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Abstract:  
 
This paper is a continuation of papers presented at the 13th and 15th Probabilistic Safety Assessment and 
Management Conferences [1, 2].  The previous work presented discussions of modeling failure modes 
of complex components and the effects of censor bias.  The first paper demonstrated how the typical 
method of treating failure modes as exponential gives optimistic predictions when predicting how 
improvements to subcomponents will perform.  Instead of relying on traditional analytical methods, a 
more accurate approach is to model the failure modes as a race in time.  Unfortunately, this does not 
give a closed-form solution and requires a more advanced solution.  A simulation with pre-defined 
component attributes demonstrated the optimistic nature of classical techniques.  Unfortunately for 
complex systems, the simulation routine may become very complex and difficult to implement.  The 
second paper demonstrated the effect of censor bias when dealing with large amounts of success-only 
testing, and the difference between treating data as "missing" instead of censored. 
 
In the quest for closed-form solutions and simplicity, the world of reliability engineering relies on the 
exponential distribution.  In most cases, it makes the solution closed-form and easy to solve.  However, 
simple models may lead to incorrect results when modeling even something as simple as modeling to 
the failure mode or component/subassembly level.  An excellent real-world example of using 
exponential distributions in this context is the typical automobile.  No one expects a new car to have 
the same failure intensity as an older car.  Obviously a more advanced approach is needed, and not just 
at the component level. 
 
This paper will use two approaches to analyze a simple system with components that have more than 
one failure mode.  The first is a standard fault tree, and the second is a simulation.  In both methods, 
various data assessment methods will be used to compare the results of both the data assessment method 
and the solution.  A discussion of the results will follow.  
 
Keywords:  failure modes, reliability, simulation. 
 
 
1.  INTRODUCTION 
 
As a continuation of the previous efforts, this paper will demonstrate the difference between using 
traditional reliability methods to simulation when dealing with complex components with multiple 
failure modes.  Traditional methods rely on summing the failure rates of failure modes.  The error may 
be compounded depending on the type of data analysis used, leading to erroneous predictions.  
Additionally, this paper will examine these issues in the context of having high failure probabilities, as 
seen comparatively to other industries such as nuclear and oil and gas. 
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2.  PROBLEM STATEMENT 
 
As an elementary example, consider a single monopropellant spacecraft thruster.  The thruster is 
operated through four valves (S1, S2, S3, and S4), as shown in Figure 1.  In this configuration, the 
thruster can only operate when there is propellant flowing in either one of the two flow paths, or both.  
Additionally, when the thruster is not in use, both flow paths need to be closed to save propellant and 
prevent the spacecraft from gaining unwanted momentum.   
 

Figure 1:  Spacecraft Thruster with Four Control Valves 

 
 
For simplicity, the only failure modes of the valves considered are Fail Open (FO) and Fail Closed (FC), 
although, in a more complex model, considerations could be given to Fails Leak (FL), Fails to Open 
(FTO) or Fails to Close (FTC) as well. 
 
3.  FAULT TREE SOLUTIONS 
 
3.1.  Fault Tree Analysis  
 
For a traditional model, the authors chose to do a simple Fault Tree Analysis (FTA) using SAPHIRE 
Version 8.2.5 (https://saphire.inl.gov/#/).  The simple FTA is shown in Figure 2, which describes both 
the FO and FC failure paths through the thruster.  The thruster fails when either flow path fails open or 
when both flow paths fail closed. Note that in Figure 2, the probability display could not be disabled in 
the graphic.  The fault tree has no data populated, and thus probabilities of 1.0 are shown in Figure 2.   
 
This paper does not discuss common cause failures, and hence, are not shown in the FTA. 
 
3.2.  Data Inputs 
 
In this example, consider that during operational experience, this type of valve has had four failures, 
two fail open, and two fail closed.  Additionally, both the failure modes occurred at 45,000 and 55,000 
hours.  The failure history is in Table 1. 
 

Table 1:  Failure Times to Different Failure Modes 
 
 
 
 
 
 
 
 

Failure Mode Time to Failure (Hrs) 
Fail Open 45,000 

Fail Closed 45,000 
Fail Open 55,000 

Fail Closed 55,000 
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Figure 2:  Fault Tree for Thruster 

 
 
3.2.1.  Simple Data Analysis Method 
 
The previous two papers described a few data analysis methods [1, 2].  A common yet overly simplistic 
data analysis would consider each failure mode having two failures (one each at 45,000 and 55,000 
hours) in 200,000 hours.  The simple data assessment yields a failure rate of (2/200,000)/hr, or a point 
estimate of 1x10-5/hr for both failure modes. 
 
3.2.2.  Alternative Data Analysis Method 1 
 
Now consider the data analysis discussed in the previous papers [1, 2], where the data is treated as 
missing.  In this case, each failure mode has failures at 45,000 and 55,000 hours, the other two failures 
are considered incomplete and missing, and thus the failure rate prediction simplifies 2/(45,000+55,000) 
or (2/100,000)/hr, which equals 2x10-5/hr for each failure mode.  Note that the authors assumed there is 
no state-of-knowledge correlation between failure modes or failure rates in this paper.  For more 
information on this type of correlation, see Chapter 12 of [3].   
 
State-of-knowledge correlations are used in uncertainty analyses to correlate identical components' 
failure rates or probabilities.  Although applying the correlation in that fashion makes sense, from an 
engineer's perspective, it does not make sense to have all of the identical components fail 
simultaneously.  That would defeat the redundancy concept and make the inclusion of common cause 
factors relatively easy.  Hence, simulation trials are run for identical components individually.  
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3.2.3.  Alternative Data Analysis Method 2 
 
In the second alternative data analysis method, consider the common Bayesian solution described in the 
literature [4, p. 6-12 and 6-13].  In this case, the prior distribution for the failure rate λ is a gamma(αprior, 
βprior), and the data is considered a Poisson with x events in time t.  The posterior gamma distribution 
for λ is thus, 

gamma(αposterior, βposterrior)        (1) 
 

αposterior  =  αprior + x      (2) 
 

βposterior  =  βprior + t     (3) 
 

In this example we will use a Jeffreys’ noninformative prior, gamma(½, 0) [4, p. 6-14 and 5], which 
yields for Equations (2) and (3) 

αposterior  =  x + ½     (4) 
 

βposterior  =  t + 0      (5) 
 

In this method, the Alternative Data Analysis Method 1 is used to determine the x and t.  Thus, for each 
failure mode, the point estimate result is 2.5/100,000, which equals 2.5x10-5. 

 
3.3.  Minimal Cut Sets and Results 
 
For the fault tree shown in Figure 2, the Minimal Cut Sets are in Table 2. 
 

Table 2:  Minimal Cut Sets of Example Problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mission times for this problem are three years (26,281 hours), five years (43,801 hours), and ten 
years (87,603 hours).  The results for the three-year mission using the simple data analysis method 
described in Section 3.2.1 (each failure mode has a failure rate of 1x10-5/hr) are in Table 3. 
 
Similarly, results for the three time frames (3, 5, and 10 years) using the previously derived failure rates 
for each failure mode (1x10-5, 2x10-5, and 2.5x10-5 per hour) are in Table 4. 
 
3.4.  Fault Tree Results Discussion 
 
As seen in Table 4, using the typical data analysis method, where failure rates are summed for failure 
modes of a complex component, leads to an optimistic prediction when compared to the other failure 
rate analysis methods.  The values in Table 4 are the probabilities of failure using a Minimal Cut Set 
(MSC) approximation for the fault tree.  These differences among the three methods of data analysis 
are reasonably consistent as the failure rate drops to 1x10-7.  When using a Binary Decision Digraph 
(BDD) solution within SAPHIRE, these values change very little. 

Minimal Cut Set Event Description Boolean Designator 
1 Thruster Valve S1 Fails Open 

Thruster Valve S2 Fails Open 
TH-S1-FO 
TH-S2-FO 

2 Thruster Valve S3 Fails Open 
Thruster Valve S4 Fails Open 

TH-S3-FO 
TH-S4-FO 

3 Thruster Valve S1 Fails Closed 
Thruster Valve S3 Fails Closed 

TH-S1-FC 
TH-S3-FC 

4 Thruster Valve S2 Fails Closed 
Thruster Valve S3 Fails Closed 

TH-S2-FC 
TH-S3-FC 

5 Thruster Valve S1 Fails Closed 
Thruster Valve S4 Fails Closed 

TH-S1-FC 
TH-S4-FC 

6 Thruster Valve S2 Fails Closed 
Thruster Valve S4 Fails Closed 

TH-S2-FC 
TH-S4-FC 
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Table 3:  Minimal Cut Sets for 3 Year Mission 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: MCS Results of Sample Problem for Various Mission Lengths and Failure Rates 
 
 
 
 
 
 
 
4.  SIMULATION MODEL 
 
4.1.  Simulation Algorithm 
 
There are many software programs available in which to develop a simulation.  Matlab (Version 
R2019a) was chosen due to the author's familiarity and the commonality of the software. We also used 
Excel to validate some of the simulation-based calculations performed in Matlab.  Before developing 
the code, the team worked out an algorithm to solve this problem that considers the competition between 
the failure modes and that a component cannot fail twice.  Considerations were given to allow common 
cause failures of the hardware to be added in future work.  
 
The algorithm follows these steps. 
 
Step 1 Establish parameters 

Input mission time in hours 
Input the gamma distribution parameters for each component failure mode based on the input 

parameters determined in Section 3.2  
Input k number of trials 
Determine a random seed value (or use a common seed from trial to trial to narrow down the 

number of unknowns) 
 

Step 2 Establish failure criteria for the system.  For this simulation, the results from Table 2 were used 
to establish the failure criteria for the system.  Although the inspection is easy enough for simple 
examples, such as in this paper, more complex systems or configurations may require an 
alternative method to determine the success/failure criteria. 
 

Step 3 Simulate component failure mode times by: 
Drawing random values given input distributions from Step 1 
Taking the reciprocal of failure rate to simulate the mean time to failure (MTTF) vector 

Determine the failure mode times (fail open and fail close) for each valve (S1, S2, S3, S4) 

Minimal Cut Set Probability Basic Events Event Probability 
1 5.35x10-2 TH-S1-FO 

TH-S2-FO 
2.31x10-1 

2.31x10-1 
2 5.35x10-2 TH-S3-FO 

TH-S4-FO 
2.31x10-1 

2.31x10-1 
3 5.35x10-2 TH-S1-FC 

TH-S3-FC 
2.31x10-1 

2.31x10-1 
4 5.35x10-2 TH-S2-FC 

TH-S3-FC 
2.31x10-1 

2.31x10-1 
5 5.35x10-2 TH-S1-FC 

TH-S4-FC 
2.31x10-1 

2.31x10-1 
6 5.35x10-2 TH-S2-FC 

TH-S4-FC 
2.31x10-1 

2.31x10-1 
Min Cut Set Upper Bound 2.81x10-1 

Minimal Cut Set Upper 
Bound Approximation 
(Probability of Failure) 

Baseline Failure 
Rate /Hr 
(1x10-5) 

Alt Method 1 
Failure Rate /Hr 

(2x10-5) 

Alt Method 2 
Failure Rate /Hr 

(2.5x10-5) 
3 Year Mission (26,281 hrs) 2.8x10-1 6.7x10-1 8.0x10-1 
5 Year Mission (43,801 hrs) 5.5x10-1 9.2x10-1 9.7x10-1 
10 Year Mission (87,603 hrs) 9.2x10-1 9.990x10-1 9.991x10-1 
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Determine the failure mode for each valve, i.e., which component failure mode occurred first 
and at what time 

Does the simulated component time to failure survive mission time, i.e., is time to failure greater 
than mission time? 

 
Step 4 Determine if a system failure occurred in the mission time 

Determine if any of the six system failures defined in Step 2 (Table 2) occurred during Step 3 
The system failure time taken is the 2nd of the two failure modes.  
Record this MTTF and the specific system failure path 

If more than one system mode fails, take the earlier system failure time  
 

Step 5 Track success and failure statistics and report 
 
4.2.  Simulation Results 
 
Similar to the results in Table 4, the simulation utilized the same failure rates and mission times as 
discussed previously for comparison purposes.  Each data set was run initially for 10,000 trials; lower 
probability simulations required 100,000 trials to obtain a result.   
 
A single simulation trial is shown in Table 5 and Table 6 using a three-year mission and Alternative 
Data Method 1.   
 

Table 5:  Component Failure Mode Simulation 

 
In Table 5, each column represents the simulation time that the failure mode was seen.  Due to the 
diffuse gamma distribution used to draw these failure modes, there is a wide range of values (25,894 
hours to 139,391 hours) for the failure modes.  For the simulation trial, S1C occurred at 96,268 hours.  
Since the life time of 96,268 hours is greater than the 3 year mission time of 26,281 hours, a "TRUE" 
is shown that it survived the mission.  Under S1O, the time to failure is 23,501 hours.  This time is less 
than the required mission time, so a FALSE is placed for not surviving the mission.  Since S1O 
happened before S1C, S1O is labeled as TRUE for which failure mode occurred first, S1C is labeled 
FALSE, and the time value in S1O (23,501) is in bold as it was the failure mode that occurred first.  
The items denoted in BOLD depict the failure modes that are carried through to the system analysis 
described in Table 6. 
 

Table 6:  System Failure Simulation 

 
Table 6 depicts the comparison of component and failure mode failure times to the system level criteria 
to determine if a failure has occurred in the trial or not.  In the various columns, the MCS is shown.  
Under MCS 1, the events TH-S1-FO and TH-S2-FO are both in bold because they are shown failed in 
Table 5.  Additionally, the system failure is labeled as TRUE, and the system failure time is listed as 
25,894 since it is the later failure mode between the two basic events (TH-S2-FO).  Also shown failed 
is event TH-S3-FC, but it is only one half of the MCS, so the system failure is labeled as FALSE.  If 

Comp FM S1C S1O S2C S2O S3C S3O S4C S4O 
Sim Time to 
Failure 

96,268 23,501 106,845 25,894 20,048 139,391 55,960 89,436 

Survives 3 
Year Mission? 

TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE 

1st FM FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE 

System Failure 
MCS 

1 
TH-S1-FO 
TH-S2-FO 

2 
TH-S3-FO 
TH-S4-FO 

3 
TH-S1-FC 
TH-S3-FC 

4 
TH-S2-FC 
TH-S3-FC 

5 
TH-S1-FC 
TH-S4-FC 

6 
TH-S2-FC 
TH-S4-FC 

Sys Failure?  TRUE FALSE FALSE FALSE FALSE FALSE 
Sys Failure Time 25,894 139,391 96,268 106,845 96,268 106,845 
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there were multiple paths to failure in the simulation, the time to the first system MCS will be declared 
the "winner" of the simulation. 
 
This is one trial, which reports MCS 1 as the system failure occurring at 25,894 hours.  It is possible 
that a trial reports no system failures.  This process is repeated for each of the k trials in the simulation.  
In the end, the probability of failure is calculated as the ratio of system failures to total trials through all 
k trials.   
 
Table 7 shows a comparison between the simulation results and the fault tree approach for all three 
failure rates from Section 3.2, and all three mission times.  As shown in Table 7, there is a difference 
between the fault tree and simulation results.  
 

Table 7:  Comparison of Fault Tree Analysis to Simulation Results 

 
The main focus of this paper is to compare the results from a typical FTA using a typical data analysis 
(shown in yellow) to a simulation routine using missing data approaches (shown in green).  The results 
for a 3-year mission show a failure probability of 2.8x10-1 while the alternative data approach presented 
in [2] yields a failure probability of 5.7x10-2.  Despite having half the failure rate, the fault tree analysis 
resulted in a failure probability that is almost 5 times larger.     
 
Of additional interest is the box shown in orange, which is a comparison between the FTA and 
simulation with the same typical data approach.  This comparison shows more than four orders of 
magnitude difference in the results, where the failure probability of the fault tree solution was 4000 
times larger than the simulation.  The simulation needed 100,000 trials to obtain results for this value, 
as 10,000 trials did not produce a single failure.  When using the same failure rate, all simulations 
produced a failure probability that is less than the FTA solution. 
 
4.3.  Simulation to Fault Tree Comparison 
 
In order to evaluate the differences between our two analysis methods, let us look at a small part of the 
model.  We will first focus on just one failure mode, represented by Cut Set #1 from Table 2: 
 
Thruster Valve S1 Fails Open AND Thruster Valve S2 Fails Open 
 
For the 3-year mission case, this cut set is quantified as: 
 

Cut_Set1 = TH-S1-FO * TH-S2-FO  
   = [1-exp(-1.0x10-5*26,281)]* [1-exp(-1.0x10-5*26,281)]   
   = 2.31x10-1 * 2.31x10-1  
   =  5.35x10-2 

 
However, the simulation results in Excel show that this failure mode occurs only a few times (0 to 5) 
for every 100,000 trials, giving a failure probability of between 2x10-5 to 3x10-5 for every simulation.  
The question then arises, why is the simulation much different than the fault tree approach?  One part 

Probability of 
Failure 

FT or 
Sim 

Baseline  
Failure Rate 

(1x10-5 /Hr) or  
Gamma(2, 200000) 

Alt Method 1 
Failure Rate 

(2x10-5 /Hr) or  
Gamma(2, 100000) 

Alt Method 2 
Failure Rate 

(2.5x10-5 /Hr) or 
Gamma(2.5, 100000) 

3-Year Mission 
(26,281 hrs) 

FT 2.8x10-1 6.7x10-1 8.0x10-1 
Sim 7x10-5 (100k trials) 5.7x10-2 1.4x10-1 

5-Year Mission 
(43,801 hrs) 

FT 5.5x10-1 9.2x10-1 9.7x10-1 
Sim 1.8x10-2 3.9x10-1 6.0x10-1 

10-Year Mission 
(87,603 hrs) 

FT 9.2x10-1 9.990x10-1 9.991x10-1 
Sim 3.8x10-1 8.5x10-1 9.5x10-1 
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of the answer is that the model of the world in the simulation is looking at useful component life based 
upon taking the reciprocal of diffusely defined failure rate, while the other part is modeling the 
complement of minimum reliability and treating it as an average reliability.   
 
Recall that the gamma(2, 200000) distribution represents our knowledge of the failure rate for a thruster 
to fail open.  It has a mean value of 1.0x10-5.  However, it is a distribution with a long tail to the right 
and portions near zero, as seen in Figure 3. 
 

Figure 3:  Gamma(2, 20000) Distribution 

 
 

Cut Set #1 represents the situation with two thrusters that have failed open prior to 26,281 hrs (for the 
3-year mission case).  One question to ask is given the gamma distribution in Figure 3, what percentage 
of the distribution is greater than a failure rate represented by 1/26,281 or 3.8x10-5?  The answer to that 
question is 0.0043, which is at the 99.57th percentile of the distribution!  In other words, there is only a 
0.0043 chance that one of the thrusters will fail open in less than 26,281 hours, given the failure rate of 
the failure modes are defined by gamma(2, 200000), and that failures can be represented via an 
exponential model which allows us to translate from failure rate to mean time to failure.  Thus, the 
chance that two thrusters both fail before 26,281 hours is 0.0043 * 0.0043, or 1.8x10-5.  This is a large 
difference compared to the FTA derived failure probability of 2.8x10-1, which is based upon computing 
average failure probabilities from very broad distributions.   

 
4.4.  Simulation Sanity Check 
 
Although there was much cross-checking of the simulation routine in Matlab among the authors, as a 
sanity check, a second independent simulation was performed using Excel.  This comparison used the 
baseline failure rate described in Section 3.2.1. and 100,000 trials.  The results of this second simulation 
are shown in Table 8, along with the earlier results.  The simulation results are reasonable when 
compared to each other, and both simulation results differ significantly from the fault tree results.  
Additionally, the time to failure statistics were compiled and compared, as shown in Table 9.  Table 9 
depicts the minimum, maximum, mean, and various percentile values for the times to failure given a 
gamma(2, 200000) distribution for both failure modes.  
 
Although these values are correct in the mathematical sense, from an engineer's perspective, they are 
problematic.  Dividing by a distribution with large tails has caused some large times to fail to appear in 

0
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the simulation.  The mean time to failure of 200,000 hours is 22.8 years, which far exceeds any of the 
data points of failures at around six years.  A time to failure of 193 million hours is more than 22,000 
years.  Again, this is the issue with using a gamma distribution with little information to represent failure 
times.  At the lower end, engineers do all they can to limit premature failures, such as qualification 
testing, design margins, use of heritage parts, even building multiple components, and using the best 
builds. 
 

Table 8:  Simulation Comparison Results for Baseline Failure Rate 

 
Table 9:  Times to Failure for Both Failure Modes Using Gamma(2, 200000) 

 
 
 
 
 
 
 
 
 
 
 
4.5.  Fault Tree Statistics 
 
Statistics on fault tree results are quite common in the current state-of-the-practice.  Although presented 
here for completeness, for certain applications, it is felt that the expected life statistics are of more use 
to a mission planner than the predicted reliability statistics.  For example, telling a spacecraft operations 
team that the expected life is x hours at 90% confidence would allow them to plan activities accordingly, 
even potentially reduce the wear and tear of certain items if possible to meet other mission objectives.   
However, presenting a range of potentially high probability failure numbers is less valuable and likely 
ignored.  In either case, it should always be emphasized that both the development of the model and the 
prioritization of relative risk drivers are more important than the absolute number. 
 
The FTA statistics are presented in Table 10 for no correlation, correlation at the failure mode level, 
and complete correlation for both failure modes.  This is for the baseline failure rate and a three-year 
mission.  Table 10 shows that although there are differences in using correlation and at what level, this 
has a much lower effect on the results than the model of the world framework (simulation vs. fault tree). 
 

Table 10:  Fault Tree Statistics 
 
 
 
 
 
 
 
 
 
 
 

Probability of Failure 
(10k trials) 

Matlab Excel FT 

3-Year Mission (26,281 hrs) 7x10-5 (100k trials) 2.0x10-4 2.8x10-1 
5-Year Mission (43,801 hrs) 1.8x10-2 2.0x10-2 5.5x10-1 
10-Year Mission (87,603 hrs) 3.8x10-1 4.6x10-1 9.2x10-1 

Time to 
Failure (Hrs) 

Excel 
10k Sims 

Excel 
100k Sims 

Matlab 
10k Sims 

Matlab 
100k Sims 

Minimum 13,501 12,221 12,373 12,373 
Maximum 76,195,156 152,957,049 56,303,798 193,562,605 
Mean 200,889 199,939 199,444 198,751 
5th Percentile 42,230 42,173 42,390 42,167 
10th Percentile 51,421 51,334 51,553 51,402 
50th Percentile 119,369 119,218 119,904 119,045 
90th Percentile 376,653 378,419 374,035 375,212 
95th Percentile 563,599 564,195 561,875 562,016 

FTA Results 
(Probability of 
Failure) 

No 
Correlation 

Correlation at 
Failure Mode 

Correlation of 
All Failure 

Modes 
Point Estimate 2.8x10-1 2.8x10-1 2.8x10-1 
Minimum 1.8x10-2 4.7x10-4 6.2x10-6 
Maximum 8.2x10-1 9.94x10-1 9.997x10-1 
Mean 2.5x10-1 3.0x10-1 2.8x10-1 
5th Percentile 1.1x10-1 4.7x10-1 1.2x10-2 
50th Percentile 2.4x10-1 2.7x10-1 2.1x10-1 
95th Percentile 4.4x10-1 7.0x10-1 7.6x10-1 
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4.6.  Simulation Convergence 
 
Given that the simulations produced similar results for this simple model for both the 10,000 and 
100,000 trial sets, the convergence of the results was examined for the case of gamma(2.5, 100000).  
The results are shown in Table 11.  The result of this experiment is to show that in terms of obtaining 
reasonable results quickly, the simulation can produce reasonable results with a small number of 
iterations, as least for the failure rate to time ratios considered in these examples. 
 

Table 11:  Simulation Convergence for Gamma(2.5, 100000) 
 
 
 
 
 
 
 
 
 
 
 
 
4.7.  Potential Simulation Enhancements  
 
Examination of the failure times in the simulation clearly demonstrates that using the reciprocal of a 
failure rate is an obvious issue and a major difference between the simulation and fault tree results.  For 
a simple demonstration, Table 12 describes various gamma distributions that have the same mean, but 
with different parameters.   
 

Table 12:  Effects of Gamma Distribution Parameters in Sampling 

 
As the gamma distribution becomes more certain, the sampled times to failure become narrower.  It is 
not until the gamma(20, 2,000,000) that the approximate sampling mean of 1 over the failure rate is 
seen.  However, that narrower sampled time to failure distribution does not always result in a lower 
simulation failure probability, as shown in the gamma(2, 200,000) versus gamma(1, 100,000) 
simulation..  Modeling a distribution based on actual times to failure would give tighter results with 
much less data, as was shown in [1, 2]. 
 
Unfortunately, the amount of data available in certain industries is just not available to drive the bounds 
tighter, nor is there an expectation that data will become available.  This is one of the problems faced 
with analysts in those industries.  Additionally, there are several other areas that could use enhancements 
in future work.  Simple additions to the methodology and simulation could be: 
 

• The incorporation of truncated distributions to reduce the wildly spread times to failure, or the 
use of a reciprocal gamma distribution;  

• Common cause failures; 

Alpha Beta Time K Trials System Reliability 
2.5 100,000 3 Years 100 0.84 
2.5 100,000 3 Years 500 0.89 
2.5 100,000 3 Years 1000 0.849 
2.5 100,000 3 Years 5000 0.8482 
2.5 100,000 3 Years 10,000 0.8594 
2.5 100,000 3 Years 50,000 0.85714 
2.5 100,000 3 Years 100,000 0.8576 
2.5 100,000 3 Years 500,000 0.857464 
2.5 100,000 3 Years 1,000,000 0.857028 
2.5 100,000 3 Years 10,000,000 0.857558 

Gamma (G) G(1, 100,000) G(2, 200,000) G(10, 1,000,000) G(20, 2,000,000) 
Mean FR (/hr) 1.0x10-5 1.0x10-5 1.0x10-5 1.0x10-5 
1/(Distribution 

Mean) (hrs) 
100,000 100,000 100,000 100,000 

1/(Sampling 
Mean) (hrs) 

~1,400,000 ~200,000 ~111,000 ~100,000 

Pf(3 years) 0.003 0.0001 0 0 
Pf(5 years) 0.06 0.02 0 0 

Pf(10 years) 0.4 0.5 0.4 0 
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• Inclusion of additional failure modes and their effect on the simulation to FTA comparison; 
• Ranking of risk scenarios from the simulation; 
• Dealing with lower probability system events, such as through failure rate*time transformations 
• Creating more complex simulations with more components and failure modes to see the 

differences in the solutions 
 
As the Probabilistic Risk Assessment (PRA) community looks to expand beyond traditional event tree 
and fault tree approaches, particularly into the use of simulation and other dynamic routines, 
considerations need to be given into modeling complex components with multiple failure modes and 
the effect that little data can have on the solutions.  Although understanding and modeling the system 
is always of paramount importance, the use of simulation routines may be helpful in providing 
additional information, such as predicting useful or remaining system life, mission operations planning, 
maintenance models, and others, that the current state-of-the-practice methods do not easily provide. 
 
5.  CONCLUSIONS 
 
The purpose of this work was to demonstrate the differences between using traditional fault tree (and 
by extension, event tree) models to assess components with multiple failure modes, and dealing with 
lack of data situations.  The results showed that modeling complex components using traditional FTA 
models with lower failure rates yielded higher failure probabilities than simulation models with higher 
failure rates.  The effects of both the modeling approach and the lack of data information in the failure 
rate predictions have a significant impact on the results.  There is a clear difference in the results on 
using an average probability in time versus modeling time to failure.  In comparison to the previous 
bodies of work [1, 2], doing simulations based on times to failure provided more realistic life 
values versus using 1/failure rate as a mean life; components typically do not survive to 100,000,000 
hours, but that is the result of dividing by a distribution.  
  
Additionally, as discussed in the previous work [1, 2] and presentations was the implication of what is 
meant by R = e-λt.  Although this is typically called reliability, it is really the minimum reliability, from 
which the probability of failure, Pf, is calculated as 
  

Pf = 1- Rmin = 1 - e-λt                                                     (6) 
  
The logical complement of minimum reliability is usually treated as an average in reliability software 
and applications, although this value could be construed as the maximum failure probability given Eqn. 
6. 
  
Although the predicted failure probabilities presented in this paper may seem high, failure probabilities 
of these levels are common in the space industry due to the lack of observed failures.  Every space 
mission pushes the boundaries of what has been done before, and this results in failure rate predictions 
that are based on a non-informative prior and operational experience.  The next Mars rover will exceed 
the planned and realized life of the past rover, the next satellite is expected to last at least as long as 
current technology, and space agencies are examining mission concepts of 20 to 50-year 
missions.  Obviously, there is no data set that can provide statistical confidence in the component 
reliability of such missions as that boundary is continually pushed. 
  
Unfortunately, these high failure probability predictions (high when compared to real-world experience 
that seems to have much better success than predicted) have long been a criticism of current methods 
and the state-of-the-practice.  It is hoped that simulation routines will help bring the state-of-the-
practice to a new level, closing the gap between predictions and future reality.  Future work examining 
more sophisticated system models will shed light on the differences between these two methods in more 
detail.  More importantly, the analysis is not just about the number, it is about the risk 
drivers.  Comparisons between risk drivers from the two methods on more substantial models are 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

needed, in particular those that involve complex components.  It is suspected that the risk driver will 
change as well, particularly those involving complex components with multiple failure modes.   
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