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Abstract: In stochastic dynamics, it is indispensable to model environmental processes in order to 

design structures safely or to determine the reliability of existing structures. Wind loads or earthquakes 

are examples of these environmental processes and may be described by stochastic processes. Such a 

process can be characterised by means of the power spectral density (PSD) function in the frequency 

domain. Based on the PSD function, governing frequencies and their amplitudes can be determined. 

For the reliable generation of such a load model described by a PSD function, uncertainties that occur 

in time signals must be taken into account. In this paper, an approach is presented to derive an imprecise 

PSD model from a limited amount of data. The spectral densities at each frequency are described by 

reliable bounds instead of relying on discrete values. The advantages of the imprecise PSD model are 

illustrated and validated with numerical examples in the field of stochastic dynamics. 

 

1.  INTRODUCTION 
 

The consideration of uncertainties in data sets is of paramount importance in engineering and especially 

in the field of stochastic dynamics. Buildings and structures are subject to random vibrations induced, 

for example, by environmental processes such as earthquakes or wind loads. In order to obtain reliable 

simulation results for existing structures or for the design of future buildings, it is essential to consider 

uncertainties. A commonly used model in stochastic dynamics is the power spectral density (PSD) 

function, which can be used to represent stochastic processes in the frequency domain and thus identify 

dominant frequencies. The PSD can also be used to generate time signals representing the 

characteristics of this underlying PSD [1-3]. 

 

For reliability analysis of buildings and structures, real data or artificially generated data can be used. 

While artificial data can only represent an environmental process realistically to a certain degree, real 

data are often subject to uncertainties. These can result from measurement errors, damaged sensors or 

simply from limited data. In order to obtain reliable simulation results, these uncertainties must be taken 

into account into the representation of the physical process. If these uncertainties are not taken into 

account or are incorrectly quantified, this can lead to fatally incorrect interpretations of the results, 

possibly classifying a building as safe under a particular load when in fact it poses a high risk of damage 

or collapse. Therefore, every attempt must be made to account for uncertainties when generating load 

models and simulations [4]. 

 

Some approaches for estimating PSD functions have already been introduced that can account for 

uncertainty in the data, as well as quantify it. For example, in [5,6] the problem of missing data is 

addressed. These missing data are reconstructed and assumed to be normally distributed. The 

probability distributions of the missing are then propagated through the discrete Fourier transform to 

quantify the uncertainties in the frequency domain. In [7], a large set of accelerograms is used to 

determine interval parameters for a semi-empirical PSD function. Thus, different representations of the 
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PSD functions result, depending on the bounds used for the derived interval parameters. A relaxed PSD 

function, based on a large data set of similar signals transformed into the frequency domain, is derived 

in [8]. Since it is possible to extract robust statistical information from a large amount of data, the 

relaxed PSD provides a probabilistic representation of the data in the frequency domain. Although these 

are different approaches, they all have in common that the PSD functions are not treated as purely 

deterministic functions, as it is usually the case. 

 

In this work, the problem of limited data is considered. Commonly used estimators of the PSD function, 

such as the periodogram, could lead to a highly unrepresentative model under scarce data, so that the 

simulation results may not reflect the actual response behaviour of the system under investigation. If 

not sufficient data are available, the actual underlying PSD function cannot be estimated with certainty 

from the data sets. Since reliable statistical information cannot be derived from a small amount of data, 

this paper proposes an interval approach to define reliable bounds without considering the distribution 

within these bounds. The estimation of the proposed imprecise PSD is carried out entirely in the 

frequency domain, using a radial basis function (RBF) network [9]. An interval parameter will be added 

to the basis functions to obtain an approximation of an upper and lower bound, which needs to be 

optimised considering the actual minimum and maximum of the available data. After the optimisation, 

reliable bounds of the data set are derived that reflect the physics of the data and also take into account 

dependencies between frequencies. 

 

This paper is structured as follows: A brief overview of PSD estimation, stochastic processes and RBF 

networks is given in Section 2. The estimation of the imprecise PSD is elaborated in Section 3. In 

Section 4, the derived model is employed on numerical examples to demonstrate its applicability and 

strengths. The conclusions are given in Section 5. 

 

2.  PRELIMINARIES 
 

This section introduces some basic theoretical concepts that are relevant for the derivation and 

understanding of the imprecise PSD model introduced later in this work. 

 

2.1.  PSD Estimation and Stochastic Processes 

 

A stochastic process is affected by random occurrences; therefore, it cannot be described in a purely 

deterministic way. The stochastic process at any time is determined by random variables, see e.g., [10]. 

 

If no data are available or do not meet the requirements for the simulation, artificially generated 

stochastic processes can be used for the simulations as an approximation to real stochastic processes. 

Such a process can be generated using the Spectral Representation Method (SRM) [11]. SRM requires 

an analytical or empirical function of a PSD 𝑆𝑋  to construct a stochastic process 𝑋𝑡  with their 

underlying characteristics. SRM reads as follows 

 

 

𝑋𝑡 = ∑ √4𝑆𝑋(𝜔𝑛)Δ𝜔 (𝜔𝑛𝑡 + 𝜑𝑛)

𝑁𝜔−1

𝑛=0

 (1) 

 

where 

 

 𝜔𝑛 = 𝑛Δ𝜔,     𝑛 = 0,1,2, … , 𝑁𝜔 − 1 (2) 

 

with 𝑁𝜔 as the total number of frequency points, 𝜔𝑛as the frequency vector, Δ𝜔 as frequency step size, 

𝜑𝑛  as uniformly distributed random phase angles in the range [0, 2𝜋]  and 𝑡  as time vector. This 

provides a suitable method for generating compatible time signals derived from and carrying the 

characteristics of the underlying PSD function 𝑆𝑋. 
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The estimation of the PSD function of a stationary stochastic process can be obtained by the 

periodogram [12,13], which is formed by the squared absolute value of the discrete Fourier transform 

of the signal 𝑥𝑡. The periodogram reads as follows 

 

 

�̂�𝑋(𝜔𝑘) =
Δ𝑡2

𝑇
|∑ 𝑥𝑡𝑒−

𝑖2𝜋𝑘𝑡
𝑇

𝑇−1

𝑡=0

|

2

 (3) 

 

where Δ𝑡 is the time step size, 𝑇 is the total length of the record, 𝑡 describes the data point index in the 

data record and 𝑘 is the integer frequency for 𝜔𝑘 = 2𝜋𝑘

𝑇
. 

 

2.2.  RBF Networks 

 

A radial basis function (RBF) network is a class of artificial neural networks [9]. It typically consists of 

three layers, namely the input layer, the hidden layer and the output layer. It is used to interpolate or 

approximate functions from the n-dimensional input space to the scalar output space but can be extended 

to a multi-output network. Thus, in this work the RBF network is a mapping of 𝑦: ℝ𝑁𝜔 → ℝ. 

 

The input layer of an RBF network passes the input data to the hidden layer. The hidden layer consists 

of a number of 𝑚 neurons whose activation functions are RBFs, which are characterised by the fact that 

they are symmetrical around their assigned centre 𝑐𝑖. In this work, the RBF 

 

 
𝜙𝑖(𝑥) = 𝑒

−(‖𝑥−𝑐𝑖 ‖⋅𝑏𝜙𝑖
)

2

 (4) 

 

is used, where ‖𝑥 − 𝑐𝑖 ‖ ⋅ 𝑏𝜙𝑖
 describes the Euclidean distance from the input 𝑥 to the designated centre 

𝑐𝑖 multiplied with a bias 𝑏𝜙𝑖
, which indicates the spread of the neuron. 

The function values of the RBFs based on the input data are propagated to the output layer, where a 

weighted linear combination of all neurons takes place. The weights 𝑤𝑖 of all neurons can be determined 

with a linear least squares method. In addition, to manipulate the sensitivity of a neuron, a bias 𝑏0 can 

be employed. Thus, the RBF network results in 

  

 
𝑦(𝑥) = ∑ 𝑤𝑖  𝜙𝑖(‖𝑥 − 𝑐𝑖‖ ⋅ 𝑏𝜙𝑖

) + 𝑏0        𝑥 ∈ ℝ𝑁𝜔

𝑚

𝑖=1

. (5) 

 

For an exact interpolation of a function, the number of RBFs 𝑚 must be equal to the number of data 

points 𝑁𝜔. In general, however, exact function interpolation is not necessary. Often the input data are 

noisy, so it is advisable to approximate a smoother function and thus average out the noise. In addition, 

for an exact interpolation the number of neurons can be prohibitively high, which leads to a significantly 

higher computational effort. In the case of an approximation, the number of RBFs 𝑚 is usually less than 

the number of data points 𝑁𝜔. 

 

For more information on RBF networks, such as training and validation of the network, the reader is 

referred to [14-16] and the references therein. 

 

3.  THE IMPRECISE PSD FUNCTION 
 

For the derivation of the imprecise PSD function, the Kanai-Tajimi PSD function of the form 
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𝑆𝐾𝑇(𝜔) = 𝑆0

1 + 4𝜉2 𝜔2

𝜔𝑝
2

(1 −
𝜔2

𝜔𝑝
2)

2

+ 4𝜉2 𝜔2

𝜔𝑝
2

 (6) 

 

is utilised in this section and throughout this work. In this equation, 𝑆0 is a constant, 𝜔𝑝 describes the 

peak frequency and 𝜉 indicates the sharpness of the peak [17,18]. In this work 𝑆0 = 0.25, 𝜔𝑝 = 3𝜋 

rad/s and 𝜉 = 0.5 are utilised to describe the PSD function. Furthermore, the upper cut-off frequency is 

defined to be 𝜔𝑢 = 50 rad/s. 

 

3.1.  Estimation of an Imprecise PSD Function 

 

For robust simulation results considering uncertainties introduced by the limited number of data and 

the PSD estimation processes in general, it is proposed to derive an imprecise PSD function, i.e., a PSD 

function with reliable upper and lower bound. The estimation process is carried out entirely in the 

frequency domain. After transformation of the excitation/signals given in the time domain, an ensemble 

of PSD functions results, see Fig. 1. Based on such an ensemble, the imprecise PSD function can be 

derived performing the following steps: 

 

1. Identification of the basis power spectrum of the ensemble 

2. Fitting an RBF network to the basis power spectrum 

3. Adding/subtracting an interval parameter to/from each basis function to obtain a first 

approximation of the bounds 

4. Optimisation of the interval parameter with minimum of constrained non-linear multi-variable 

function to obtain reliable bounds depending on the ensemble minimum and maximum 

 

These steps will be discussed in the subsequent sections in details. 

 

Figure 1: Ensemble consisting of 3 PSD functions utilised to estimate the imprecise PSD 

function. 

 
 

3.1.1.  Basis Power Spectrum 

 

The basis power spectrum can be identified using different approaches. As the imprecise PSD function 

delivers an upper and lower bound at each frequency regardless of any distribution of the data within 

those bounds, the midpoint spectrum, i.e., the midpoint between minimum 𝑆𝑚𝑖𝑛 and maximum 𝑆𝑚𝑎𝑥 

of the ensemble at each frequency component, is suggested in this work. 

 

 
𝑆𝑏𝑎𝑠𝑖𝑠 =

1

2
(𝑆𝑚𝑎𝑥 + 𝑆𝑚𝑖𝑛) (7) 
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As the choice of the basis power spectrum also depends on the shape of the data, other basis power 

spectra such as mean power spectrum could be possible as well. 

 

Figure 2: Basis functions used to approximate the midpoint spectrum. 

 
 

3.1.2.  Fitting an RBF Network 

 

For an exact interpolation of the basis spectrum, it is required to use as many neurons (i.e., basis 

functions) as frequency points in the ensemble. As such a representation will often yield in a highly 

spiky power spectrum and the subsequent optimisation of the bounds will yield in the minimum and 

maximum value of the ensemble at each frequency, it is advisable to choose a lower number of neurons. 

This results in a smoother approximated midpoint spectrum. The number of neurons as well as the 

spread of the neurons are crucial here, as an unfavourable choice of these parameters can lead to 

unreliable results. For example, the bounds of the imprecise PSD may be too wide or too narrow and 

therefore not correspond to the data set. This will falsify the simulation results. In addition, the RBF 

network thus operates as a smoother for its realisations. 

 

A reasonable first approximation for the number of the basis functions 𝑚 is about 5% - 15% of the 

total number of frequency points 𝑁𝜔 and for the bias the range 𝑏𝜙𝑖
= [0.25, 0.45]. However, it should 

be noted that the choice of 𝑚 and 𝑏𝜙𝑖
 depend on the appearance of the PSD function to be fitted and 

may deviate from the proposed values. There are several approaches in the literature to find a set of 

optimal parameters, such as pruning methods, see e.g., [16,19] and references therein. In the given 

example the number of frequency points is 𝑁𝜔 = 238, while the number of neurons is 𝑚 = 25 and the 

bias is 𝑏𝜙𝑖
= 0.4. In Fig. 2 the basis functions of the RBF network for deriving the approximated basis 

power spectrum 𝑆𝑏𝑎𝑠𝑖𝑠 are depicted, as well as the resulting basis spectrum and target spectrum itself. 

 

3.1.3.  Optimisation of the Bounds 

 

The optimisation of the bounds requires the definition of a vector 𝛿 ∈ ℝ𝑁𝜔 as optimisation parameter, 

which controls the sensitivity of the respective frequency components and thus the distance between 

the basis power spectrum 𝑆𝑏𝑎𝑠𝑖𝑠 and the upper and lower bound. At each discrete frequency 𝜔𝑛 the 

corresponding component 𝛿𝑛 is added to the basis functions to obtain the upper bound 

 

 
𝑆𝑜𝑝𝑡(𝜔𝑛; 𝛿𝑛) = ∑ 𝑤𝑖

𝑚

𝑖=1

(𝜙𝑖(𝜔𝑛) + 𝛿𝑛) + 𝑏0 (8) 

 

and subtracted from the basis functions to derive the lower bound 

 

 
𝑆𝑜𝑝𝑡(𝜔𝑛; 𝛿𝑛) = ∑ 𝑤𝑖

𝑚

𝑖=1

(𝜙𝑖(𝜔𝑛) − 𝛿𝑛) + 𝑏0 (9) 

 

with 𝜔𝑛 and 𝑛 as defined in Eq. 2. The weights 𝑤𝑖 and the bias 𝑏0 result from fitting the RBF network 

to the basis power spectrum 𝑆𝑏𝑎𝑠𝑖𝑠. 
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To ensure that representative and reliable bounds are derived for the data set, the norm of the difference 

between the upper and lower bound will be the objective function for the optimisation. This optimisation 

is subject to the condition, such that the resulting upper bound shall be larger than the maximum of the 

ensemble and the resulting lower bound shall be smaller than the minimum of the ensemble to ensure 

that all data points are included in the bounds. For physical reasons the lower bound must not be smaller 

than 0 by all means as negative values are not possible in terms of power spectral densities. The 

optimisation problem results as follows 

 

 min        |𝑆𝑜𝑝𝑡(𝜔; 𝛿) − 𝑆𝑜𝑝𝑡(𝜔; 𝛿)| 

𝑠. 𝑡.     𝑆𝑜𝑝𝑡(𝜔; 𝛿) ≥ 𝑆𝑚𝑎𝑥(𝜔) 

            𝑆𝑜𝑝𝑡(𝜔; 𝛿) ≤ 𝑆𝑚𝑖𝑛(𝜔) 

𝑆𝑜𝑝𝑡(𝜔; 𝛿) ≥ 0  

(10) 

 

When the parameter 𝛿 is optimised, reliable bounds can be provided. The imprecise PSD function for 

the ensemble given in Fig. 1 is shown in Fig. 3. 

 

Figure 3: Bounds of the estimated imprecise PSD function. 

 
 

3.2.  Sampling from the Imprecise PSD Function 

 

The derived model of the imprecise PSD function is directly applicable for Monte Carlo (MC) 

simulations. Any arbitrary PSD function sampled within the bounds is a possible PSD function can be 

used to generate a stochastic process with SRM (Eq. 1). Each interval is considered as a uniform 

distribution from which samples are drawn. Although this is a very rudimentary way of propagating 

intervals and is not an appropriate representation of an interval, the uniform distribution is only used as 

a tool to evenly sample the solution space in the uncertain input space and to illustrate how the solution 

is approximated. 

 

The total energy of the sampled PSD function 𝑆𝑠𝑎𝑚𝑝𝑙𝑒, i.e., the integral of the PSD function, needs to 

match the energy of the midpoint spectrum 𝑆𝑏𝑎𝑠𝑖𝑠 with a certain tolerance. This guarantees that no 

unrealistic PSD functions are sampled. For instance, a sampled PSD function consisting only of the 

upper value at each frequency (i.e., the upper bound) does not realistically reflect the stochastic process. 

This is particularly important for imprecise PSD functions with wide bounds. The sampled PSD 

function can be utilised to generate an adequate stochastic process by using Eq. 1. By taking into account 

the total energy, PSD functions that realistically represent the stochastic process can be approximated 

while still covering the entire range of the imprecise PSD function, which, on the other hand, provides 

a full consideration of the epistemic uncertainty. 

 

 

| ∑ 𝑆𝑏𝑎𝑠𝑖𝑠(𝜔𝑛) −

𝑁𝜔−1

𝑛=0

∑ 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝜔𝑛)

𝑁𝜔−1

𝑛=0

| ≤ Δ𝑡𝑜𝑙 (11) 
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4.  NUMERICAL EXAMPLES 
 

To validate the results of the imprecise PSD function, a comparison is made using an ensemble of 100 

artificially generated time signals transformed into the frequency domain, from which the mean value 

is calculated, see Fig. 4. The reason for this approach is that the mean of a large data set approximates 

the true underlying power spectrum. Furthermore, this procedure ensures that the stochastic fluctuations 

introduced by the random variables in Eq. 1 have a negligible influence. The sparsity of the data is 

emulated by selecting only 3 randomly chosen PSD functions from this ensemble to estimate the 

imprecise PSD function. 

 

Figure 4: Ensemble consisting of 100 PSD functions utilised to estimate the mean. 

 
 

For the numerical examples a Single-Degree-of-Freedom (SDOF) system is utilised. The equation of 

motion of such a system reads as follows: 

 

 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝐹(𝑡) (12) 

 

In this equation, 𝑚 , 𝑐  and 𝑘  denote the mass, the damping coefficient and the spring constant, 

respectively, and �̈�, �̇� and 𝑥 describe the acceleration, the velocity and the displacement of the system, 

respectively. 𝐹(𝑡) denotes the external excitation force. 

 

For comparison, the numerical examples for both the ensemble mean and the imprecise PSD function 

are performed with a total of 10,000 MC samples in the time domain to obtain reliable results. The 

maximum system displacement is adopted as the quantity of interest. The histogram and the cumulative 

distribution function (CDF) are drawn from the absolute maximum system displacement for each 

individual MC sample to obtain an approximation of the probability of failure. 

 
4.1.  Example 1  

 

In the first examples, the following system parameters are used: 𝑚 = 50 kg, 𝑐 = 5 Ns/m and 𝑘 =

4441.3 N/m. The natural frequency is thus 𝜔 = √𝑘 𝑚⁄ ≈ 3𝜋 rad/s and therefore approximately the 

peak frequency 𝜔𝑝 of the excitation. The results of the MC simulation are shown in Fig. 5. On the one 

hand, the histogram of the maximum system displacements after the excitation of the system with the 

ensemble mean as well as the imprecise PSD function, and on the other hand the corresponding CDF 

are shown. It can be seen that there is very little difference between ensemble mean and the imprecise 

PSD function. In the histogram, the range of maximum system displacements is almost identical, 

ranging from about 0.5 m to 1.2 m for both models. The frequency of occurrence of the displacements 

is also identical and has its highest probability at a system displacement of about 0.8 m. The resulting 

CDF of the imprecise PSD function shows only minimal differences to the CDF of the ensemble mean. 

As a result, the probabilities of failure at a given system displacement are identified to be similar for 
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both excitation models. These results show that valid results can be obtained with the imprecise PSD 

function based on sparse data and that they are not falsified. 

 

Figure 5: Histogram and CDF of the MC simulation for the standard approach and the 

imprecise PSD for example 1. 

 
 

4.2.  Example 2 

 

In the second example, the following system parameters are used: 𝑚 = 50 kg, 𝑐 = 3 Ns/m and 𝑘 =

12337 N/m. The natural frequency is thus 𝜔 = √𝑘 𝑚⁄ ≈ 5𝜋  rad/s. The second example has been 

changed by a modified natural frequency compared to the first example. However, the comparison 

between the ensemble mean and the imprecise PSD function yields similar results, see histogram and 

CDF in Fig. 6. In the histogram, the MC samples of the imprecise PSD cover a slightly higher range. 

Both smaller and larger system displacements can be obtained. This minimally stretches the histogram, 

resulting in a lower occurrence of the mean system displacement of about 0.3 m. In both models, 

however, 0.3 m is the highest occurrence of the displacements. Therefore, the CDF also provides only 

minimally different results for the two models. The failure probabilities change only slightly as a result. 

Particularly in the case of smaller system displacements, small differences can be seen; in the case of 

larger system displacements, the failure probabilities are almost identical. It can thus be stated that a 

limited data set can provide robust and reliable results utilising the imprecise PSD function. 

 

Figure 6: Histogram and CDF of the MC simulation for the standard approach and the 

imprecise PSD for example 2. 

 
 

5.  CONCLUSION 
 

Accounting for uncertainties in data sets to obtain reliable simulation results is of paramount importance 

in engineering. Especially when only limited data are available, uncertainties can have a large impact 

on the results and can easily distort them. This might can lead to disastrous consequences, e.g., when 

an actually catastrophic result is shifted into an acceptable range due to incorrect consideration of 

uncertainties or limited data. In such a case, it is important to correctly interpret the data and generate 

appropriate load models that account for those uncertainties. From a large amount of data, it is often 

possible to derive a robust model that provides reliable simulation results. However, in order to estimate 

robust models from limited data, an imprecise model of a PSD function is proposed in this paper, which 

provides a reliable upper and lower bound of the data set. Moreover, by using an RBF network, the 

physics of the underlying stochastic process is reflected and dependencies between frequencies are 
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taken into account. In this work the samples are drawn from a uniform distribution, future work will 

involve the employment of appropriate interval distribution schemes as crude MC sampling is not a 

viable propagation strategy and is only used here to illustrate an approximated solution. The resulting 

imprecise PSD function was validated by numerical examples and its strengths were demonstrated. 
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