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Abstract: An earthquake simultaneously challenges multiple structures, systems, and components of a 
nuclear power plant.  Seismic probabilistic risk assessment evaluates this phenomenon with a failure 
condition that a component fails when a seismic response exceeds a component capacity.  In literature, 
there are several models for a seismically induced joint failure probability: a model used in the seismic 
safety margins research program (Model 1), a model in the SECOM2 (Model 2), and the Reed-McCann 
procedure (Model 3).  We also discuss a model that applies the separation of independent and common 
variables method to response and capacity (Model 4).  In Model 4, common variables among more than 
two components are explicitly considered.  These four models are analytically compared to clarify their 
relationship with respect to correlation coefficients.  First, it is shown that the first two models are 
equivalent by showing their derivations.  However, Model 1 is advantageous because there are efficient 
algorithms to evaluate it.  Next, Model 4 is shown as a limited case of Model 1 and 2 using a 
characteristic function.  Finally, Model 3 is shown as a limited case of Model 4 by deriving the failure 
criterion used in Model 3 from Model 4 by neglecting common variables among more than two 
components.  Thus, we summarize the relation: Model 1 = Model 2 ⊃ Model 4 ⊃ Model 3 with respect 
to correlation coefficients.  Therefore, we recommend Model 1 for a joint failure probability because of 
its computational efficiency and better applicability. 
 
 
1.  INTRODUCTION 
 
An earthquake is considered one of the major risk contributors to a nuclear power plant.  Unlike an 
internal event such as a turbine trip initiating event caused by random failure, an earthquake is unique 
because it simultaneously affects multiple structures, systems, and components (SSCs).  Therefore, 
researchers have proposed several models for a joint probability of seismically induced component 
failures [1–3].  The seismic safety margin research program (SSMRP) [2] introduced a model which 
calculates the probability that seismic responses of multiple components simultaneously exceed their 
capacities (Model 1).  This model results in an orthant probability, and there is an efficient algorithm to 
evaluate this probability [4].  Then, a different model was proposed by SECOM2 [3,5] (Model 2).  After 
the SSMRP model, Reed et al. proposed the so-called Reed-McCann procedure [1] (Model 3), in which 
a failure criterion of a component is defined in terms of ground motion (GM). Furthermore, experts on 
seismic fragility analysis have published NUREG/CR-7237, which recommends the separation of 
independent and common variables (SICV) method* [6].  It is important to note that the detailed 
derivations of these models have not been provided in the literature, making it challenging to analyze 
and compare these models analytically.   
 
Therefore, this paper aims to provide detailed derivations of these models and compare them 
analytically.  We show the equivalence of Model 1 and Model 2 by showing that they are different 
parameterizations of the same probability distributions.  In addition, we discuss a model developed by 
applying the SICV method to response and capacity (Model 4).  We show that Model 4 is a limited case 
of Model 1. Furthermore, model 4 can only consider nonnegative correlations, whereas Model 1 can 

 
* The Reed-McCann procedure is also known as the separation of independent and common variables 
(SICV) method because the Reed-McCann procedure is the SICV method applied to ground motion 
capacity and median GM capacity. 
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also consider all possible correlations.  Finally, we show that Model 3 is a limited case of Model 4.  In 
summary, we reveal the relation of the existing models: Model 1 = Model 2 ⊃ Model 4 ⊃ Model 3 in 
correlation coefficients.   
 
2.  COMPARISON OF THE EXISTING MODELS 
 
We compare the existing models for computing a joint failure probability.  Before deriving these models, 
let us introduce notations.  Let 𝑛𝑛 denote the number of components and subscript 𝑖𝑖 and 𝑗𝑗 denote the 
indexes of them. First, let 𝑆𝑆𝑖𝑖(𝐴𝐴) and 𝑇𝑇𝑖𝑖 denote response and capacity of 𝑖𝑖th component.  The response 
is a function of peak ground acceleration (PGA) 𝐴𝐴. Bolded variables denote vectors, matrices, and sets. 
Thus, 𝑺𝑺(𝐴𝐴) and 𝑻𝑻 denote vectors of responses and capacities, respectively.  Throughout this paper, we 
omit (𝐴𝐴) if it is obvious.  We assume that 𝑺𝑺 and 𝑻𝑻 are assumed multivariate lognormal distributions 
written as 𝑺𝑺(𝐴𝐴)~ℳℒ𝒩𝒩�𝝁𝝁𝑺𝑺(𝐴𝐴),𝚺𝚺𝑺𝑺(𝐴𝐴)� and 𝑻𝑻~ℳℒ𝒩𝒩(𝝁𝝁𝑻𝑻,𝚺𝚺𝑻𝑻) where 𝝁𝝁 is a vector of the logarithm 
means and 𝚺𝚺 is the covariance matrix whose 𝑖𝑖𝑖𝑖th elements are Σ𝑆𝑆,𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑆𝑆,𝑖𝑖𝛽𝛽𝑆𝑆,𝑗𝑗𝜌𝜌ln𝑆𝑆𝑖𝑖,ln 𝑆𝑆𝑗𝑗  and Σ𝑇𝑇,𝑖𝑖𝑖𝑖 =
𝛽𝛽𝑇𝑇,𝑖𝑖𝛽𝛽𝑇𝑇,𝑗𝑗𝜌𝜌ln𝑇𝑇𝑖𝑖,ln𝑇𝑇𝑗𝑗.  𝛽𝛽𝑆𝑆,𝑖𝑖 and 𝛽𝛽𝑇𝑇,𝑖𝑖 are the logarithmic standard deviations of 𝑖𝑖th response and capacity, 
respectively.  𝜌𝜌𝑥𝑥,𝑦𝑦 is the correlation coefficient of the pair of random variables {𝑥𝑥, 𝑦𝑦}.  For example, 
𝜌𝜌ln𝑆𝑆𝑖𝑖,ln 𝑆𝑆𝑗𝑗 is the correlation coefficient  between ln 𝑆𝑆𝑖𝑖 and ln 𝑆𝑆𝑗𝑗.   
 
We also use 𝒩𝒩 for normal distribution and ℒ𝒩𝒩 for a lognormal distribution.  Let 𝛽𝛽𝐶𝐶,𝑖𝑖 denote composite 
uncertainty of 𝑖𝑖th component defined as 𝛽𝛽𝐶𝐶,𝑖𝑖

2 = 𝛽𝛽𝑆𝑆,𝑖𝑖
2 + 𝛽𝛽𝑇𝑇,𝑖𝑖

2 .  Response and capacity are also lognormally 
distributed as 𝑆𝑆𝑖𝑖~ℒ𝒩𝒩�𝜇𝜇𝑆𝑆,𝑖𝑖 ,𝛽𝛽𝑆𝑆,𝑖𝑖�  and 𝑇𝑇𝑖𝑖~ℒ𝒩𝒩�𝜇𝜇𝑇𝑇,𝑖𝑖,𝛽𝛽𝑇𝑇,𝑖𝑖� , respectively, where 𝜇𝜇𝑆𝑆,𝑖𝑖  and 𝜇𝜇𝑇𝑇,𝑖𝑖  are 𝑖𝑖 th 
element of 𝝁𝝁𝑺𝑺 and 𝝁𝝁𝑻𝑻 as described above.  A median of a lognormal distribution ℒ𝒩𝒩(𝜇𝜇,𝜎𝜎) is exp(𝜇𝜇). 
Therefore, if we assume a linear response [5] in which response 𝑖𝑖th component is written as 𝑤𝑤𝑖𝑖𝐴𝐴, there 
exists a PGA value  𝐴𝐴𝑚𝑚,𝑖𝑖 such that the medians of response and capacity of 𝑖𝑖th component are equal. 
That is, 𝑤𝑤𝑖𝑖𝐴𝐴𝑚𝑚,𝑖𝑖 = exp �𝜇𝜇𝑠𝑠,𝑖𝑖�𝐴𝐴𝑚𝑚,𝑖𝑖�� = exp�𝜇𝜇𝑇𝑇,𝑖𝑖� where 𝜇𝜇𝑆𝑆,𝑖𝑖 is the 𝑖𝑖th element of 𝝁𝝁𝑺𝑺.  If a response is 
nonlinear, then 𝑤𝑤𝑖𝑖 is a function of 𝐴𝐴 as 𝑤𝑤𝑖𝑖(𝐴𝐴).  We use 𝐺𝐺 for GM capacity to distinguish it from PGA 
𝐴𝐴, where GM capacity is defined as the PGA value for which the seismic response of a given component 
exceeds the component capacity [7], and GM capacity has uncertainty.  Throughout this paper, 𝐺𝐺 has 
uncertainty, and 𝐴𝐴 does not.  This distinction aims to adapt the concept in the Reed-McCann procedure 
that assumes uncertainty in GM capacity and median GM capacity. Also, 𝐺𝐺𝑚𝑚,𝑖𝑖 denotes the median GM 
capacity of 𝑖𝑖th component.   
 
Figure 1 summarizes the assumptions and steps in the derivations of models discussed in this paper.  
Table 1 summarizes the existing models for obtaining a joint failure probability 𝑃𝑃.  All models have a 
common ground: the failure criterion and the lognormality assumption.  In seismic PRA, we assume 
that a component fails when a response exceeds capacity.  In application, engineers use a failure 
criterion in terms of PGA such that a component fails when PGA exceeds GM capacity.  
 

Table 1:  Equations for a joint failure probability. 𝑷𝑷 denotes a joint failure probability of 
components (1/2).  

Model Equation 
Model 1 

(SSMRP [2]) 
Failure criterion: Response > Capacity 
 
Joint failure probability:  

𝑃𝑃 =
1

(2𝜋𝜋)𝑛𝑛 2⁄ |𝑽𝑽1|1 2⁄ � ⋯� exp�−
1
2

(𝒛𝒛 − 𝝁𝝁𝒛𝒛)T𝑽𝑽𝒛𝒛−1(𝒛𝒛 − 𝝁𝝁𝒛𝒛)�
∞

0

∞

0

d𝒛𝒛 

where 
 𝒛𝒛 = ln𝑺𝑺 − ln𝑻𝑻 

𝝁𝝁𝒛𝒛 = 𝝁𝝁𝑺𝑺 − 𝝁𝝁𝑻𝑻 
𝑽𝑽𝒛𝒛 = 𝚺𝚺𝑺𝑺 + 𝚺𝚺𝑻𝑻 
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Table 1:  Equations for a joint failure probability. 𝑷𝑷 denotes a joint failure probability of 
components (2/2).  

Model Equation 
Model 2 

(JAERI [3]) 
Failure criterion: Response > Capacity 
 
Joint failure probability: 

𝑃𝑃 =
1

(2𝜋𝜋)𝑛𝑛 2⁄ |𝑽𝑽2|1 2⁄ � ⋯ � exp �−
1
2
𝒙𝒙T𝑽𝑽2−1𝒙𝒙�

𝑢𝑢𝑛𝑛

−∞

𝑢𝑢1

−∞

d𝒙𝒙 

where 
 

𝑥𝑥𝑖𝑖 =
𝜇𝜇𝑆𝑆,𝑖𝑖 − 𝜇𝜇𝑇𝑇,𝑖𝑖 − ln 𝑆𝑆𝑖𝑖 + ln𝑇𝑇𝑖𝑖

𝛽𝛽𝐶𝐶,𝑖𝑖
† 

𝑢𝑢𝑖𝑖 =
𝜇𝜇𝑆𝑆,𝑖𝑖 − 𝜇𝜇𝑇𝑇,𝑖𝑖

𝛽𝛽𝐶𝐶,𝑖𝑖
 

𝑽𝑽2 = 𝒃𝒃(𝚺𝚺𝑺𝑺 + 𝚺𝚺𝑻𝑻)𝒃𝒃T 
𝒃𝒃 = diag�1 𝛽𝛽𝐶𝐶,1⁄ ,⋯ , 1 𝛽𝛽𝐶𝐶,𝑛𝑛⁄ � 

Model 3 
(Reed-

McCann [1]) 

Failure criterion: PGA > GM capacity 
 
Joint failure probability:  
 
OR condition (at least one component fails): 

𝑃𝑃 = � d𝑮𝑮𝒎𝒎′ �ℎ(𝑮𝑮𝒎𝒎′ )� d𝑮𝑮′ �𝑔𝑔(𝑮𝑮′)�1 −�(1 − 𝑓𝑓𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

��
∞

0

�
∞

0

 

 
AND condition (all components fail): 

𝑃𝑃 = � d𝑮𝑮𝒎𝒎′ �ℎ(𝑮𝑮𝒎𝒎′ )� d𝑮𝑮′ �𝑔𝑔(𝑮𝑮′)�𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
∞

0

�
∞

0

 

where 
 

𝑓𝑓𝑖𝑖 = Φ

⎝

⎛
ln 𝐴𝐴
𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′𝑛𝑛
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖
⎠

⎞ 

𝑔𝑔(𝑮𝑮′) = � �
1

𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖′
𝜓𝜓 �

ln𝐺𝐺𝑖𝑖𝑖𝑖′

𝛽𝛽𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

, and 

ℎ(𝑮𝑮𝒎𝒎′ ) = ��
1

𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ 𝜓𝜓 �

ln𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′

𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝑮𝑮′ is the set of 𝐺𝐺𝑖𝑖𝑖𝑖′  except 𝐺𝐺𝑖𝑖𝑖𝑖′ . 
𝑮𝑮𝒎𝒎′  is set of 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′ . 
See Section 2.3 for the definitions of 𝐺𝐺𝑖𝑖𝑖𝑖′  and 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′ . 

 

 
† In the original paper, 𝑥𝑥𝑖𝑖 is expressed as ln(𝑇𝑇𝑖𝑖 𝑆𝑆𝑖𝑖⁄ ). Since 𝑥𝑥𝑖𝑖 is the variable of integration, the joint 
failure probability is the same. 
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Figure 1:  Important assumptions and steps in derivations 

Note that one can derive the failure criterion: PGA>GM capacity from the other failure 
criterion: Response > Capacity, as described in Section 2.5. 

 
 
2.1.  Derivation of the SSMPR model (Model 1) 
 
This model was originally proposed in the SSMRP report [2].  The failure criterion is transformed into 
a joint failure probability step by step. In this model, the failure criterion for 𝑖𝑖th component, 𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖, is 
first transformed into the equivalent failure criterion, ln(𝑆𝑆𝑖𝑖) − ln(𝑇𝑇𝑖𝑖) > 0 by taking logarithms.  From 
the definition of the lognormal distribution, ln(𝑆𝑆𝑖𝑖)  and ln(𝑇𝑇𝑖𝑖)  are normally distributed, and the 
subtraction of two normal variables also follows a normal distribution.  Thus, ln(𝑆𝑆𝑖𝑖) −
ln(𝑇𝑇𝑖𝑖) ~𝒩𝒩�𝜇𝜇𝑠𝑠,𝑖𝑖 − 𝜇𝜇𝑇𝑇,𝑖𝑖,𝛽𝛽𝑇𝑇,𝑖𝑖

2 + 𝛽𝛽𝑆𝑆,𝑖𝑖
2 � .  Similarly, the failure criterion that all components fail 

simultaneously can be written as ln(𝑺𝑺) − ln(𝑻𝑻) > 𝟎𝟎‡, and ln(𝑺𝑺) − ln(𝑻𝑻) follows a multivariate normal 
distribution written as ln(𝑺𝑺) − ln(𝑻𝑻) ~ℳ𝒱𝒱𝒱𝒱(𝝁𝝁𝑺𝑺 − 𝝁𝝁𝑻𝑻,𝚺𝚺𝑻𝑻 + 𝚺𝚺𝑺𝑺). Let 𝒛𝒛 equal ln(𝑺𝑺) − ln(𝑻𝑻), and its 
probability density function (pdf) is expressed as 

pdf(𝒛𝒛) =
1

(2𝜋𝜋)𝑛𝑛 2⁄ |𝑽𝑽1|1 2⁄ exp�−
1
2

(𝒛𝒛 − 𝝁𝝁𝒛𝒛)T𝑽𝑽1−1(𝒛𝒛 − 𝝁𝝁𝒛𝒛)� 

where 𝑽𝑽1 = 𝚺𝚺𝑻𝑻 + 𝚺𝚺𝑺𝑺 and 𝝁𝝁𝑧𝑧 = 𝝁𝝁𝑺𝑺 − 𝝁𝝁𝑻𝑻. Hence, the probability that all components satisfy the failure 
criterion is the volume over 𝒛𝒛 > 𝟎𝟎.  Accordingly, the joint failure probability is given as 
 

𝑃𝑃(𝒛𝒛 > 𝟎𝟎) = � ⋯� pdf(𝒛𝒛)
∞

0

∞

0

d𝒛𝒛  

This probability is also known as an orthant probability because it evaluates one orthant of a probability 
space.  The advantage of Model 1 is that there exist efficient algorithms to evaluate this probability and 
software (for example, reference [4] and mvn.cdf function in SciPy.stats packages [8]).  Note that there 
is no restriction in correlation coefficient values. Therefore, they can be any value bound in [−1,1].   
 

 
‡ ln(𝑺𝑺) means that the vector of natural logarithms of all elements of 𝑺𝑺. 

Failure Criterion:
Response ＞ Capacity

Responses and capacities 
have independent and 

common variables. Common 
variables exist among more 

than two components.

GM capacity and median 
GM capacity have 

independent and common 
variables. Common variables 
exist up to two components.

Model 4 Model 3
(Reed-McCann procedure)

Model 1
(SSMRP)

Model 2
(JAERI)

Take the logarithms of responses and capacities. 

Assumption
Operation
Failure criterion

Failure Criterion:
PGA＞ GM Capacity

The SIVC method* is 
applied to responses and 

capacities. 

The SIVC method* is 
applied to GM capacity and 

median GM capacities.

Direct integration Normalization and 
direct integration Direct integration Hybrid integration

*SIVC method: the separation of independent and common variables method 

Responses and capacities are lognormally 
distributed.

Independent and common variables are lognormally 
distributed.
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Model 1 does not use the linear response assumption. If we assume the linear response, 𝝁𝝁𝑧𝑧 is expressed 
as 

𝝁𝝁𝑧𝑧 = 𝝁𝝁𝑺𝑺 − 𝝁𝝁𝑻𝑻 = �
ln(𝑤𝑤1𝐴𝐴)

⋮
ln(𝑤𝑤𝑛𝑛𝐴𝐴)

� − �
ln�𝑤𝑤1𝐴𝐴𝑚𝑚,1�

⋮
ln�𝑤𝑤𝑛𝑛𝐴𝐴𝑚𝑚,𝑛𝑛�

� = �
ln(𝐴𝐴) − ln�𝐴𝐴𝑚𝑚,1�

⋮
ln(𝐴𝐴) − ln�𝐴𝐴𝑚𝑚,𝑛𝑛�

� 

where 𝑤𝑤𝑖𝑖 is the linear coefficient for the 𝑖𝑖th component.  
 
2.2.  Derivation of the JAERI model (Model 2) 
 
This model was originally described in the SECOM2 manual [3]. We show that Model 2 is equivalent 
to Method 1 by showing that both models are based on the same failure criterion, the same assumption, 
and different parameterizations.  In Model 2, the failure criterion is transformed by normalization as 
 𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖 ⇔ 0 > ln(𝑇𝑇𝑖𝑖) − ln(𝑆𝑆𝑖𝑖) 

⇔ −�𝜇𝜇𝑇𝑇,𝑖𝑖 − 𝜇𝜇𝑆𝑆,𝑖𝑖� > ln(𝑇𝑇𝑖𝑖) − ln(𝑆𝑆𝑖𝑖) − �𝜇𝜇𝑇𝑇,𝑖𝑖 − 𝜇𝜇𝑆𝑆,𝑖𝑖� 

⇔
𝜇𝜇𝑆𝑆,𝑖𝑖 − 𝜇𝜇𝑇𝑇,𝑖𝑖

𝛽𝛽𝐶𝐶,𝑖𝑖�������
𝑢𝑢𝑖𝑖

>
ln(𝑇𝑇𝑖𝑖) − ln(𝑆𝑆𝑖𝑖) + 𝜇𝜇𝑆𝑆,𝑖𝑖 − 𝜇𝜇𝑇𝑇,𝑖𝑖

𝛽𝛽𝐶𝐶,𝑖𝑖�������������������
𝑥𝑥𝑖𝑖

, 
 

where 𝑥𝑥𝑖𝑖 follows a standard normal distribution.  A failure is now written as 𝑢𝑢𝑖𝑖 > 𝑥𝑥𝑖𝑖.  Similarly, the 
multivariate lognormal distributions can be transformed into the multivariate normal distribution with 
zero means and correlation matrix as a covariance matrix as 𝒙𝒙~ℳ𝒱𝒱𝒱𝒱(0,𝑽𝑽2) , where 𝑽𝑽2 =
𝒃𝒃(𝚺𝚺𝑺𝑺 + 𝚺𝚺𝑻𝑻)𝒃𝒃 and 𝒃𝒃 is a diagonal matrix with its 𝑖𝑖th diagonal element equal to 1 𝛽𝛽𝐶𝐶,𝑖𝑖⁄ .  Thus, the pdf of 
𝒙𝒙 is given as 

pdf(𝒙𝒙) =
1

(2𝜋𝜋)𝑛𝑛 2⁄ |𝑽𝑽2|1 2⁄ exp �−
1
2
𝒙𝒙T𝑽𝑽2−1𝒙𝒙�, 

and the joint failure probability is given as 
 

𝑃𝑃(𝒖𝒖 > 𝒙𝒙) = � ⋯ � pdf(𝒙𝒙)

𝑢𝑢𝑛𝑛

−∞

𝑢𝑢1

−∞

d𝒙𝒙.  

Model 2 starts from the same assumptions as Model 1 but normalizes its failure criterion for each 
component, ln(𝑇𝑇𝑖𝑖) − ln(𝑆𝑆𝑖𝑖) whereas Model 1 does not normalize ln(𝑆𝑆𝑖𝑖) − ln(𝑇𝑇𝑖𝑖).  This normalization 
does not change a probability value if these models use the same covariance matrices and means.  Thus, 
we obtain Model 1 = Model 2.   
 
2.3.  Derivation of the Reed-McCann procedure (Model 3) 
 
Model 3 was originally proposed by Reed et al. [1].  The original Reed-McCann procedure is the two-
step procedure that incorporates numerical and analytical integrations.  The first step applies the SICV 
method to median GM capacity values. Then, these values are sampled using the Latin hypercube 
method.  In the second step, the joint failure probability is estimated using the sampled median GM 
capacity values and uncertainty of GM capacities.  We also show that Model 3 is a limited case of 
Model 1 in Section 2.5 by showing Model 1⊃Model 4 ⊃Model 3.   
 
Model 3 is based on the SICV method applied to the median GM capacity and GM capacity.  In the 
SICV method, a variable is decomposed into an independent variable and common variables, where 
each common variable is shared among two or more variables.  The original Reed-McCann procedure 
only considers the common variables shared in possible combinations of two variables.  It also assumes 
that these variables are lognormally distributed, and the logarithmic means of common variables equal 
zero. 

 
We derive an equation for the failure probability of 𝑖𝑖th component. First, let us assume that 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑚𝑚,𝑖𝑖 
denote the GM capacity and median GM capacity of the 𝑖𝑖th component, and 𝛽𝛽𝑖𝑖 and 𝛽𝛽𝑚𝑚,𝑖𝑖 are logarithmic 
standard deviations of 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑚𝑚,𝑖𝑖 respectively.  Both capacities follow a lognormal distribution.  Then, 
we use the property of a lognormal distribution.  Assume a random variable 𝑥𝑥 following a lognormal 
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distribution expressed as 𝑥𝑥~ℒ𝒩𝒩(𝜇𝜇,𝛽𝛽).  Then, let 𝕄𝕄[𝑥𝑥] denote the median of 𝑥𝑥 and equal exp(𝜇𝜇).  Now, 
let us assume that 𝑥𝑥′~ℒ𝒩𝒩(0,𝛽𝛽), and we multiply 𝑥𝑥′ by a scalar value 𝑎𝑎, resulting in a new lognormal 
distribution 𝑎𝑎𝑥𝑥′~ℒ𝒩𝒩(ln𝑎𝑎 ,𝛽𝛽) .  If 𝑎𝑎 = exp(𝜇𝜇) = 𝕄𝕄[𝑥𝑥] , 𝑎𝑎𝑥𝑥′  is equal to 𝑥𝑥 .  Thus, a lognormal 
distribution can be expressed as the product of its median and a random variable following a lognormal 
distribution with zero logarithmic mean.  Now, we apply this property to 𝐺𝐺𝑖𝑖 resulting  
 𝐺𝐺𝑖𝑖 = 𝐺𝐺𝑚𝑚,𝑖𝑖𝐺𝐺𝑖𝑖′, (1) 

where 𝐺𝐺𝑚𝑚,𝑖𝑖~ℒ𝒩𝒩�𝜇𝜇𝑖𝑖 ,𝛽𝛽𝑚𝑚,𝑖𝑖� and 𝐺𝐺𝑖𝑖′~ℒ𝒩𝒩(0,𝛽𝛽𝑖𝑖).  Note that the Reed-McCann procedure assumes an 
uncertainty in the median GM capacity, so we assumed 𝐺𝐺𝑚𝑚,𝑖𝑖 is lognormally distributed.  Once again, 
we apply the same property to 𝐺𝐺𝑚𝑚,𝑖𝑖 resulting  
 𝐺𝐺𝑚𝑚,𝑖𝑖 = exp(𝜇𝜇𝑖𝑖)𝐺𝐺𝑚𝑚,𝑖𝑖

′ , (2) 
where 𝐺𝐺𝑚𝑚,𝑖𝑖

′ ~ℒ𝒩𝒩�0,𝛽𝛽𝑚𝑚,𝑖𝑖�.  Note that 𝜇𝜇𝑖𝑖 has no uncertainty, so exp(𝜇𝜇𝑖𝑖) = 𝐴𝐴𝑚𝑚,𝑖𝑖.  Thus,  
 𝐺𝐺𝑚𝑚,𝑖𝑖 = 𝐴𝐴𝑚𝑚,𝑖𝑖𝐺𝐺𝑚𝑚,𝑖𝑖

′ . (3) 
The Reed-McCann procedure samples a set of 𝐺𝐺𝑚𝑚,𝑖𝑖 by the Latin hypercube sampling method.  Now, 
Model 3 applies the SICV method to 𝐺𝐺𝑖𝑖′ and 𝐺𝐺𝑚𝑚,𝑖𝑖

′ : 
 

𝐺𝐺𝑖𝑖′ = �𝐺𝐺𝑖𝑖𝑖𝑖′
𝑛𝑛

𝑗𝑗=1

 (4) 

 
𝐺𝐺𝑚𝑚,𝑖𝑖
′ = �𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′
𝑛𝑛

𝑗𝑗=1

, (5) 

where 𝐺𝐺𝑖𝑖𝑖𝑖′  and 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′  are independent variables and 𝐺𝐺𝑖𝑖𝑖𝑖′  and 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′  for 𝑖𝑖 ≠ 𝑗𝑗  are common variables 
between 𝑖𝑖th and 𝑗𝑗th components.  Note that we assume that these variables are statistically independent. 
This assumption is necessary to derive Eqs. (8) and (11). From the assumption of the SICV method that 
𝐺𝐺𝑖𝑖𝑖𝑖′  and 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′  are lognormally distributed, expressed as 𝐺𝐺𝑖𝑖𝑖𝑖′ ~ℒ𝒩𝒩�0,𝛽𝛽𝑖𝑖𝑖𝑖�  and 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ ~ℒ𝒩𝒩�0,𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖� , 

these uncertainties have identities: 

𝛽𝛽𝑖𝑖2 = �𝛽𝛽𝑖𝑖𝑖𝑖2
𝑛𝑛

𝑗𝑗=1

 

𝛽𝛽𝑚𝑚,𝑖𝑖
2 = �𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖

2
𝑛𝑛

𝑗𝑗=1

. 

Then, Model 3 assumes a failure criterion that an 𝑖𝑖th component fails when PGA exceeds GM capacity, 
written as 𝐴𝐴 > 𝐺𝐺𝑖𝑖.  The failure criterion for the 𝑖𝑖th component is transformed as 
 

𝑃𝑃(𝐴𝐴 > 𝐺𝐺𝑖𝑖) = 𝑃𝑃�𝐴𝐴 > 𝐺𝐺𝑚𝑚,𝑖𝑖𝐺𝐺𝑖𝑖′� = 𝑃𝑃 �
𝐴𝐴

𝐺𝐺𝑚𝑚,𝑖𝑖 ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′𝑛𝑛
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

> 𝐺𝐺𝑖𝑖𝑖𝑖′ � 

= 𝑃𝑃

⎝

⎛
ln 𝐴𝐴
𝐺𝐺𝑚𝑚,𝑖𝑖 ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖
>

ln𝐺𝐺𝑖𝑖𝑖𝑖′

𝛽𝛽𝑖𝑖𝑖𝑖���
𝑧𝑧(normalization)⎠

⎞ = Φ

⎝

⎛
ln 𝐴𝐴
𝐺𝐺𝑚𝑚,𝑖𝑖 ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖
⎠

⎞ 

 

 
 
 
 

(6) 
 
 

where Φ(𝑥𝑥)  is the cumulative distribution function of a standard normal distribution. Thus, the 
probability that all components fail is the product of conditional probabilities as ∏ 𝑃𝑃(𝐴𝐴 > 𝐺𝐺𝑖𝑖)𝑛𝑛

𝑖𝑖=1 .   
 
𝐺𝐺𝑖𝑖𝑖𝑖′  is a random variable.  Hence, we can integrate it out from Eq.(6).  Let 𝜑𝜑(𝑥𝑥, 𝜇𝜇,𝛽𝛽) denote a pdf of a 
lognormal distribution where 𝑥𝑥  is the random variable, 𝜇𝜇  is the logarithmic mean, and 𝛽𝛽  is the 
logarithmic standard deviation.  So, the probability density function of 𝐺𝐺𝑖𝑖𝑖𝑖 is expressed as 
 

𝜑𝜑�𝐺𝐺𝑖𝑖𝑖𝑖′ , 0,𝛽𝛽𝑖𝑖𝑖𝑖� =
1

𝐺𝐺𝑖𝑖𝑖𝑖′ �2𝜋𝜋𝛽𝛽𝑖𝑖𝑖𝑖2
exp�−

�ln𝐺𝐺𝑖𝑖𝑖𝑖′ �
2

2𝛽𝛽𝑖𝑖𝑖𝑖2
� =

1
𝐺𝐺𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑖𝑖𝑖𝑖

𝜓𝜓 �
ln𝐺𝐺𝑖𝑖𝑖𝑖′

𝛽𝛽𝑖𝑖𝑖𝑖
� (7) 

where 𝜓𝜓(𝑥𝑥) is the probability density function of a standard normal distribution.  Now, multiplying Eqs. 
(6) and (7) and integrating 𝐺𝐺𝑖𝑖𝑖𝑖′  result in the joint failure probability given 𝐺𝐺𝑚𝑚,𝑖𝑖 values as 
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� ⋯� 𝑔𝑔(𝑮𝑮′)�Φ

⎝

⎛
ln 𝐴𝐴
𝐺𝐺𝑚𝑚,𝑖𝑖 ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖
⎠

⎞
𝑛𝑛

𝑖𝑖=1

∞

0

∞

0

d𝑮𝑮′  (8) 

where 𝑮𝑮′ is the set of 𝐺𝐺𝑖𝑖𝑖𝑖′  excluding 𝐺𝐺𝑖𝑖𝑖𝑖′  and  𝑔𝑔(𝑮𝑮) is the product of 𝜑𝜑�𝐺𝐺𝑖𝑖𝑖𝑖′ , 0,𝛽𝛽𝑖𝑖𝑖𝑖� written as 
 

𝑔𝑔(𝑮𝑮′) = � �
1

𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖′
𝜓𝜓 �

ln𝐺𝐺𝑖𝑖𝑖𝑖′

𝛽𝛽𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

. (9) 

This integral equation agrees with the formula shown in Appendix B of [9].  The original Reed-McCann 
procedure samples 𝐺𝐺𝑚𝑚,𝑖𝑖 using the Latin hypercube sampling, but one can also integrate it analytically.  
Then, using Eq.(5), the joint pdf of 𝐺𝐺𝑚𝑚,𝑖𝑖

′  is expressed as 
 

ℎ(𝑮𝑮𝒎𝒎′ ) = ��
1

𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ 𝜓𝜓 �

ln𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′

𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖
�

𝑛𝑛

𝑗𝑗=𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (10) 

where 𝑮𝑮𝒎𝒎′  is the set of 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′  including 𝑗𝑗 = 𝑖𝑖.  Substituting Eq.(3) and Eq.(5) into Eq.(8), multiplying it 

by (10), and integrating it over 𝑮𝑮𝒎𝒎′  gives the joint probability as 
 

𝑃𝑃 = � d𝑮𝑮𝒎𝒎′

⎣
⎢
⎢
⎡
ℎ(𝑮𝑮𝒎𝒎′ )� d𝑮𝑮′

⎩
⎨

⎧
𝑔𝑔(𝑮𝑮′)�Φ

⎝

⎛
ln 𝐴𝐴
𝐴𝐴𝑚𝑚,𝑖𝑖𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖

′ ∏ 𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖
⎠

⎞
𝑛𝑛

𝑖𝑖=1 ⎭
⎬

⎫∞

0 ⎦
⎥
⎥
⎤∞

0

. (11) 

Eq.(11) is the complete integral form of the Reed-McCann procedure, which is not explicitly shown in 
the original paper. The difference is that Eq.(11) analytically integrates 𝑮𝑮𝒎𝒎′  whereas the original Reed-
McCann procedure numerically integrate 𝑮𝑮𝒎𝒎′ .  One of the obvious observations is that the number of 
integrals increases as the number of components increases.  Therefore, the Reed-McCann procedure 
gets computationally intractable even with the small number of components.   
 
Reed et al. [1] claimed that the method can consider the uncertainty in response and capacity.  However, 
we did not consider the uncertainty in response in the derivation.  One can argue that either GM or 
median GM capacities include uncertainty in response. However, this idea is not clearly shown in the 
derivation.  Hence, there is a gap between the failure criterion used in Model 1 and Model 3. Later in 
Subsection 2.5, we analytically derive the equivalence condition of these criteria.   
 
2.4.  SICV method applied to responses and capacities (Model 4) 
 
The original Reed-McCann procedure is the SICV method applied to GM capacities and median GM 
capacities.  In this section, we apply the SICV method to response and capacity. We do not derive the 
integral form of Model 4 because Model 4 is a limited case of Model 1.   
 
Let us assume that response and capacity decompose into independent and common variables.  Unlike 
the Reed-McCann procedure, we consider common variables among more than two components.  First, 
let us introduce some set notations to simplify the summation symbols.  Let a number denote a 
component identification, and numbers in a pair of curly brackets indicate a set of components.  For 
example, 𝑆𝑆2 means response of the second component, including independent and common variables 
whereas 𝑆𝑆{2}  and 𝑆𝑆{2,3} is an independent variable unique to the second component and a common 
variable between components 2 and 3, respectively.  Let 𝑬𝑬 and 𝑖𝑖 denote a set of components and an 
element of 𝑬𝑬,  respectively.  Then, let 𝑠𝑠(𝑬𝑬, 𝑖𝑖) denote a set of subsets of 𝑬𝑬  containing 𝑖𝑖  defined as 
{𝒙𝒙 ⊆ 𝑬𝑬| 𝒙𝒙 ∩ {𝑖𝑖} ≠ ∅} .  For example, if 𝑬𝑬 = {1,2,3}  and 𝑖𝑖 = 1 , then 𝑠𝑠({1,2,3}, 1)  is 
�{1}, {1,3}, {1,2,3}�.  This notation represents responses as 
 𝑆𝑆𝑖𝑖 = � 𝑆𝑆𝒌𝒌

𝒌𝒌∈𝑠𝑠(𝑬𝑬,𝑖𝑖)

⟺ ln 𝑆𝑆𝑖𝑖 = � ln 𝑆𝑆𝒌𝒌
𝒌𝒌∈𝑠𝑠(𝑬𝑬,𝑖𝑖)

 (12) 

 
Now, ln 𝑆𝑆𝒌𝒌 follows a normal distribution.  Let us assume that the number of elements in a set 𝒙𝒙 is 
expressed by |𝒙𝒙|.  For example, |𝒌𝒌| = 1 means only one element in 𝒌𝒌, so 𝑆𝑆𝒌𝒌 represents an independent 
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variable of a single component.  If |𝒌𝒌| > 1, then 𝑆𝑆𝒌𝒌 represents a common variable among 𝒌𝒌.  Following 
the argument in the Reed-McCann procedure, we can assume the logarithmic mean of ln 𝑆𝑆𝒌𝒌 for |𝒌𝒌| > 1 
is zero.  Eq.(12) can be written as a matrix form as 

�

ln 𝑆𝑆1
ln 𝑆𝑆2
⋮

ln 𝑆𝑆𝑛𝑛

�

���
ln𝑺𝑺

= �

1 0 ⋯ 0 1 1 ⋯ 1
0 1 ⋯ 0 1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 1 0 0 ⋯ 1

�

���������������������
𝑴𝑴

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ln 𝑆𝑆{1}
ln 𝑆𝑆{2}
⋮

ln 𝑆𝑆{𝑛𝑛}
ln 𝑆𝑆{1,2}
ln 𝑆𝑆{1,3}

⋮
ln 𝑆𝑆{1,2,⋯,𝑛𝑛}⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

���������
𝒙𝒙

 

where the matrix 𝑴𝑴 can be interpreted as a transformation matrix from decomposed independent and 
common variables to original variables.  For example, if 𝑬𝑬 = {1,2,3}, the above equation is  

�
ln 𝑆𝑆1
ln 𝑆𝑆2
ln 𝑆𝑆3

� =⏟
Eq.(12)

�
ln 𝑆𝑆{1} + ln 𝑆𝑆{1,2} + ln 𝑆𝑆{1,3} + ln 𝑆𝑆{1,2,3}

ln 𝑆𝑆{2} + ln 𝑆𝑆{1,2} + ln 𝑆𝑆{2,3} + ln 𝑆𝑆{1,2,3}

ln 𝑆𝑆{3} + ln 𝑆𝑆{1,3} + ln 𝑆𝑆{2,3} + ln 𝑆𝑆{1,2,3}

� 

= �
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ln 𝑆𝑆{1}
ln 𝑆𝑆{2}
ln 𝑆𝑆{3}

ln 𝑆𝑆{1,2}
ln 𝑆𝑆{1,3}
ln 𝑆𝑆{2,3}

ln 𝑆𝑆{1,2,3}⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

The rank of 𝑀𝑀 is 𝑛𝑛 because 𝑀𝑀 can be partitioned into 𝑴𝑴 = [𝑰𝑰𝑛𝑛 𝑴𝑴𝑛𝑛×(2𝑛𝑛−𝑛𝑛−1)], and columns of 𝑴𝑴 are 
linearly independent.  𝒙𝒙 is a multivariate normal distribution with zero correlation.  Now, we show that 
ln𝑺𝑺  is a multivariate normal distribution with mean 𝑴𝑴𝑴𝑴  and covariance matrix 𝑴𝑴𝚺𝚺𝑴𝑴𝑇𝑇  using a 
characteristic function.   
 
The sketch of the proof is the following.  Let 𝝁𝝁𝒙𝒙 and 𝚺𝚺𝒙𝒙 denote the logarithmic mean and the covariance 
matrix of 𝒙𝒙, respectively.  Then, the characteristic function of 𝒙𝒙 is given as  

𝜑𝜑𝑋𝑋(𝒕𝒕) = exp �𝑖𝑖𝝁𝝁𝒙𝒙T𝒕𝒕 −
1
2
𝒕𝒕𝑇𝑇𝜮𝜮𝒙𝒙𝒕𝒕� 

where 𝑖𝑖  is the imaginary number, and 𝒕𝒕  is the vector of real values. Now, we can express the 
characteristic function of 𝑆𝑆 as 

𝜑𝜑ln𝑺𝑺(𝒕𝒕) = exp �𝑖𝑖𝝁𝝁𝒙𝒙T𝑴𝑴𝑇𝑇𝒕𝒕 −
1
2
𝒕𝒕𝑇𝑇𝑴𝑴𝜮𝜮𝒙𝒙𝑴𝑴𝑇𝑇𝒕𝒕�. 

The rank of 𝜮𝜮𝒙𝒙 and 𝑴𝑴 is 2𝑛𝑛 − 𝑛𝑛 and 𝑛𝑛, respectively, where 2𝑛𝑛 − 𝑛𝑛 ≥ 𝑛𝑛.  Hence, the rank of 𝑴𝑴𝚺𝚺𝒙𝒙𝑴𝑴𝑇𝑇 
is also 𝑛𝑛 for 𝑛𝑛 ≥ 2.  This guarantees that there exists an inverse matrix of 𝑴𝑴𝚺𝚺𝒙𝒙𝑴𝑴𝑇𝑇.  Now, 𝜑𝜑ln𝑺𝑺(𝒕𝒕) is 
the same functional form as a multivariate normal distribution, so, ln𝑺𝑺  is a multivariate normal 
distribution with mean 𝑴𝑴𝑴𝑴 and covariance matrix 𝑴𝑴𝚺𝚺𝑴𝑴𝑇𝑇 .  Thus, 𝑺𝑺 is the multivariate lognormal 
distribution.  The same argument is valid for capacity.  Note that all elements of 𝑴𝑴𝚺𝚺𝑴𝑴𝑇𝑇 are nonnegative, 
so correlation coefficients are also nonnegative because all elements of 𝑴𝑴 and 𝜮𝜮𝒙𝒙 are nonnegative. In 
other words, Model 4 only considers positive correlations.  Note that this positiveness of 𝑴𝑴 stems from 
how we decomposed 𝑺𝑺 .  To consider negative correlations, one needs to include more common 
variables that affect responses asymmetrically, such as a common variable that increases component 
A’s response but decreases B’s response. However, these common variables are not explicitly 
considered in the SICV method, so we did not include them in this paper. 
 
The above argument states that response and capacity follow multivariate lognormal distributions if the 
SICV method is applied.  This result means that engineers do not need to estimate the common variables 
but correlation coefficients of the possible combinations of two components, reducing the number of 
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required parameters.  Thus, the resultant distribution is equivalent to the assumption of Models 1 and 2, 
except that correlation coefficients are limited to be positive.  Thus, Model 4 is a limited case of Models 
1 and 2.  Therefore, we get the relation: Model 1 = Model 2 ⊃ Model 4.   

 
One of the insights obtained in this derivation is that Models 1 and 2 can consider common variables 
among more than two components.  The above result states that correlation coefficients hold 
information on common variables shared among three or more components.   
 
2.5  Relation with the Reed-McCann procedure 
 
The Reed-McCann procedure is derived from the SICV method applied to GM and median GM 
capacities.  We show that the Reed-McCann procedure is a limited case of Model 4.  The sketch of the 
proof is the following.  We first show that the Reed-McCann procedure is expressed as the product of 
random variables.  Then, Model 4 is reduced to this product, neglecting higher-order terms.   
 
Using Eq.(1)-(5), one can show the relation,  

𝐺𝐺𝑖𝑖 = 𝐴𝐴𝑚𝑚,𝑖𝑖�𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′

𝑛𝑛

𝑗𝑗=1

. 

Thus, the failure criterion in Model 3 is written as 
 

𝐴𝐴 > 𝐴𝐴𝑚𝑚,𝑖𝑖�𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′

𝑛𝑛

𝑗𝑗=1

 (13) 

Now, we transform the other failure criterion into this criterion in the following manner. First, we apply 
the SICV method to the response and capacity of 𝑖𝑖th component as 

𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖 ⟺ � 𝑆𝑆𝒊𝒊
𝒊𝒊∈𝑠𝑠(𝑬𝑬,𝑖𝑖)

> � 𝑇𝑇𝒊𝒊
𝒊𝒊∈𝑠𝑠(𝑬𝑬,𝑖𝑖)

. 

In the Reed-McCann procedure, common variables among more than two components are not 
considered, so we neglect common variables more than two components as 

 
𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖 ⇒�𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

> �𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 (14) 

 
where 𝑆𝑆𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑖𝑖𝑖𝑖  are independent variables, and 𝑆𝑆𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑖𝑖𝑖𝑖  for 𝑖𝑖 ≠ 𝑗𝑗 are common variables.  Let us 
assume that logarithmic standard deviations of 𝑆𝑆𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑖𝑖𝑖𝑖 are written as 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖 respectively.   
 
Now, following the same argument in Eq.(3), 𝑆𝑆𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑖𝑖𝑖𝑖  are expressed as 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑆𝑆𝑖𝑖𝑖𝑖′  and 𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑤𝑤𝐴𝐴𝑚𝑚,𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖′  where 𝑆𝑆𝑖𝑖𝑖𝑖′ ~ℒ𝒩𝒩�0,𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖� and 𝑇𝑇𝑖𝑖𝑖𝑖′~ℒ𝒩𝒩�0,𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖�.  Then, substituting these into Eq.(14) results 
in 
 

𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖 ⇒ 𝑆𝑆𝑖𝑖𝑖𝑖  � 𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

> 𝑇𝑇𝑖𝑖𝑖𝑖 � 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 

⇔ 𝑤𝑤𝑤𝑤𝑆𝑆𝑖𝑖𝑖𝑖′ � 𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

> 𝑤𝑤𝐴𝐴𝑚𝑚,𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖′ � 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 

⇔ 𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖′ � 𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

> 𝐴𝐴𝑚𝑚,𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖′ � 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

 

(15) 

Now, we use a different property of a lognormal distribution again.  Let us assume a random variable 
𝑥𝑥~ℒ𝒩𝒩(0,𝛽𝛽).  Now, let us consider its inverse 1 𝑥𝑥⁄ .  The logarithm of 1 𝑥𝑥⁄  is equal to ln 1 𝑥𝑥⁄ = − ln𝑥𝑥.  
Since 𝑥𝑥 and 1 𝑥𝑥⁄  are lognormally distributed, its logarithm is normally distributed.  Then, the normal 
distribution with zero mean is symmetric with respect to the origin.  Thus, the probability of 1 𝑥𝑥⁄  is 
equal to that of 𝑥𝑥 if they have the same realization value.  This property preserves the probability of 
inequality after replacing 𝑆𝑆𝑖𝑖𝑖𝑖 with 1 𝑆𝑆𝑖𝑖𝑖𝑖⁄ .  Thus,  
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𝑃𝑃(𝑆𝑆𝑖𝑖 > 𝑇𝑇𝑖𝑖) ≈ 𝑃𝑃�𝐴𝐴𝑆𝑆𝑖𝑖𝑖𝑖′ � 𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

> 𝐴𝐴𝑚𝑚,𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖′ � 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

� 

= 𝑃𝑃�𝐴𝐴 > 𝐴𝐴𝑚𝑚,𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖′ 𝑆𝑆𝑖𝑖𝑖𝑖′ � 𝑆𝑆𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

� 

 
 
 
 
 

(16) 
 

Now, we got the same form as the failure criterion used by the Reed-McCann procedure.  Eq.(16) is an 
approximation because it neglects higher-order terms. If we do not neglect them, it becomes equivalent.  
These random variables have logarithmic means equal to zero, the same as the Reed-McCann procedure.  
The necessary condition that those failure criteria are equivalent is that all terms are equal in Eq.(13) 
and Eq.(16). That is, 

𝑇𝑇𝑖𝑖𝑖𝑖′ 𝑆𝑆𝑖𝑖𝑖𝑖′ = 𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ , and 

𝑆𝑆𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖′ 𝐺𝐺𝑚𝑚,𝑖𝑖𝑖𝑖
′ . 

Both sides of the equations are lognormal distributions with zero logarithmic means.  Thus, these 
equalities hold when the following equality holds: 
 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖

2 + 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖
2 = 𝛽𝛽𝑖𝑖𝑖𝑖2 + 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖

2 . (17) 
Eq.(17) tell us how to transform seismic and capacity uncertainties into aleatory and epistemic 
uncertainty without altering a joint failure probability. 
 
Now we show the sketch of the proof of Model 4 ⊃ Model 3 using the proof by contradiction. Suppose 
Eq.(17) does not hold. In that case, Eq.(13) no longer represents the failure criterion of a component 
that its response is greater than its capacity. Therefore, Eq.(17) must hold so that Model 3 represents a 
component failure. When Eq.(17) holds, Model 4 is equivalent to Model 3 by neglecting common 
variables among more than two components.  This shows the relation: Model 4 ⊃ Model 3. 
 
NUREGF/CR-7237 described 𝛽𝛽𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖 as aleatory and epistemic uncertainties, respectively. So, 
let us decompose 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖 into aleatory (R) and epistemic (U) uncertainties with subscripts R and 
U. That is, 

𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖
2 = 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖,𝑅𝑅

2 + 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖,𝑈𝑈
2  

𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖
2 = 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖,𝑅𝑅

2 + 𝛽𝛽𝑇𝑇,𝑖𝑖𝑗𝑗,𝑈𝑈
2  

Then, these uncertainties are organized into aleatory and epistemic parts, resulting in 
 𝛽𝛽𝑖𝑖𝑖𝑖2 = 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖,𝑅𝑅

2 + 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖,𝑅𝑅
2  (18) 

 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖
2 = 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖,𝑈𝑈

2 + 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖,𝑈𝑈
2 . (19) 

Eq.(18) and Eq.(19) provide one interpretation of 𝛽𝛽𝑖𝑖𝑖𝑖  and 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖 . Note that there are many other 
interpretations of 𝛽𝛽𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖. For example, 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑆𝑆,𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖 satisfy Eq.(17), and the joint 
failure probability is the same as the conditions Eq.(18) and (19).   
 
It is important to note that it is not shown whether Model 4 ⊈ Model 3 holds or not, so we show Model 
4 ⊈ Model 3.  There are combinations of 𝛽𝛽𝑖𝑖𝑖𝑖  and 𝛽𝛽𝑚𝑚,𝑖𝑖𝑖𝑖  such that they result in the same value of 
correlation coefficients from Method 4. However, to achieve this, we must ease the assumption in the 
SICV method that independent and common variables are statistically independent. If those variables 
are not statistically independent, the derivation of Model 3 does not hold. Thus, Model 4 ⊈ Model 3.   
 
3.  CONCLUSION 
 
We derived the models for a joint probability of seismically induced component failures.  The derivation 
revealed the relation of these models with respect to correlation coefficients: Model 1 = Model 2⊃ 
Model 4 ⊃ Model 3.  Model 1 and Model 2 can consider positive and negative correlation coefficients. 
However, Model 4 can consider only the positive correlation coefficients, and Model 3 is the limited 
case of Model 4.  Therefore, we recommend Model 1 (the SSMRP model) because it is the most 
applicable model and there is an efficient generic algorithm for it.   
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