencies, and duration pose a great risk especially for 

sensitive structures like power plants, oil rigs, high-rise buildings, or large-span structures. The analysis, 

understanding and evaluation of those seismic characteristics and their influence on safe structural 

design is especially important for regions prone to earthquakes. The tectonic mechanisms leading to 

seismic underground waves are complex but measurements of earthquakes and their mechanical causes 

on surfaces are available manifold. A new procedure is presented herein for describing uncertainties in 

the power spectral density (PSD) function of seismic loadings and utilises the novel approach of Sliced-

Normal distributions to describe multivariate probability density functions over frequency and 

amplitude. This representation enables analysts of stochastic dynamic systems the usage of a compact 

description for PSD functions and to reduce epistemic uncertainties on specific regions prone to 

earthquake threats. This newly formed PSD function can be used in the simulation of seismic loads via 

spectral representation or other spectral-based stochastic process generators and is a subsequent 

development of the already introduced relaxed PSD function.  

 

 

1.  INTRODUCTION 
 

In order to assess the reliability and robustness of buildings and other structures or to design safe 

structures in the future, it is necessary to carry out extensive simulations. Simulations are often a first 

step to an abstraction of real structures and to represent them as a simulation model. This is required 

because a direct application of the safety specifications for sensitive structures in civil engineering is 

often not possible due to the structural complexity or incomplete information of the system. Such a 

model can be examined in different scenarios with regard to their excitation. It is thus possible to utilise 

environmental processes, such as wind or waves, to stress the model or to examine rare extreme events, 

such as earthquakes. Since these loads, which may also be represented as stochastic processes, can often 

hardly be described deterministically and are unpredictable, they have a significant influence on systems 

that exhibit dynamic behaviour [1]. 

 

An important tool is the Power Spectral Density (PSD) function, which is based on the Fourier transform 

and can be used to determine the stochastic processes for their frequency components and amplitude. 

This is essential to identify whether the natural frequencies of the load coincide with those of the 

structure, which would result in resonance. The PSD is used in many areas of stochastic dynamics and 

environmental processes. For example, it can be utilised to determine the response of a structure under 

dynamic loads, or it can be employed in Monte Carlo (MC) simulations to generate adequate time 

signals that carry the characteristics of the underlying PSD function [2]. Due to the complexity and the 
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strict mathematical relationship, it is often only possible to estimate the frequency components instead 

of determining them exactly. An exact determination requires time series of infinite length, do not occur 

in practice. There are numerous methods for estimating the PSD function from source data, but usually 

these estimators do not take into account the uncertainties arising from this constraint [3, 4]. 

 

The use of real data records supports to generate realistic load models for the simulations. There are a 

variety of databases that provide different types of data for specific regions and types of environmental 

processes, such as the Pacific earthquake engineering research centers (PEER) next generation 

attenuation (NGA) ground-motion databases [5] and others. However, an emerging problem is that real 

data in general is often subject to uncertainties. Various origins for uncertainties exist, such as simple 

measurement errors of the sensor, incorrect calibration or total failure. In addition, external influences 

can affect the measurements, the sensor can be damaged and the placement of the sensor can also 

influence the recordings. The acquired data are therefore subject to uncertainties that need to be 

quantified. Particularly in safety-relevant areas, for example when determining whether a building can 

withstand a certain load, it is important to quantify uncertainties appropriately, as this can have a 

significant impact on the interpretation of the simulation results. If quantified incorrectly, a result that 

is actually destructive might be pushed into an acceptable range, and the system can thus be classified 

as safe, even though it is at high risk of damage or collapse. Instead of discrete simulation results, it is 

therefore often advantageous to identify a range of possible system response by either determine a 

potential upper and lower bound with intervals or quantify it probabilistically. In this way, safety 

margins can be determined instead of discrete values. The consideration of uncertainties in data is 

therefore indispensable for simulations. 

 

Some approaches have already been introduced for quantifying uncertainties of real data records and 

the PSD estimation process. In [6, 7], missing data in time series are reconstructed by assuming them 

to be normally distributed random variables. These are propagated through the Fourier transform and 

thus an uncertain PSD function is computed. In [8], interval parameters are derived from real seismic 

records as input parameters for an empirical PSD function. Depending on which bounds are utilised, 

this results in different representations of the PSD functions and thus a modified excitation. The so-

called relaxed PSD, which is a probabilistic representation of an ensemble of data with similar 

characteristics, was developed in [9]. This approach requires the data to have similar shape, peak 

frequency and energy in the frequency domain. Due to a high amount of data, reliable statistical 

information can be extracted that represents each frequency component as a probability density function 

(PDF) and thus indicates more probable and less probable ranges of the actual underlying PSD. 

However, the disadvantage of this approach is that correlations and dependencies between frequencies 

are not taken into account. In this paper, the relaxed PSD is therefore derived using the recently 

developed Sliced Normal distributions (SN) rather than other feasible methods, such as Copulas. 

 

SN were introduced in [10] and describe a new class of distributions to provide a generalised method 

for characterising multivariate uncertain quantities. This novel class of distributions is a versatile, 

generalised model that allows the characterisation of complex (higher dimensional) uncertain 

parameters with minimal effort. However, the accuracy of characterising the uncertain parameter 

dependencies is highly dependent on the procedure of designing the SNs, a challenging task seems to 

be to optimise the estimated SNs towards their ability of enclosing all presented uncertain data and 

finding a parametric behaviour. A key problem is that in the process of the SNs a mapping from the 

physical into the so-called feature space is necessary. The tuning of the hyperparameters controlling the 

SNs and influencing the accuracy of data enclosing however, cannot always ensure optimality and non-

convexity in physical and feature space for any arbitrary dimension or data set.  

 

The objective of this work is to develop a more suitable representation of the relaxed PSD using SN. 

Since the data set is considered as a whole and not as individual frequencies when using SN, correlations 

and dependencies between the frequencies are also taken into account accordingly. The disadvantage 

of considering frequencies individually is thus eliminated. The new representation of the relaxed PSD 

is thus an entire multivariate PDF instead of generating a univariate PDF for each individual frequency. 
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It is directly applicable for sampling individual PSDs to generate suitable time signals for MC 

simulation. In this work, SN is considered as a proof-of-concept for a specific optimised feature space. 

This work is organised as follows: Section 2 provides a brief overview of the theoretical concepts 

required for this work. The derivation of a relaxed PSD with SN is explained in Section 3. In Section 

4, some investigations are carried out with the novel relaxed PSD, such as generating stochastic 

processes. The work concludes with Section 5. 

 

2.  PRELIMINARIES 

 
This section will introduce the basic concepts of the Spectral Representation Method (SRM), ensembles 

of PSDs and the corresponding relaxed PSD (RPSD), the RPSD constructed from truncated normal 

distributions (TNRPSD) and the basics of SNs required for the further developments in this work. 

 

2.1.  PSD Estimation and Stochastic Process Generation 

 

Stochastic processes are influenced by random occurrences and fluctuations. Such a process cannot be 

described solely on a deterministic basis. Random variables define the value of the stochastic process 

at any point in time [11]. Examples of stochastic processes are earthquakes or wind loads subject to 

high-rise buildings. The estimation of the stationary power spectrum of a given time series 𝑥𝑡 can be 

achieved by the periodogram [4], which is defined by the absolute value of the discrete Fourier 

transform  

 

 

𝑆̂𝑋(𝜔𝑘) =
Δ𝑡2

𝑇
|∑ 𝑥𝑡𝑒−

𝑖2𝜋𝑘𝑡
𝑇

𝑇−1

𝑡=0

|

2

 (1) 

 

where 𝛥𝑡 describes the time step size, 𝑇 the total length of the record, 𝑡 describes the data point index 

in the record and 𝑘 is the integer frequency for 𝜔𝑘 = 2𝜋𝑘 𝑇⁄  .  
 

A stochastic process 𝑋𝑡 can be generated utilising an underlying PSD function 𝑆𝑋, either estimated from 

real data or an analytical model. The autocorrelation function of such a stationary zero-mean process 

𝑋𝑡 is  

 

 
𝑅𝑋(𝜏) = 𝜎2

𝑏4(𝑏2 − 3𝜏2)

(𝑏2 + 𝜏2)3
       − ∞ < 𝜏 < ∞ (2) 

 

and the corresponding analytical expression of the PSD function is given by  

 

 𝑆𝑋(𝜔) =  
1

4
𝜎2𝑏3𝜔2𝑒−𝑏|𝜔|        − ∞ < 𝜔 < ∞. (3) 

 

In these equations, 𝜎 describes the standard deviation and 𝑏 is in relation to the correlation of the 

stochastic process, respectively. Here, 𝜎 = 1 and 𝑏 = 1 is utilised. Both, Eq. (2) and Eq. (3) are used 

throughout this work when referring to the original ensemble data and to compare the autocorrelation 

function of such generated processes with their analytical expression [12]. 

 

The Spectral Representation Method (SRM) is feasible to adequately generate a stochastic process 𝑋𝑡 

with the characteristics of the underlying PSD function 𝑆𝑋 [12]. SRM reads as follows 

 

 

𝑋𝑡 = ∑ √4𝑆𝑋(𝜔𝑛)Δ𝜔 (𝜔𝑛𝑡 + 𝜑𝑛)

𝑁𝜔−1

𝑛=0

 (4) 
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where 𝜔𝑛 = 𝑛Δ𝜔,     𝑛 = 0,1,2, … , 𝑁𝜔 − 1, with 𝑁𝜔 as the total number of frequency points, 𝜔𝑛 as the 

frequency vector, Δω as frequency step size, 𝑡 as time vector and 𝜑𝑛 as uniformly distributed random 

phase angles in the range [0,2𝜋]. The cut-off frequency is called 𝜔𝑢 =  (𝑁𝜔 − 1)Δ𝜔, beyond which 𝑆𝑋 

is assumed to be 0. For a modification of SRM, the concept of Stochastic Harmonic Functions (SHF) 

was introduced in [13,14] It was shown that for the generation of stochastic processes it is sufficient to 

capture only partial information of the PSD functions in frequency space. Therefore, it was proposed to 

divide the frequency space into intervals [𝜔𝑖, 𝜔𝑖+1]. The sampling for the frequency locations was then 

evenly distributed over these intervals. This results in fewer random variables required overall when 

considering Eq. (4). However, a new i.i.d. random variable must be introduced for each frequency 

interval. 

 

2.2.  Relaxed Power Spectrum 

 

Epistemic uncertainties are inherent in stochastic processes, especially in real data records. 

Furthermore, additional uncertainties are introduced by the estimation process, since the estimators, 

such as the periodogram, do not account for those uncertainties. To capture and quantify these epistemic 

uncertainties, the relaxed PSD was developed [9]. The relaxed PSD is a probabilistic representation of 

an ensemble of PSD functions with similar characteristics, such as shape, peak frequency and total 

power. The ensemble {𝑆̂𝑋𝑖
} ∈ ℝ𝑁𝑒×𝑁𝜔  is a set containing 𝑁𝑒  PSD functions discretized along 𝜔𝑛 , 

whereas 𝑠𝑖,ω𝑛
=  𝑆̂𝑋𝑖

(ω𝑛), 𝑖 = 1. . . 𝑁𝑒 . The relaxed PSD can be used to sample individual PSD 

functions from the uncertain input space as excitation to approximate the possible response of a system. 

The strengths of the relaxed PSD can be exploited, especially when a large amount of data is available, 

as for such an ensemble reliable statistical information can be extracted. For the derivation of the relaxed 

PSD, it is required to compute the mean value 𝜇𝜔𝑛
and the standard deviation 𝜎𝜔𝑛

 of the ensemble for 

each discrete frequency 𝜔𝑛 = 𝑛Δ𝜔  with 𝑛 = 0,1,2, … , 𝑁𝜔 − 1 . This information can be used to 

generate a Probability Density Function (PDF) from which random variables are drawn later. In this 

and previous works, the truncated normal distribution 𝑓𝜔𝑛
 is suggested 

 

 

𝑓𝜔𝑛
(𝑠; 𝜇, 𝜎, 𝑎, 𝑏) =

1

𝜎

𝜙 (
𝑠 − 𝜇

𝜎
)

𝛷 (
𝑏 − 𝜇

𝜎 ) − 𝛷 (
𝑎 − 𝜇

𝜎 )
 (5) 

 

where 𝜙 describes the standard normal distribution and 𝛷 is the corresponding cumulative distribution 

function, but depending on the appearance of the ensemble, other distribution functions might also be 

useful. The truncation bounds are denoted by 𝑎 and 𝑏 and can be chosen depending on the shape and 

spectral density values of the ensemble. The only requirement is that the lower bound 𝑎 must not be 

smaller than 0  as negative values are physically impossible. Possible ranges are, for instance, 
[𝑎 = 0, 𝑏 = ∞] or [𝑎 = 0, 𝑏 = 2𝜇𝜔𝑛

]. 

 

An example of an ensemble of PSD functions is given in Fig. 1. The ensemble consists of 𝑁𝑒 = 50 PSD 

functions with similar characteristics. The ensemble members are periodograms of Gaussian processes 

with mean 𝜇𝑋𝑡
= 0 and standard deviation 𝜎𝑋𝑡

= 1. The relaxed PSD function, estimated from this 

ensemble, is also depicted. For the estimation the truncation bounds [𝑎 = 0, 𝑏 = ∞] are utilised. 

 

The PDFs for the relaxed PSD must be defined separately for each frequency. Thus, correlations and 

dependencies between frequencies are not taken into account, which is a disadvantage of this method. 

To address this issue, the relaxed PSD is derived in this paper using sliced-normal distributions. The 

generated distribution depicted in Fig.1 on the right side and tuned distributions in Eq. (5) are, for the 

sake of brevity, referred to as TNRPSD (Truncated Normal Relaxed Power Spectral Density function). 

Sampling from the TNRPSD is done for each frequency, simple techniques such as inverse sampling 

can be utilized since the full information for all distributions is available and given with Eq. (5). 
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Figure 1: Ensemble of PSD functions and derived relaxed PSD function. 

 
 

2.3.  Sliced-normal Distributions 

 

As a proof-of-concept in this work the Sliced Normal distributions (SN) only for a specific optimized 

feature space is regarded. In the following only, the procedure for this specific design of the SNs is 

therefore described. Assume data with uncertain and unknown parametric features is available, let this 

data be denoted by 𝛿: ℝ𝑛𝛿×𝑛𝑜, where 𝑛𝑜 is the number of available observations and 𝑛𝛿 the dimension 

of these observations (sometimes referred to as random dimension). One realization of this data 

retrieved by any stochastic simulation technique (e.g. Monte Carlo simulation) or measurements is 

called a data sequence and is denoted by 𝔇. From the given data 𝛿 a support set Δ ∈ ℝ𝑛𝛿 needs to be 

constructed. Without the presence of outliers, simulation errors or observation errors it can be assumed 

that ∀𝛿 ∈ Δ. In this work we solely assume that the support set is an interval box with the bounds: 

Δ = [𝑚𝑖𝑛{δ}, 𝑚𝑎𝑥{δ}]  ×  [𝑚𝑖𝑛{δ}, 𝑚𝑎𝑥{δ}]. Note that the minimum and maximum bounds can be 

multidimensional points depending on 𝑛𝛿.To ensure an optimal enclosing of the data by the SNs a 

suitable mapping from the physical space (corresponding to the data) into the feature space (which is 

an artificial augmentation of the physical space) must be formulated. In [10] following mapping 

function from the physical space δ to a feature space 𝑧 is suggested 

 

 𝑧 = 𝑍𝑑(δ), (6) 

 

with 𝑍𝑑(δ): ℝ𝑛𝛿 → ℝ𝑛𝑍  and the feature space dimension: 𝑛𝑍 = (
𝑛𝛿 + 𝑑

𝑛𝛿
) − 1 . 𝑑  is an adjustable 

hyperparameter for the design process of the SNs. 𝑑 directly corresponds to the dimension of the feature 

space and the degree of augmentation of the physical space. In [10] 𝑍𝑑(δ) is suggested to contain a 

vector of monomials linked to the data 𝛿 and its dimension 𝑛𝛿. These monomials are sorted in the vector 

given a specific order, first the monomials are ordered lexicographic and second ordered in ascending 

degree of the monomials. Note that the lexicographic order is achieved when assuming that the first 

dimension of the data corresponds to the to the letter a of the alphabet, i.e. 𝛿1 ≔ 𝑎, 𝛿2 ≔ 𝑏, …. For 

example if 𝑛𝛿  = 3 and 𝑑 = 2  the monomials are given as the vectorized functionals 𝑧 =
[𝛿1, 𝛿2, 𝛿3, 𝛿1

2, 𝛿1𝛿2, 𝛿2
2, 𝛿1𝛿3, 𝛿2𝛿3, 𝛿3

2]𝑇, 𝑧 ∈ ℝ𝑛𝛿×𝑛𝑍  . Given this pre-processing of the data and with 

the first hyperparameter 𝑑 we setup the actual construction of the SN. 

 

The Gaussian distribution for 𝑥 ∈  ℝ𝑛𝑍   with mean value 𝜇 ∈  ℝ𝑛𝑍 and the inverse of the covariance 

matrix 𝑃 ∈  ℝ𝑛𝑍×𝑛𝑍 is given to be 

 

 

𝑓𝑋(𝑥; 𝜇,𝑃) =
exp (−

(𝑥 − 𝜇)𝑇𝑃(𝑥 − 𝜇)
2 )

(2𝜋)𝑛𝛿/2√(|𝑃−1|)
 (7) 

 

Note that 𝜇, 𝑃 are now additional hyperparameters. P must be symmetric positive definite. Alongside 

with the formulation of a normalization constant for multivariate Gaussian distributions given as the 
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denominator of Eq. (7) i.e., 𝑐 (μ, P) = (2π)𝑛δ/2√(|𝑃−1|)  and Eq. (6) the SN distribution can be given 

as 

 

𝑓(𝛿; 𝜇, 𝑃) = {
exp (−

(𝑍𝑑(δ) − 𝜇)𝑇𝑃(𝑍𝑑(δ) − 𝜇)
2

)

𝑐(𝜇, 𝑃)
for 𝛿 ∈ Δ,

0 for 𝛿 ∉ Δ.

 (8) 

 

P can be solely determined by the data sequence 𝔇. However, in [10] and [15] different procedures are 

introduced for the SNs design and to determine the corresponding hyperparameters. In this work focus 

only on one procedure presented in [15] under the section and name “Optimized Sliced Normals by 

Scaling the P Hyperparameter” is laid. Here a convex optimization problem is formulated that 

maximizes the likelihood in feature space for a given data sequence 𝔇 depending on a scaling value γ 

for the inverse covariance matrix, i.e., 𝛾𝑃. For the sake of brevity, the relation 

 

 
φ(δ, μ, 𝑃) = exp (−

(𝑍𝑑(δ) − 𝜇)𝑇𝑃(𝑍𝑑(δ) − 𝜇)

2
) (9) 

 

is introduced. With respect to all previously defined hyperparameters 𝜇, 𝑃, 𝑑 and a suitable construction 

of the support set Δ, following by 𝛾 scalable SN distributions are introduced 

 

 

𝑓(𝛿; 𝜇, γ𝑃, Δ) = {

exp(−φ(δ, μ, γ𝑃))

𝑐(𝜇, γ𝑃)
for 𝛿 ∈ Δ,

0 for 𝛿 ∉ Δ.

 (10) 

 

The mean μ  is determined by the mean 𝑧 . 𝜇𝑗 = 𝐸[𝑧𝑗] = 1/𝑛𝑧 ∑ 𝑧𝑖,𝑗
𝑛𝑧
𝑖=1,𝑗 . Equivalently 𝑃  is the 

covariance matrix corresponding to the data in 𝑧. The Gaussian normalization 𝑐(𝜇, γ𝑃) is still related 

to the rigorous support space Δ, which is not available in a closed expression. Therefore, a numerical 

estimation of the features of the underlying space must be formulated. In contrast to [10] where a 

uniform sampling over Δ as hyper ellipsoid is proposed, referenced in [16], in this work the “minimum 

volume ellipsoid” 𝜖 is generated using a statistical-geometrical method to find an optimal ellipsoid 

representing large data sets in high random dimensions, see [17]. 
 

Given 𝜖  which is an approximated representation of Δ , in the feature space, generate 𝑛𝑏  samples 

𝑢𝑛𝛿×𝑛𝑏 that are in 𝜖. With the generated samples 𝑢𝑖 , 𝑖 = 1, … , 𝑛𝑏 , it is possible to estimate the volume 

𝑉 of 𝜖. 𝑉 is an estimation of the volume of the support space Δ. With this relation an approximation of 

the normalization constant can be given to be 

 

 

𝑐Δ(μ, γ𝑃) = ∫ exp(−φ(δ, μ, γ𝑃))𝑑𝛿 ≈
𝑉

𝑛𝑏Δ

 ∑ exp(−φ(𝑢𝑖, μ, γ𝑃))

𝑛𝑏

𝑖=1

  (11) 

 

The in [15] mentioned convex optimization problem tries to find the optimal scaling parameter γ for a 

Maximum Likelihood Estimation (MLE) of the SN distribution in Eq. (10) for a specific data sequence 

𝔇. The optimization problem which stems from the mentioned MLE is  

 

 
max

γ ∈ ℝ+
{log ∏

exp(−φ(δ, μ, γ𝑃))

𝑐Δ(μ, γ𝑃)
 𝛿 ∈ 𝔇

} (12) 

 

On the available data 𝔇, with the representation of Δ for the normalization constant Eq. (11) and the 

corresponding samples 𝑢𝑖 following statement is optimized towards γ, 

 
max

γ ∈ ℝ+
{𝑚 log (

1

𝑐Δ(μ, γ𝑃)
) − γD} (13) 
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where 𝑚 = 𝑛𝛿  ∙  𝑛𝑜is the total number of available datapoints in δ and scalar 𝐷 =  ∑ 𝜑(𝛿, 𝜇, 𝑃)𝛿 ∈ 𝔇  

is the unscaled hyperparameter relation in feature space. This procedure to fit the SNs characteristics to 

the data and ensure an enclosing ability is called “The Covariance Scaling SN Method”. In [16] a 

gradient-based algorithm to localize the global optimum for Eq. (13) is suggested, however in this work 

the heuristic Nelder-Mead method is applied [18]. For full technical insight on how this implementation 

is realized, refer to the GitHub repository in [19]. 

 

2.3.1  Sampling Procedure 

 

Once the hyperparameters are retrieved from the optimization problem in Eq. (13) a full description of 

the SN PDF Eq. (10) is possible. To enable a generalized sampling method for the SNs, the Transitional 

Markov Chain Monte Carlo (TMCMC) scheme as proposed in [20] was implemented. TMCMC can 

benefit from the a priori definition of the support set Δ, since uniformly distributed prior candidates can 

be already sampled within Δ. Additionally, since the full PDF can be described a likelihood estimator 

is readily available. The used implementation of the TMCMC method is available on GitHub [21]. 

 

3.  RELAXED PSD ESTIMATION USING SLICED-NORMAL DISTRIBUTIONS 
 

The goal of a relaxed PSD estimation is to reduce the epistemic uncertainty stemming from the 

unprecise or unavailable information of dynamic natural processes. As one illustrative example seismic 

ground motion is of major interest in this work. The here presented framework utilising novel advances 

in the design of random variables, namely the tuning and generation of Sliced Normal distributions, 

shall offer a generalized procedure to estimate future seismic loadings and their magnitudes given past 

measurements of earthquake accelerograms. The by Sliced Normals designed relaxed Power Spectral 

Density function shall be denoted as SNRPSD. 

 

3.1  Data Pre-processing 

 
For several measured accelerograms Eq. (1) yields the approximated stationary power spectra, this 

collection is called an ensemble. In our case only artificial accelerogram time series 𝑿𝒕 are regarded as 

described in Eq. (4). It is important to understand that at this point a major simplification was made 

because the source spectrum for the ensemble in Fig.1 on the left is a continuous PSD function, as in 

Eq. (3). The uncertainties in the ensemble in Fig.1 on the left are only stemming from the periodogram 

estimation in Eq.(1) of the by the continuous PSD function generated Gaussian processes and the fact 

that contrary to the example presented in [12], Eq. (4) contains 𝑁𝜔  =  129 (In [12] 𝑁𝜔  =  128). The 

approximated process is Gaussian with 𝐸[𝑋𝑡] = 0 and 𝑉𝑎𝑟[𝑋𝑡]  =  1. However, this noisy data is a 

possibility to represent the actual uncertainty in measured earthquake accelerograms, differences in 

accelerograms and corresponding PSDs can be found in [1,3,5]. Also it allows for a quick generation 

of new “observation” data. Additionally, it is possible to analyse the mathematical consistency with the 

well described example in [12]. Utilizing the procedure described in Chapter 2 to generate a SN 

distribution, based on the ensemble {𝑆̂𝑥𝑖
}, with optimality in feature space and scaled hyperparameter 

𝑃, results in the estimated relaxed PSD in Fig. 2 right. The coverage of the provided data set is not 

optimal, large values are neglected and values where no density should be estimated, are covered. 

Mainly the authors assume that this is because an optimality in feature space has been chosen other than 

the optimality in physical space, as already suggested and visualized in [10] (especially here referring 

to Fig. 1. and Fig. 2). However, the optimality in physical space can only be achieved by the 

optimization of a set of parameters. It is not trivial to implement this multi-dimensional optimization 

problem in a generalized fashion. In this work a simple data processing procedure for functional data 

of similar shape is proposed. This procedure allows for a simplified handling of data with similar 

characteristics and enables the usage of the herein presented procedure to design SNs in a generalized 

fashion. 
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Figure 2: Ensemble of PSD functions and derived SN relaxed PSD function. 

 
 

Eventually, the multivariate SNs are serving as multivariate relaxed PSD functions to reduce epistemic 

uncertainty in data sets containing PSDs of seismic loadings. 

 

In Fig. 1 on the left it is observable that for frequencies larger than 8 (𝑟𝑎𝑑/𝑠) the ensemble members 

converge rapidly to a PSD value of 0, with other words we have a high density of data with similar 

values. Consequently, in Fig. 2 left and right a large proportion of the by SN sampled points are falling 

in the tails of the ensemble members and this leads to a high probability density in these areas. For the 

generation of stochastic processes, a certain number of frequency proportions must be represented by 

the PSD. Additionally, larger PSD values have a higher impact on the generated process. Therefore, 

values converging towards zero are less important. A sampling with the standard configuration would 

result in a poor performance of generating points across the whole frequency range and additionally it 

might happen, that for a small number of generated samples, information of the PSD is missing. 

Therefore, a simple data-thinning algorithm is proposed, which is specifically tailored for functional 

data with similar characteristics. First, the maximum and minimum values in {𝑆̂𝑥𝑖
} for each frequency 

are captured by 

 

 𝑆𝑛̅  =  arg max
ω𝑛∈[0,ω𝑢]

𝑆̂𝑥𝑖
(ω𝑛)  

𝑆𝑛  =  arg min
ω𝑛 ∈ [0,ω𝑢]

𝑆̂𝑥𝑖
(ω𝑛) , 

(14) 

 

next the difference of these vectors 𝑆𝑛̅ and 𝑆𝑛 is calculated to capture the magnitude of deviation, 

𝑆̀𝑛  = 𝑆𝑛̅  −  𝑆𝑛, from this difference, the maximum and minimum deviation is captured, equivalent to 

Eq. (13) obtaining, 𝑠, 𝑠. A simple linear interpolation function is applied  

 

 y(x) = [y0(s − x) + y1(x −  s)]/( s − s) (15) 

 

where 𝑦0, 𝑦1 define the rate how many samples shall be kept for the respected differences. To estimate 

the number of samples that can be deleted from the data for each discretized location following simple 

relation is given 

 

 Nrm,n = ⌊𝑁𝑒( 1 −  𝑦(𝑆̀𝑛) )⌉. (16) 

 

for each discretized location in 𝑛 of 𝑆̂𝑥𝑖
(ω𝑛) the first Nrm,n samples are deleted. With this procedure 

each discretized value in {𝑆̂𝑥𝑖
} is regarded as a single sample. The deletion of samples which could vary 

in number for different frequencies is an intrusive procedure. However, these samples are only the 

“training data” for the SN distribution, therefore gaps of information in areas that are not of interest do 

not directly lead to gaps in the probability density distributed over the parameter space. 
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Figure 3: Ensemble of thinned-out PSD sample points and derived SN relaxed PSD function. 

 
 

In Fig. 3 right in comparison to Fig. 2 right a shift of the probability density towards lower frequencies 

can be regarded, additionally the peak of the ensemble is better approximated, which results in higher 

possible PSD function values of the PDF. However, problematic are several points. 1. In the first 

frequency intervals, e.g. 𝜔1 = [0,1] the distinct similarity of the data and the steep increase of the PSD 

cannot be captured well. 2. Some areas are underrepresented and only exhibit very small probability 

densities, for example the total peaks of the ensemble where 𝑠𝑝 =  𝑆̂𝑥𝑖
(ω𝑛) > 0.25

𝑚2

𝑠3 , 𝑓 ({𝜔 =

2.5
𝑟𝑎𝑑

𝑠
, 𝑠𝑝}) = 4.2412𝑒−8. 3. The area approximately between 𝜔 = [0,2) and for 𝑆̂𝑥𝑖

(ω𝑛) < 0.05
𝑚2

𝑠3  

contains a relatively large proportion of probability density values, which should not be the case (refer 

to Fig.1 left). As already mentioned this problematic coverage of the parameter space results from the 

optimality in feature space, an optimization approach in physical space could result in a more 

distinguishable approximation of the probability density in the parameter space. A drawback could then 

be, that for real measurements with observation errors, the influence of these outliers might be too high, 

and a special handling of these cases would be necessary. All in all, data-thinning is a low cost and fast 

way to pre-process functional data to yield a better SN approximation. 

 

3.2  Adaptive Sampling 

 

Since the physical space is now parametrized by the bivariate SN distribution, direct sampling from this 

distribution type is possible. However, the type of data in the ensemble is functional data and has distinct 

characteristics. Most importantly is that a larger range of frequency must be covered and filled with 

information, e.g. 𝜔 = [0,8). This stands in contrast to SHF in which for each frequency interval a new 

i.i.d. uniform random variable needed to be introduced. 

 

The whole parametric probability description of the parameter space with a bivariate SN distribution 

enables the possibility of a one-shot sampling approach (a single initial Monte Carlo simulation). Only 

a constant number of samples from the whole distribution is sampled and afterwards the samples are 

sorted according to the predefined frequency intervals to ensure that for each interval at least one sample 

is present. Additionally, the sorting ensures the functional characteristics of the ensemble data. 

 

Given the SN distribution 𝑓({𝜔, 𝑆}) designed with optimality in feature space based on the ensemble 

data, two dimensional samples {𝛿𝑖̅} = {𝛿𝜔 , 𝛿𝑆}𝑙 can be generated by e.g. TMCMC, with 𝑙 = 1, … , 𝑁𝑠, 

𝑁𝑠: Number of desired one-shot samples. The unsorted set elements (each element is in this case a tuple) 

in {𝛿𝑖̅} are then sorted according to their 𝜔 value in an ascending order. Let the ascendingly sorted 

sequence be denoted by {𝛿𝑖̅}⊲
. To ensure a conform reconstruction of single PSD functions, 𝑁𝜔 

intervals are defined over the whole domain 𝜔. For example, the cut-off frequency 𝜔𝒖 could be set as 

total upper boundary and 𝜔0 =  0 the lower boundary. Then a possible interval generation could be: 

 𝜔
𝑖

= [𝜔𝑖, 𝜔𝑖+1), for i = 0,1, … , 𝑁𝜔 (17) 
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and 𝑁𝜔 = ⌈𝜔𝑢⌉. For each interval the first element in the sequence {𝛿𝑖̅}⊲
. is kept as final PSD function 

tuple. If no sample is falling in the predefined frequency subinterval, this subinterval is empty. Formally 

this can be stated as 

 

{𝑆𝒊

∗
} = {

{𝛿𝑖̅}⊲
∃! 𝛿𝜔,𝑙 ∈ 𝜔

𝑖
 , (𝑙, 𝑖) = (1,1), (2,1), … , (𝑁𝑠, 1), (1,2), … , (𝑁𝑠, 𝑁𝜔)

{ } for ∄ 𝛿𝜔,𝑙 ∈ 𝜔
𝑖
.

 (18) 

 

With the recapitulation of the SN theory, the pre-processing of data, i.e. data-thinning and the adaptive 

sampling a novel technique to describe Relaxed Power Spectral Density Function has been described, 

the SNRPSD. 

 

4.  STOCHASTIC PROCESS GENERATION 
 

The source ensemble stems from approximated Gaussian processes with mean 𝜇𝑋𝑡
=0 and standard 

deviation 𝜎𝑋𝑡
=1. Uncertainties of the generated stochastic processes in the sample functions 𝑋𝑡 arise 

from the number of harmonics used. However, the goal is to artificially generate stochastic processes 

by means of reducing possible epistemic uncertainty present in the source data and at the same time 

ensure characteristics of the desired artificially simulated process. For this purpose, the global 

characteristics of the by TNRPSD and SNRPSD generated ensembles and the corresponding stochastic 

processes are analysed. 

 

4.1  PSD Ensemble Modelling 

 

In Fig. 4 on the left side a sampled ensemble with 300 members utilizing the TNRPSD representation 

is shown, correspondingly on the right side a sampled ensemble by the SNRPSD is represented. 

 

Figure 4: 300 sampled ensembles by TNRPSD (left) vs SNRPSD (right) 

 
 

Two major drawbacks of the introduced SNRPSD sampling technique for an artificial ensemble can be 

seen. First especially the low frequency part of the PSD is not correctly represented by the SN 

distribution, which can be seen in Fig. 4 where a large proportion of probability mass is in areas where 

no original data is present. Second the sampled RPSD peak is too small, which is also cause of the 

probability mass centring around the spots where most data are present. However, despite these 

drawbacks it is highly important to stress out, that the SNRPSDs are only sampled by a single one-shot 

sampling of one bivariate random variable, whereas the TNRPSD contains 129 random variables for 

each frequency discretisation. 

 
4.2.  Convergence of Relaxed PSD 

 

In this section the ability of the RPSD methods to reproduce the ensemble data is investigated. In Fig 5 

on the left side mean and standard deviation (mean µ ≔ 𝐸[𝑆̂𝑥𝑖
(𝜔𝑛)], 𝜎 ≔ µ ±  √𝑉𝑎𝑟[𝑆̂𝑥𝑖

(𝜔𝑛)] ) of 

two artificial ensembles with 50 members in comparison with the original ensemble are shown. On the 
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right side for 10, 100, 500 and 1000 members respectively the Euclidean distance 𝐸𝑑(−) for mean and 

standard deviation is calculated. As already recognized earlier it seems, that the SNRPSDs ability to 

resemble the ensemble is not optimal, however also RPSD exhibits, albeit smaller, deviations. 

 

Figure 5 Ensemble data vs TN&SN-RPSD sampled ensembles 

 
 

4.3.  Comparison of Generated Stochastic Processes 

 
In e.g. [13,14] and [9] some investigations on the number of harmonics 𝑁𝜔 (summation terms in Eq. 

(4)) needed to approximate Gaussian and non-Gaussian processes sufficiently accurate have been made. 

For SNRPSD the 𝑁𝜔 can be chosen arbitrarily, similarly to the by Chen et al. introduced SHF [13] only 

the number of frequency intervals are of importance. For reference see Eq. (17) and 𝑁𝜔. However, in 

contrast to SHF and RPSD, the SNRPSD offers a fully continuous description over the frequency space, 

the intervals are chosen after the SNs are fit to the ensemble data, which offers complete flexibility in 

choosing the desired number of harmonics in Eq. (4). To compare the following generated stochastic 

processes, 𝑁𝜔 = 129  was chosen. From the source ensemble which is estimated by Eq. (1) from 

Gaussian processes with 𝜇𝑋𝑡
= 0, 𝜎𝑋𝑡

 = 1 . Therefore, in average over the generation of numerous 

samples, this behaviour of the artificially generated stochastic processes by TNRPSD and SNRPSD 

should yield the same values. A small study has been conducted to analyse the moments of the 

artificially generated stochastic processes and can be seen in Fig. 6. It seems that SNRPSD exhibits a 

faster convergence to the desired moments, however a more profound investigation with more samples 

should be conducted. 

 

Figure 6: Average mean and standard deviation comparison for different numbers of generated 

stochastic processes 

 
 

Another key aspect of the generated stochastic processes is the autocorrelation. From [12] the 

autocorrelation function is known, as given in Eq. (2). In Fig. 7 top this function is depicted. Below in 

Fig. 7 on the left side the averaged autocorrelation function for the by SNRPSD generated stochastic 

processes can be seen, equivalently on the right side the autocorrelation of the TNRPSD generated 

stochastic processes are shown. The numbers in the legend refer to the number of stochastic processes 

used and averaged. Again, it seems that the SNRPSD exhibits a faster convergence to the 

Autocorrelation Function Eq. (2). 
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Figure 7: Averaged autocorrelation comparison for different sample sizes (10, 100, 500, 1000) 

 
 

5.  CONCLUSION 

 
The consideration of uncertainties is of paramount importance in engineering in order to perform 

simulations correctly and to interpret their results accurately. It is therefore essential to properly 

quantify these uncertainties in the data sets. In the context of power spectra, the already introduced 

relaxed PSD offers such a possibility. Its disadvantage, however, is that due to the individual 

consideration of the frequency components, a high number of PDFs must be generated and thus 

correlations and dependencies between frequencies are not taken into account. In this work, an enhanced 

version was therefore presented, which is calculated on the basis of sliced-normal distributions. This 

guarantees a relatively small modelling effort in contrast to other possibilities, such as copulas. Since 

all data points in the data set are considered simultaneously, a single multivariate PDF results. Thus, 

dependencies between frequencies are taken into account. Since high probabilities of SNs are calculated 

especially in the area of high data density, a data-thinning approach was also employed as part of data 

pre-processing. This manipulates the data in such a way that the multivariate PDF determined via SN 

represents the data set more realistically. It was also shown that using the novel relaxed PSD function, 

it is possible to generate adequate stochastic processes for simulation through an adaptive sampling 

approach. The SNRPSD offers a single multivariate random variable to capture epistemic uncertainty 

in PSDs of seismic loads or other time dependant natural processes. This drastic decrease of the needed 

number of random variables could potentially change sensitivity or reliability analysis for complex 

systems, additionally meta modelling and model updating procedures could benefit from this 

generalised low random dimensional approach. 

 

Compared to the regular relaxed PSD, the results still differ slightly, which may be due to the fact that 

in this work the SNs were calculated via optimality in feature space. An alternative is to calculate the 

optimality in physical space, in which the SNs become more data-enclosed. The shape of the ensemble 

of PSDs should then be better captured, especially the peak frequency. Furthermore, areas without data 

points in the SNs are mostly excluded. The recently introduced sliced-exponential (SE) distributions 

[23] also offer room for investigation.  

 

Although the use of stationary stochastic processes and the estimation of the resulting stationary PSDs 

only provides an approximation to the real case, realistic results can be obtained. In a next step, however, 

evolutionary PSDs should be used, as they represent not only the transformation of the signal in the 

frequency domain, but the time-frequency domain. Thus, frequency changes over time can also be 

detected. The SNs and SEs offer both for the optimality in the feature space and in the physical space 

the possibility to easily extend the dimension to include time. 
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