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Abstract: This benchmark study aims to apply statistical modeling for frequency and magnitude 

estimation based on external event hazard assessment data. Based on the results of this study, it is 

believed that an approach to the quantification of external event initiating events (IEs) can be formulated 

and evaluated through the application of an effective statistical model. This study's analysis was based 

on two cases that considered benchmarks provided by the Nuclear Energy Agency of Organization for 

Economic Co-operation and Development (OECD/NEA). Each case was given a magnitude according 

to the return period. An appropriate statistical model was applied through regression analysis for each 

case based on this data. Based on the results, the magnitudes of 500, 5,000, 50,000, and 500,000 years 

were predicted and presented. 

The result of this study, statistical analysis was applied to the estimation of two cases presented by the 

OECD/NEA. In any statistical analysis, it is important to understand the characteristics of the data set. 

For the given problems here, the range of the return period was 10–10,000 years, while that of the 

magnitude range was 0.4–5.0 meters. Therefore, the coefficient of the synthetic model had a significant 

influence on the analysis results. This study demonstrates that employing the full extent of the 

significant figures is important to handle the different ranges of data values. In the future, it is expected 

that data-based statistical values can be better estimated through various verified statistical models. 

 

 

1.  INTRODUCTION 
In recent years, the intensity of external hazard and the frequency of typhoons have increased due 

to an abnormal climate [1]. As an input into risk analysis modelling and simulation, a hazard initiating 

event (IE) is typically considered as the starting point for risk models. For example, IE is an important 

factor when using event tree or fault tree for probabilistic safety assessment (tsunami, earthquake, flood 

and other natural hazard). Since the IE both contributes to the risk quantification results and provides 

the boundary conditions for the rest of the hazard scenarios, effective modelling of the frequency and 

magnitude for different external events using data-driven methods can be applied.  However, current 

practice has shown a variety of technical approaches, models, and limitations in validation of these 

approaches. Consequently, this benchmark study is intended to demonstrate and capture commendable 

practices in formulating and assessing the quantification of external event IEs when using statistical 

models [2].   

 

2.  SYNTHETIC DATA ANALYSIS 

 
2.1.  Study of case 1 

 
Table 1 shows the synthetic data for Case 1 as provided by the OECD. Using regression analysis, 

log regression showed appropriate fitting results for the relationship between magnitude and return 

period, as shown in Figure 1. 
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Table 1. Synthetic data for Case 1 

Return period (years) 1 2 5 10 50 100 500 1,000 2,000 10,000 

Original M (meters) 0.50 0.65 0.85 1.00 1.40 1.50 1.90 2.00 2.20 2.50 

 
Figure 1. Log regression fitting 

 
 

As a result of the regression analysis on the magnitude of Case 1, the log regression equation 

including variables A and B is shown in Eq. (1). The magnitude of the return period from 1 to 10,000 

years was estimated by Eq. (1); Table 2 compares the values to the original magnitude values proposed 

by the OECD. 

 

 Case 1: 𝑀 =  0.2199 ∗ 𝑙𝑛 (𝑥) + 0.5034 (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐴 𝑎𝑛𝑑 𝐵)      (1) 

 
Table 2. Regression results for Case 1 

Return period (years) 1 2 5 10 50 100 500 1,000 2,000 10,000 

Original M (meters) 0.50 0.65 0.85 1.00 1.40 1.50 1.90 2.00 2.20 2.50 

Log Magnitude (meters) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2.175 2.529 

 

An error analysis was then performed using the SUMXMY2 function to verify the statistical 

justification of the estimated magnitudes. The SUMXMY2 function squares and sums the difference 

between two corresponding values, and therefore, the closer to 0, the smaller the error between the two 

variables, and the more statistically valid the estimation can be considered. The SUMXMY2 function 

is expressed as Eq. (2). 

 

 𝑆𝑈𝑀𝑋𝑀𝑌2 =  ∑(𝑥 − 𝑦)2                             (2) 

 

Here, 𝑥 is the value of the original magnitude, and 𝑦 is the value of the estimated magnitude. As a 

result of error analysis using the SUMXMY2 function, the sum square error (SSE) value was calculated 

as 0.005, which is very close to zero. It was therefore judged that the estimated magnitude values were 

very similar to the original values and valid. However, to minimize SSE and more precisely estimate 

the magnitude values, a solver function was used. The target of the SSE value was set to 0, and an 

optimization analysis was performed on parameters A and B of Eq. (1). The results are shown in Table 

3. 
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Table 3. Optimization for parameters 

Parameter Original SSE_Solver 

A 0.2199 0.219861834 

B 0.5034 0.503363549 

 

These optimized parameters are then used in the regression equation for Case 1, as shown in Eq. 

(3) below. Table 4 compares the magnitude values estimated by Eq. (3) with those estimated by Eq. (1) 

and the original magnitude values. 

 

 Case 1: 𝑀 =  0.219861834 ∗ 𝑙𝑛 (𝑥) + 0.503363549 (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐴 𝑎𝑛𝑑 𝐵)      (3) 

 
Table 4. Comparison of magnitudes  

Return period (years) 1 2 5 10 50 100 500 1,000 2,000 10,000 

Original M (meters) 0.500 0.650 0.850 1.000 1.400 1.500 1.900 2.000 2.200 2.500 

Log Magnitude (meters) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2.175 2.529 

Optimized 

magnitude (meters) 
0.503 0.656 0.857 1.010 1.363 1.516 1.870 2.022 2.175 2.528 

 

For Case 1, the values of the optimized parameters A and B were similar to the existing values. 

Likewise, the SSE value of 0.0049 was also similar to the existing value of 0.005. Fitting was then 

performed based on the optimized magnitude values; results are shown in Figure 2. 

 
Figure 2. Fitting result for Case 1 

 
 
2.2.  Study of case 2 

 
Table 5 shows the synthetic data for Case 2 provided by the OECD. In this case, regression analysis 

found linear regression to give the best fit between magnitude and return period, as shown in Figure 3. 

 
Table 5. Synthetic data for Case 2 

Return Period (years) 1 2 5 10 50 100 500 1,000 3,000 10,000 

Original M (meters) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00 
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Figure 3. Linear regression fitting 

 
 

Equation (4) below is the linear regression equation including variables A and B as a result of the 

regression analysis on the magnitude of Case 2. Magnitudes of return periods from 1 to 10,000 years 

were estimated by Eq. (4) and compared to the values of the original magnitude proposed by the OECD 

(Table 7). In addition, 95% and 5% confidence interval values provided by the OECD are also given in 

Table 6, with fitting results plotted in Figure 4. 

 

 Case 2: 𝑀 =  0.0003 ∗ 𝑥 + 0.5651 (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐴 𝑎𝑛𝑑 𝐵)            (4) 

 
Table 6. Regression results for Case 2 

Return period (years) 1 2 5 10 50 100 500 1,000 3,000 10,000 

Original M (meters) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00 

Linear Magnitude 

(meters) 
0.565 0.566 0.567 0.568 0.580 0.595 0.715 0.865 1.465 3.565 

Original M 95% 

(meters) 
— — — — — — 0.85 1.1 1.8 4.7 

Original M 5% 

(meters) 
— — — — — — 0.72 0.85 1.3 3.2 

 
Figure 4. Linear regression fitting according to confidence interval 
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As a result of the regression analysis, the estimated magnitude values fell within the confidence 

interval and cannot be judged as inappropriate. The estimated magnitude values for the initial return 

period were similar to those proposed by the OECD. However, as the return period increases, errors in 

the magnitude values were found to occur. Error analysis in this case using the SUMXMY2 function 

gave an SSE value of 0.22443. In order to minimize this error in Case 2, the solver function was used, 

where again the target of the SSE value was set to 0 and an optimization analysis was performed on 

parameters A and B from Eq. (4). The results are shown in Table 7. 

 
Table 7. Optimization for parameters 

Parameter Original SSE_Solver 

A 0.0003 0.000344252 

B 0.5651 0.565051348 

 
Based on the optimized parameters, linear regression analysis for Case 2 was re-estimated via Eq. 

(5). Table 8 compares the magnitude values from the three sources [original, Eq. (4), and Eq. (5)] along 

with the confidence intervals.  

 

 Case 1: 𝑀 =  0.000344252 ∗ 𝑥 + 0.565051348 (𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐴 𝑎𝑛𝑑 𝐵)        (5) 

 
Table 8. Compare for magnitude 

Return period (years) 1 2 5 10 50 100 500 1,000 2,000 10,000 

Original M (meters) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4 

Linear  

Magnitude (meters) 
0.565 0.566 0.567 0.568 0.58 0.595 0.715 0.865 1.465 3.565 

Optimized 

magnitude (meters) 
0.565 0.566 0.567 0.568 0.582 0.599 0.737 0.909 1.598 4.008 

Original M 95% (meters) — — — — — — 0.85 1.1 1.8 4.7 

Original M 5% (meters) — — — — — — 0.72 0.85 1.3 3.2 

 

In Case 2, the SSE of the optimized model was calculated to be 0.01. Accordingly, it was judged 

that the values of parameters A and B were significantly improved compared to the existing values. 

Fitting was then performed based on the optimized magnitude values. The results are shown in Figure 

5. 

 
Figure 5. Fitting result for Case 2 
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3.  RESULT OF CASE STUDY 
 

3.1.  Case 1 result 

 

The results of the optimized fit for Case 1 were estimated to be similar to the size values presented 

by the OECD. The trend lines calculated from the estimated magnitude values (Figures 1 and 2) were 

also similarly estimated. Therefore, it can be judged that the fitting result for Case 1 in this study is 

valid. Additionally, based on the regression analysis estimates in Case 1, magnitude values were 

predicted for 500, 5,000, 50,000, and 500,000 years return period. The results are presented in Table 9 

and Figure 6. 

 
Table 9. Magnitude prediction by return period (Case 1) 

Return period (years) 500 5,000 50,000 500,000 

Magnitude (meters) Case 1 Exact 1.9 2.4 2.9 3.4 

Log KAERI mean (meters) 1.870 2.376 2.883 3.389 

Optimized KAERI mean (meters) 1.870 2.376 2.882 3.388 

 
Figure 6. Magnitude prediction fitting for Case 1 

 
 

3.2.  Case 2 result 

 

It was found that when the optimization technique was applied to Case 2, the model performance 

further improved, as seen in Figure 6. In other words, the optimized fitting was able to estimate values 

similar to the magnitude values proposed by the OECD. Comparing Figures 5 and 6, the trend lines 

calculated from the estimated magnitude values were also similarly estimated. Therefore, like Case 1, 

it can be judged that the fitting result for Case 2 in this study is valid.  

Then, based on the regression analysis estimates in Case 2, magnitude values for return periods of 

500, 5,000, 50,000, and 500,000 years were predicted. The results are shown in Table 10 and Figure 7. 
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Table 10. Magnitude prediction by return period (Case 2) 

Return period (years) 500 5,000 50,000 500,000 

Magnitude (meters) Case 2 Exact 0.78 2.2 28 2,000 

Linear KAERI mean (meters) 0.715 2.065 15.565 150.565 

Optimized KAERI mean (meters) 0.737 2.286 17.778 172.691 

 
Figure 7. Magnitude prediction fitting for case 2 

 
 

4.  CONCLUSION 
 

In this study, statistical analysis was applied to the estimation of two cases presented by the 

OECD/NEA. In any statistical analysis, it is important to understand the characteristics of the data set. 

For the given problems here, the range of the return period was 10–10,000 years, while that of the 

magnitude was only 0.4–5.0 meters. Therefore, the coefficient of the synthetic model had a great 

influence on the analysis results. This study demonstrates that employing the full extent of the 

significant figures is important to handle the different ranges of data values. In the future, it is expected 

that data-based statistical values can be better estimated through various verified statistical models. 
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