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Abstract: An earthquake simultaneously challenges multiple structures, systems, and components of a
nuclear power plant. Seismic probabilistic risk assessment evaluates this phenomenon with a failure
condition that a component fails when a seismic response exceeds a component capacity. In literature,
there are several models for a seismically induced joint failure probability: a model used in the seismic
safety margins research program (Model 1), a model in the SECOM?2 (Model 2), and the Reed-McCann
procedure (Model 3). We also discuss a model that applies the separation of independent and common
variables method to response and capacity (Model 4). In Model 4, common variables among more than
two components are explicitly considered. These four models are analytically compared to clarify their
relationship with respect to correlation coefficients. First, it is shown that the first two models are
equivalent by showing their derivations. However, Model 1 is advantageous because there are efficient
algorithms to evaluate it. Next, Model 4 is shown as a limited case of Model 1 and 2 using a
characteristic function. Finally, Model 3 is shown as a limited case of Model 4 by deriving the failure
criterion used in Model 3 from Model 4 by neglecting common variables among more than two
components. Thus, we summarize the relation: Model 1 = Model 2 © Model 4 © Model 3 with respect
to correlation coefficients. Therefore, we recommend Model 1 for a joint failure probability because of
its computational efficiency and better applicability.

1. INTRODUCTION

An earthquake is considered one of the major risk contributors to a nuclear power plant. Unlike an
internal event such as a turbine trip initiating event caused by random failure, an earthquake is unique
because it simultaneously affects multiple structures, systems, and components (SSCs). Therefore,
researchers have proposed several models for a joint probability of seismically induced component
failures [1-3]. The seismic safety margin research program (SSMRP) [2] introduced a model which
calculates the probability that seismic responses of multiple components simultaneously exceed their
capacities (Model 1). This model results in an orthant probability, and there is an efficient algorithm to
evaluate this probability [4]. Then, a different model was proposed by SECOM2 [3,5] (Model 2). After
the SSMRP model, Reed et al. proposed the so-called Reed-McCann procedure [1] (Model 3), in which
a failure criterion of a component is defined in terms of ground motion (GM). Furthermore, experts on
seismic fragility analysis have published NUREG/CR-7237, which recommends the separation of
independent and common variables (SICV) method” [6]. It is important to note that the detailed
derivations of these models have not been provided in the literature, making it challenging to analyze
and compare these models analytically.

Therefore, this paper aims to provide detailed derivations of these models and compare them
analytically. We show the equivalence of Model 1 and Model 2 by showing that they are different
parameterizations of the same probability distributions. In addition, we discuss a model developed by
applying the SICV method to response and capacity (Model 4). We show that Model 4 is a limited case
of Model 1. Furthermore, model 4 can only consider nonnegative correlations, whereas Model 1 can

* The Reed-McCann procedure is also known as the separation of independent and common variables
(SICV) method because the Reed-McCann procedure is the SICV method applied to ground motion
capacity and median GM capacity.
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also consider all possible correlations. Finally, we show that Model 3 is a limited case of Model 4. In
summary, we reveal the relation of the existing models: Model 1 = Model 2 © Model 4 D Model 3 in
correlation coefficients.

2. COMPARISON OF THE EXISTING MODELS

We compare the existing models for computing a joint failure probability. Before deriving these models,
let us introduce notations. Let n denote the number of components and subscript i and j denote the
indexes of them. First, let S;(A) and T; denote response and capacity of ith component. The response
is a function of peak ground acceleration (PGA) A. Bolded variables denote vectors, matrices, and sets.
Thus, S(A) and T denote vectors of responses and capacities, respectively. Throughout this paper, we
omit (A) if it is obvious. We assume that S and T are assumed multivariate lognormal distributions
written as S(A)~ML'N(;15(A), ZS(A)) and T~M LN (ur, Xr) where p is a vector of the logarithm
means and X is the covariance matrix whose ijth elements are Xg;; = BsiBs jPin s;In s; and Zr;; =

Br,iBr,jPinT;In T} Ps; and Py ; are the logarithmic standard deviations of ith response and capacity,
respectively. p,, is the correlation coefficient of the pair of random variables {x, y}. For example,
Pinsyins; is the correlation coefficient between InS; and In S;.

We also use V' for normal distribution and LNV for a lognormal distribution. Let ¢ ; denote composite
uncertainty of ith component defined as ﬁg_i = [33?_ i+ ﬁ%_i. Response and capacity are also lognormally
distributed as S;~LN (#s,i: [35,1-) and T;~LN (,uT,L-, ,BT,l-) , respectively, where ug; and pr; are ith
element of ug and pr as described above. A median of a lognormal distribution LN (u, o) is exp(u).
Therefore, if we assume a linear response [5] in which response ith component is written as w; A, there
exists a PGA value A,,; such that the medians of response and capacity of ith component are equal.

That is, w;A,, ; = exp (#s,i(Am,i)) = exp(u“) where pig ; is the ith element of ug. If a response is

nonlinear, then w; is a function of A as w;(4). We use G for GM capacity to distinguish it from PGA
A, where GM capacity is defined as the PGA value for which the seismic response of a given component
exceeds the component capacity [7], and GM capacity has uncertainty. Throughout this paper, G has
uncertainty, and A does not. This distinction aims to adapt the concept in the Reed-McCann procedure
that assumes uncertainty in GM capacity and median GM capacity. Also, G,, ; denotes the median GM
capacity of ith component.

Figure 1 summarizes the assumptions and steps in the derivations of models discussed in this paper.
Table 1 summarizes the existing models for obtaining a joint failure probability P. All models have a
common ground: the failure criterion and the lognormality assumption. In seismic PRA, we assume
that a component fails when a response exceeds capacity. In application, engineers use a failure
criterion in terms of PGA such that a component fails when PGA exceeds GM capacity.

Table 1: Equations for a joint failure probability. P denotes a joint failure probability of
components (1/2).

Model Equation
Model 1 Failure criterion: Response > Capacity
(SSMRP [2])

Joint failure probability

oo oo 1
(zﬂ)n/z TARE f f exp <_ 2 (z-p)"V; (2~ Hz)) dz
0 0

where
z=InS—-InT
H; = Us — UT
Vz = Zs +ZT
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Table 1: Equations for a joint failure probability. P denotes a joint failure probability of

components (2/2).

Model

Equation

Model 2
(JAERI [3])

Failure criterion: Response > Capacity

Joint failure probability:

Uq Un
— 1 1 Ty -1
= COLETARE f f exp (—Ex V; X) dx

Bsi—Hri—InSi+InT;
Be,i
Hs,i — HUri
Bc.i
V, = b(Zg + Zp)bT
b = diag(l/ﬂc'l 0,

where

X =

u; =

1/36,11)

Model 3
(Reed-
McCann [1])

Failure criterion: PGA > GM capacity
Joint failure probability:

OR condition (at least one cornponent fails):
f e, |reGty f dG’{ @) (1 - 1_[(1 ﬁ))}]

i=1
AND condition (all cornponents fail):

J 6. |n@G) J 4G’ {g(a')l_[ ﬁ}]

0
In A
G ii G; G’ \

where

=] L 1,i#j m,ij
i Bii
@ =117~ w(lnG )
g _l_ !
i= ij l+1BUG” ﬁ”
n
e = [ ] g (s
i=1 j= Lﬁmu m,ij ﬁm,u

G’ is the set of Gj; except Gj;.
G is set of Gy ;.
See Section 2.3 for the definitions of G;; and Gy, ;;.

T In the original paper, x; is expressed as In(7T;/S;). Since x; is the variable of integration, the joint
failure probability is the same.
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Failure Criterion: Failure Criterion:
Response > Capacity PGA> GM Capacity
O Assumption Responses and capacities GM capacity and median
E Operatlon. . have independent and GM capacity have
Failure criterion common variables. Common independent and common
variables exist among more variables. Common variables
than two components. exist up to two components.
Responses and capacities are lognormally Independent and common variables are lognormally
distributed. distributed.
The SIVC method* is The SIVC method* is
Take the logarithms of responses and capacities. applied to responses and applied to GM capacity and
capacities. median GM capacities.
. . . Normalization and . . . .o .
Direct integration bz s Direct integration Hybrid integration
v v ¥ v
Model 1 Model 2 Model 4 Model 3
(SSMRP) (JAERI) (Reed-McCann procedure)

*SIVC method: the separation of independent and common variables method

Figure 1: Important assumptions and steps in derivations
Note that one can derive the failure criterion: PGA>GM capacity from the other failure
criterion: Response > Capacity, as described in Section 2.5.

2.1. Derivation of the SSMPR model (Model 1)

This model was originally proposed in the SSMRP report [2]. The failure criterion is transformed into
a joint failure probability step by step. In this model, the failure criterion for ith component, S; > T;, is
first transformed into the equivalent failure criterion, In(S;) — In(T;) > 0 by taking logarithms. From
the definition of the lognormal distribution, In(S;) and In(T;) are normally distributed, and the
subtraction of two normal variables also follows a normal distribution.  Thus, In(S;) —
In(T;) ~N (Hs,i — U ) ,B%_i + ﬂf_ i) . Similarly, the failure criterion that all components fail
simultaneously can be written as In(S) — In(T) > 0%, and In(S) — In(T) follows a multivariate normal
distribution written as In(S) — In(T) ~MVN (us — ur, Er + Zg). Let z equal In(S) — In(T), and its
probability density function (pdf) is expressed as

1 1
pdf(z) = v,z P <— Sz - 1) Vit(z Mz))

where V; = X7 + Xg and u, = ug — ur. Hence, the probability that all components satisfy the failure
criterion is the volume over z > 0. Accordingly, the joint failure probability is given as

P(z>0) =Of~-!pdf(z)dz

This probability is also known as an orthant probability because it evaluates one orthant of a probability
space. The advantage of Model 1 is that there exist efficient algorithms to evaluate this probability and
software (for example, reference [4] and mvn.cdf function in SciPy.stats packages [8]). Note that there
is no restriction in correlation coefficient values. Therefore, they can be any value bound in [—1,1].

*In(S) means that the vector of natural logarithms of all elements of §.
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Model 1 does not use the linear response assumption. If we assume the linear response, i, is expressed

as
In(w; 4) In(wy4p1) In(4) —In(4p1)

H; = Us — UT =

In(w, )1 [In(w,4,,0) In(4) — In(4n)
where w; is the linear coefficient for the ith component.

2.2. Derivation of the JAERI model (Model 2)

This model was originally described in the SECOM2 manual [3]. We show that Model 2 is equivalent
to Method 1 by showing that both models are based on the same failure criterion, the same assumption,
and different parameterizations. In Model 2, the failure criterion is transformed by normalization as
Si > Ti S 0> ln(Tl) — hl(Sl)
& —(ur,; — psi) > In(T) = In(S) = (pr; — us,;)
o Hsi m b In(T;) — In(S;) + ps,; — Hri
Bc,i Bc.i
Ui Xi
where x; follows a standard normal distribution. A failure is now written as u; > x;. Similarly, the
multivariate lognormal distributions can be transformed into the multivariate normal distribution with
zero means and correlation matrix as a covariance matrix as x~MVN(0,V,), where V, =
b(Zs + Zr)b and b is a diagonal matrix with its ith diagonal element equal to 1/f ;. Thus, the pdf of
X is given as

1
— _Z,Ty-1
pd®) = Gy, 72 eXp( 2V x)'

and the joint failure probability is given as
Ug Un

P(u>x)= f fpdf(x)dx.

Model 2 starts from the same assumptions as Model 1 but normalizes its failure criterion for each
component, In(T;) — In(S;) whereas Model 1 does not normalize In(S;) — In(T;). This normalization
does not change a probability value if these models use the same covariance matrices and means. Thus,
we obtain Model 1 = Model 2.

2.3. Derivation of the Reed-McCann procedure (Model 3)

Model 3 was originally proposed by Reed et al. [1]. The original Reed-McCann procedure is the two-
step procedure that incorporates numerical and analytical integrations. The first step applies the SICV
method to median GM capacity values. Then, these values are sampled using the Latin hypercube
method. In the second step, the joint failure probability is estimated using the sampled median GM
capacity values and uncertainty of GM capacities. We also show that Model 3 is a limited case of
Model 1 in Section 2.5 by showing Model 1>Model 4 DModel 3.

Model 3 is based on the SICV method applied to the median GM capacity and GM capacity. In the
SICV method, a variable is decomposed into an independent variable and common variables, where
each common variable is shared among two or more variables. The original Reed-McCann procedure
only considers the common variables shared in possible combinations of two variables. It also assumes
that these variables are lognormally distributed, and the logarithmic means of common variables equal
Zero.

We derive an equation for the failure probability of ith component. First, let us assume that G; and G, ;
denote the GM capacity and median GM capacity of the ith component, and f8; and f,,, ; are logarithmic
standard deviations of G; and G,, ; respectively. Both capacities follow a lognormal distribution. Then,
we use the property of a lognormal distribution. Assume a random variable x following a lognormal
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distribution expressed as x~LN (i, ). Then, let M[[x] denote the median of x and equal exp(u). Now,
let us assume that x'~LN (0, ), and we multiply x" by a scalar value a, resulting in a new lognormal
distribution ax'~LN (Ina,B). If a =exp(u) = M[x], ax’ is equal to x. Thus, a lognormal
distribution can be expressed as the product of its median and a random variable following a lognormal
distribution with zero logarithmic mean. Now, we apply this property to G; resulting
Gi = Gp,iGj, (1)

where G, ;~LN (,ul-, ,Bm,i) and G;~LN(0,B3;). Note that the Reed-McCann procedure assumes an
uncertainty in the median GM capacity, so we assumed G, ; is lognormally distributed. Once again,
we apply the same property to G, ; resulting

Gm,i = exp(i;) G, 2)
where Gy, ;~LN (0, ,Bm,i). Note that y; has no uncertainty, so exp(y;) = Ay, ;. Thus,
Gm,i = Am,iGm - 3)

The Reed-McCann procedure samples a set of G, ; by the Latin hypercube sampling method. Now,
Model 3 applies the SICV method to G; and Gy, ;:

n
6= ey @
j=1
n
Gy = 1_[ Ghijr 5)

where Gj; and Gy, ;; are independent variables and Gj; and Gy, ;; for i # j are common variables
between ith and jth components. Note that we assume that these variables are statistically independent.
This assumption is necessary to derive Egs. (8) and (11). From the assumption of the SICV method that
Gi; and Gy, ;; are lognormally distributed, expressed as G;~LN (o, ,BU) and G, ;i~LN (o, ,Bm,ij),

these uncertainties have identities:

2 _ 2
Bm,i = E Bm,ij-
=1

Then, Model 3 assumes a failure criterion that an ith component fails when PGA exceeds GM capacity,
written as A > G;. The failure criterion for the ith component is transformed as

A
P(A> G) = P(A> Gp,G)) = P< o7 > GL-’l-)
mll—[L 11:#]
A A
—p mlHl 1th] Gij > lnGi’i S mlHL 11:#] )
ﬁii .Bii ﬁii

z(normalization)

where ®(x) is the cumulative distribution function of a standard normal distribution. Thus, the
probability that all components fail is the product of conditional probabilities as [[=; P(4 > G;).

G ij
lognormal distribution where x is the random variable, u is the logarithmic mean, and f is the
logarithmic standard deviation. So, the probability density function of G;; is expressed as

(64.0.6,) 1 ( (mcgj)Z) 1 w(lnagj>
oG, 0,bij) = ——F——=exp| — ==
e Gl; [2nB? 265 GijBij~ \ Bij D

where 1 (x) is the probability density function of a standard normal distribution. Now, multiplying Eqgs.
(6) and (7) and integrating G result in the joint failure probability given G, ; values as

is a random variable. Hence, we can integrate it out from Eq.(6). Let ¢ (x, 1, 8) denote a pdf of a
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fm foog(aol_[cb(m "“H‘ Liej© /dG’ (8)
g l

where G’ is the set of G; excluding Gj; and g(G) is the product of (G}, 0, ﬁij) written as

L]'

, In GU
g(G)_HHﬂ <,B-- ) (9)
i=1 j=i+1 U Y
This integral equation agrees with the formula shown in Appendix B of [9]. The original Reed-McCann
procedure samples Gy, ; using the Latin hypercube sampling, but one can also integrate it analytically.

Then, using Eq.(5), the joint pdf of Gy, ; is expressed as

o =[] Lz () w

where Gy, is the set of G, ; j including j = i. Substltutlng Eq.(3) and Eq.(5) into Eq.(8), multiplying it
by (10), and integrating it over G, gives the joint probability as

)
JdG’ (G, )JdG’ g(G')l_[cp AmiGmi iz Gy Omy | || (1)

\ Bii

Eq.(11) is the complete integral form of the Reed-McCann procedure, which is not explicitly shown in
the original paper. The difference is that Eq.(11) analytically integrates G, whereas the original Reed-
McCann procedure numerically integrate G;,. One of the obvious observations is that the number of
integrals increases as the number of components increases. Therefore, the Reed-McCann procedure
gets computationally intractable even with the small number of components.

Reed et al. [1] claimed that the method can consider the uncertainty in response and capacity. However,
we did not consider the uncertainty in response in the derivation. One can argue that either GM or
median GM capacities include uncertainty in response. However, this idea is not clearly shown in the
derivation. Hence, there is a gap between the failure criterion used in Model 1 and Model 3. Later in
Subsection 2.5, we analytically derive the equivalence condition of these criteria.

2.4. SICV method applied to responses and capacities (Model 4)

The original Reed-McCann procedure is the SICV method applied to GM capacities and median GM
capacities. In this section, we apply the SICV method to response and capacity. We do not derive the
integral form of Model 4 because Model 4 is a limited case of Model 1.

Let us assume that response and capacity decompose into independent and common variables. Unlike
the Reed-McCann procedure, we consider common variables among more than two components. First,
let us introduce some set notations to simplify the summation symbols. Let a number denote a
component identification, and numbers in a pair of curly brackets indicate a set of components. For
example, S, means response of the second component, including independent and common variables
whereas S¢;; and Sg; 3 is an independent variable unique to the second component and a common
variable between components 2 and 3, respectively. Let E and i denote a set of components and an
element of E, respectively. Then, let s(E,i) denote a set of subsets of E containing i defined as
{x<cE|xn{i}+0} . For example, if E={1,23} and i=1, then s({1,23},1) is
{{1}, {1,3}, {1,2,3}}. This notation represents responses as

S; = 1_[ Sk<=>ln5i = Z lnSk (12)
kes(E,i) kes(E,i)

Now, In S}, follows a normal distribution. Let us assume that the number of elements in a set x is
expressed by |x|. For example, |k| = 1 means only one element in k, so S, represents an independent
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variable of a single component. If |k| > 1, then S}, represents a common variable among k. Following
the argument in the Reed-McCann procedure, we can assume the logarithmic mean of In S, for |k| > 1
is zero. Eq.(12) can be written as a matrix form as

1115{1}
1115{2}
In S, 10 - 0 1 1 - 1 :
mS_10 1 -~ 0 1 0 - 1f| InSm
S S E . E S S A E lnS{llz}
InS, 0 0 0100 - 1 In Sy 33
InS M :
_lnS{llz,...,n}_

X

where the matrix M can be interpreted as a transformation matrix from decomposed independent and

common variables to original variables. For example, if E = {1,2,3}, the above equation is
InS; In 5{1} +1In 5{1’2} +1In 5{1, } +1n 5{1’2, }

[lnSZI = 1115{2} +11’15{1_2} +ln5{2’ } +lnS{1_2’ }

In 51 Eq.(12) lnS{ } +ln5{1, } +lnS{2, } +lnS{1,2, }

r InS {1} )
InS {2}
InS (3}

InS 1,2} |-

InS 1,3}

InS 2,3}

[In S {1,2,31

The rank of M is n because M can be partitioned into M = [I, Mpx(2n—n-1)], and columns of M are

linearly independent. x is a multivariate normal distribution with zero correlation. Now, we show that

InS is a multivariate normal distribution with mean Mu and covariance matrix MEMT using a

characteristic function.

oo R
O = O
=]
O =
_ o R
_ = o
=

The sketch of the proofis the following. Let u, and X, denote the logarithmic mean and the covariance
matrix of x, respectively. Then, the characteristic function of x is given as

1
px(t) = exp (iu,?t — EtTZ'xt)

where i is the imaginary number, and t is the vector of real values. Now, we can express the
characteristic function of S as

Pins(t) = exp (iu,?MTt - %tTMZ'xMTt).
The rank of X, and M is 2™ — n and n, respectively, where 2" —n > n. Hence, the rank of MX, M7
is also n for n > 2. This guarantees that there exists an inverse matrix of M, M”. Now, ¢, ¢(t) is
the same functional form as a multivariate normal distribution, so, InS is a multivariate normal
distribution with mean Mu and covariance matrix MEMT. Thus, S is the multivariate lognormal
distribution. The same argument is valid for capacity. Note that all elements of MEMT are nonnegative,
so correlation coefficients are also nonnegative because all elements of M and X, are nonnegative. In
other words, Model 4 only considers positive correlations. Note that this positiveness of M stems from
how we decomposed §. To consider negative correlations, one needs to include more common
variables that affect responses asymmetrically, such as a common variable that increases component
A’s response but decreases B’s response. However, these common variables are not explicitly
considered in the SICV method, so we did not include them in this paper.

The above argument states that response and capacity follow multivariate lognormal distributions if the

SICV method is applied. This result means that engineers do not need to estimate the common variables
but correlation coefficients of the possible combinations of two components, reducing the number of
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required parameters. Thus, the resultant distribution is equivalent to the assumption of Models 1 and 2,
except that correlation coefficients are limited to be positive. Thus, Model 4 is a limited case of Models
1 and 2. Therefore, we get the relation: Model 1 = Model 2 © Model 4.

One of the insights obtained in this derivation is that Models 1 and 2 can consider common variables
among more than two components. The above result states that correlation coefficients hold
information on common variables shared among three or more components.

2.5 Relation with the Reed-McCann procedure

The Reed-McCann procedure is derived from the SICV method applied to GM and median GM
capacities. We show that the Reed-McCann procedure is a limited case of Model 4. The sketch of the
proof is the following. We first show that the Reed-McCann procedure is expressed as the product of
random variables. Then, Model 4 is reduced to this product, neglecting higher-order terms.

Using Eq.(1)-(5), one can show the relation,

n
! !
Gi =Am,i | | GijGmij-
j=1

Thus, the failure criterion in Model 3 is written as

n
A > dpi | |66 (13)
j=1
Now, we transform the other failure criterion into this criterion in the following manner. First, we apply
the SICV method to the response and capacity of ith component as

S >T e 1_[ S > 1_[ T;.
ies(E,i) ies(E,i)
In the Reed-McCann procedure, common variables among more than two components are not
considered, so we neglect common variables more than two components as

n n
j=1 j=1

where S;; and Tj; are independent variables, and S;; and T;; for i # j are common variables. Let us
assume that logarithmic standard deviations of S;; and T;; are written as fs;; and fr;; respectively.

Now, following the same argument in Eq.(3), S;; and Tj; are expressed as S;; = wAS;; and Tj; =
WA, Tj; where Sj;~LN (0, Bs ;) and Tj;~LN'(0, Br,;;). Then, substituting these into Eq.(14) results

1n
n n

S$i>T;, =S 1_[ Sij>Tii 1_[ T;;

Jj=1,j#i Jj=1,j#i
n n

Jj=1j=i j=1,j=i
n n

(=4 ASLIL 1_[ SU > Am,iTiIi 1_[ TU
j=1,j=#i j=1,j=#i
Now, we use a different property of a lognormal distribution again. Let us assume a random variable
x~LN(0,B). Now, let us consider its inverse 1/x. The logarithm of 1/x is equaltoln1/x = —Inx.
Since x and 1/x are lognormally distributed, its logarithm is normally distributed. Then, the normal
distribution with zero mean is symmetric with respect to the origin. Thus, the probability of 1/x is
equal to that of x if they have the same realization value. This property preserves the probability of
inequality after replacing S;; with 1/5;;. Thus,
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n n

P(Sl > Tl) =~ P ASLIL 1_[ SU > Am,iTiIi 1_[ Ti'

jzl,jil j:l,j-‘,ti
n
=pla>anmisi ] sy (16)
Jj=1,j#i

Now, we got the same form as the failure criterion used by the Reed-McCann procedure. Eq.(16) is an
approximation because it neglects higher-order terms. If we do not neglect them, it becomes equivalent.
These random variables have logarithmic means equal to zero, the same as the Reed-McCann procedure.
The necessary condition that those failure criteria are equivalent is that all terms are equal in Eq.(13)
and Eq.(16). That is,
T;iSii = GG, and

Both sides of the equations are lognormal distributions with zero logarithmic means. Thus, these
equalities hold when the following equality holds:

Béij + Bfi; = Bf + Brij- (17)
Eq.(17) tell us how to transform seismic and capacity uncertainties into aleatory and epistemic
uncertainty without altering a joint failure probability.

Now we show the sketch of the proof of Model 4 © Model 3 using the proof by contradiction. Suppose
Eq.(17) does not hold. In that case, Eq.(13) no longer represents the failure criterion of a component
that its response is greater than its capacity. Therefore, Eq.(17) must hold so that Model 3 represents a
component failure. When Eq.(17) holds, Model 4 is equivalent to Model 3 by neglecting common
variables among more than two components. This shows the relation: Model 4 © Model 3.

NUREGF/CR-7237 described B;; and B, ;; as aleatory and epistemic uncertainties, respectively. So,
let us decompose fs;j and Br ;; into aleatory (R) and epistemic (U) uncertainties with subscripts R and
U. That is,

Bsij = Béijr + Béiju

BFii = Btijr +Briju
Then, these uncertainties are organized into aleatory and epistemic parts, resulting in

Bfi = Béijr + Biijr (18)

Brij = Béiju + Briju- (19)

Eq.(18) and Eq.(19) provide one interpretation of f;; and By, ;;. Note that there are many other
interpretations of B;; and B, ;;. For example, B;; = Bs;; and B, ;; = Br,ij satisfy Eq.(17), and the joint
failure probability is the same as the conditions Eq.(18) and (19).

It is important to note that it is not shown whether Model 4 € Model 3 holds or not, so we show Model
4 & Model 3. There are combinations of f;; and By, ;; such that they result in the same value of
correlation coefficients from Method 4. However, to achieve this, we must ease the assumption in the
SICV method that independent and common variables are statistically independent. If those variables
are not statistically independent, the derivation of Model 3 does not hold. Thus, Model 4 € Model 3.

3. CONCLUSION

We derived the models for a joint probability of seismically induced component failures. The derivation
revealed the relation of these models with respect to correlation coefficients: Model 1 = Model 22
Model 4 © Model 3. Model 1 and Model 2 can consider positive and negative correlation coefficients.
However, Model 4 can consider only the positive correlation coefficients, and Model 3 is the limited
case of Model 4. Therefore, we recommend Model 1 (the SSMRP model) because it is the most
applicable model and there is an efficient generic algorithm for it.
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