
Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

Efficient Reliability Demonstration using the Probability of Test Success 

and Bayes Theorem 

 
Alexander Grundlera, Martin Dazera, and Bernd Bertschea 

a Institute of Machine Components, University of Stuttgart, Stuttgart, Germany 

alexander.grundler@ima.uni-stuttgart.de 

 

 

 

Abstract: In order to demonstrate the reliability of a component, reliability engineers are often faced 

with multiple challenges. On the one hand the budget for testing is limited and on the other hand, the 

demonstration needs to be done as quick and with the most precise statistical information possible. To 

address these challenges, the concept of Probability of Test Success was developed [1]–[3]. It enables 

the objective assessment of tests with regard to their chance of a successful reliability demonstration 

and thus the ability to objectively compare the test configurations as well as the planning of expenditure 

and cost estimation. Secondly, approaches have been developed which, by means of Bayes' theorem, 

use available prior knowledge to correct the information obtained from the tests and thus reduce 

expenditures [4]–[6]. However, the combination of the Probability of Test Success and Bayes' Theorem 

to plan efficient reliability demonstration tests has not been addressed so far. Since both approaches 

make use of the available prior knowledge, it is analyzed how reliability demonstration tests can be 

planned using the Probability of Test Success in combination with the reliability methods of Bayes’ 

Theorem. The combined use of the two approaches reveals a considerable advantage. Not only is it 

possible to select the optimal test according to the boundary conditions by means of the prediction of 

demonstration success. In addition, the integration of prior knowledge by means of Bayes' theorem 

enables an additional significant reduction of expenditure, which may result in an even higher chance 

of success. The presented approach is capable of planning and assessing failure-based tests as well as 

any censored and failure-free tests. Procedures for the most typical scenarios are introduced and the 

advantages as well as disadvantages for the most common cases are worked out. The approach is 

additionally illustrated by way of exemplary cases. The results show that the demonstration of reliability 

and its necessary planning of tests benefit greatly from the proposed combination of the two approaches.  

 

 

1.  INTRODUCTION 
 

One of the main requirements of a product is to provide its functions over the desired lifetime in 

accordance with the respective boundary conditions. For new technologies and new products with a 

high multitude of functions, the importance of reliability grows significantly. In order to ensure and 

demonstrate the integrity of the product in terms of reliability, the product needs to be physically tested. 

The planning of such reliability demonstration tests is challenging, since a great variety of test types 

and configurations are available and the test has to comply to expenditure constraints. However, an 

intelligent planning takes advantage of the constellation of the individual products characteristics and 

the reliability to be demonstrated by making use of available prior knowledge. In order to make the 

identification and planning of such efficient test plans possible, the Probability of Test Success (𝑃ts) 

was established by Dazer et al. [1], [2]. Grundler et al. [3], [7]–[9] defined it as the statistical power of 

the reliability demonstration test and its configuration. It is therefore possible to objectively assess and 

compare the available reliability demonstration tests with regard to their chance of a successful 

reliability demonstration in addition to their feasibility regarding the constraints. Applicability has 

already been demonstrated in [2], [8]–[11], as has the transferability to accelerated tests with different 

lifetime models in [12]–[16]. Even tests for complex systems with several system levels can be planned 

efficiently on an objective level [7], [8], [17]. 

 

The reliability information obtained from the realized test, can be enriched by combining them with 

prior knowledge using Bayes' theorem [6], [18], [19]. To already make use of such prior knowledge in 
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test planning phases, several approaches can be found in the literature. For example, Kleyner et al. [20], 

[21], and Krolo et al. [22]–[25] both use prior knowledge for planning tests and demonstrating reliability 

using zero failure tests, also known as Success-Run tests (SR tests). Those approaches are mainly based 

on the planning approach presented by Beyer and Lauster [24], [26], [27], which uses a single value of 

reliability as prior knowledge and transforms it into an equivalent SR test. Using beta distributions as 

prior knowledge about reliability can also be used for system reliability demonstration [28], [29] as well 

as for new technologies making use of high precision lifetime calculations [30], [31]. However, the 

planning of failure-based tests is often neglected if the use of Bayes’ theorem is concerned. In addition, 

the combination of Bayes’ theorem and the concept of Probability of Test Success has not been studied 

yet, but promises significant improvements in the identification of efficient reliability demonstration 

tests. This paper therefore presents an approach which makes use of the combined use of Bayes’ 

Theorem and Probability of Test Success which enables the identification of the most efficient test 

(assessment through 𝑃ts ) while ensuring a minimum in expenditure (by additionally using Bayes’ 

Theorem). Typical scenarios of prior knowledge and tests are analysed. 

 

 

2.  PRIOR KNOWLEDGE 
 

Products are never entirely new products, there are at least some similar components which are already 

in use in another product. So, product development takes place with a certain degree of adoption of a 

previous product generation, of similar products or similar concepts [32]–[35]. Therefore, some kind of 

prior knowledge about the product behaviour is available. For reliability demonstration, some prior 

knowledge about the failure behaviour may be available, for example by the conducted lifetime 

calculations during development of the geometry and gestalt. In addition, some prototype tests may be 

performed or field data from a preceding product is known. In conclusion, sources of prior knowledge 

could be: 

o Historical data 

o Field monitoring of similar products 

o Prototype tests 

o Lifetime calculations 

o Expert knowledge 

o Reliability tests of similar products 

o Reliability tests of predecessor products 

o Lifetime tests of the components 

o Tests of the supplier 

 

This information usually is available in different forms. The tests of prototypes, the reliability tests, the 

tests of the supplier and the components testing may yield failure times and therefore an estimation of 

the failure distribution. If only censored data is available, only an estimation of the reliability itself can 

be made. Expert knowledge may not be translated into a quantifiable measure without effort [36], [37]. 

However, the main sources, data and information of prior knowledge, can be transformed into a 

reliability information of one of two types: On the one hand, if no failures can be attested or assigned 

to the prior knowledge, an information about the reliability itself should be available, e.g., a beta 

distribution [38]. On the other hand, if failures were observed, an information about the failure 

distribution can be obtained, e.g., a Weibull distribution [39]. Hence, the two types of prior knowledge 

about the reliability are the following: 

1. Prior knowledge stemming from a Success-Run test (SR test): a distribution of reliability as the 

confidence distribution, e.g., a beta distribution for a specific lifetime of the product 

2. Prior knowledge stemming from an End-of-Life test (EoL test): a sample of failure times (with 

censoring), or a failure distribution, e.g. a Weibull distribution and a sample size, which can be 

made responsible for estimating the failure distribution 

 

These two types of prior knowledge need to be used in different ways in reliability demonstration test 

planning, according to the test type which shall be planned.  
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3.  USING PRIOR KNOWLEDGE WITH THE PROBABILITY OF TEST SUCCESS 
 

In order to assess reliability demonstration tests using the 𝑃ts, prior knowledge about the reliability at 

test suspension must be available for SR tests. For the planning of EoL tests, prior knowledge about the 

failure distribution must be available. Of course, knowledge about the failure distribution can also be 

used for the planning of SR tests and is even needed, if the suspension time of the specimen shall be 

another than the to be demonstrated lifetime. Prior knowledge about the failure distribution therefore 

represents the optimal starting point for reliability demonstration test planning using the 𝑃ts [40]. Since 

the uncertainty of the prior knowledge in terms of its initial sample size shows a significant effect on 

the 𝑃ts [41], it shall be used herein. The general procedure for planning reliability demonstration tests 

using the 𝑃𝑡𝑠 is the following: 

1. Gather prior knowledge about failure distribution (assessing EoL and SR tests) or reliability 

distribution at test suspension time (sole assessing of SR tests). For sources, see section 2. 

2. Identify constraints in expenditure: e.g., financial budget will constrain both available sample 

size and test time. Restrictions in time constrain the available time for testing. 

3. Calculate 𝑃ts for all test scenarios, which may comply with the constraints: 

a. EoL tests in uncensored and censored fashion for several feasible sample sizes 

b. SR test for sample size according to the reliability requirement, as well as several 

lifetime ratios as long as they are feasible 

4. Choose test which yields the highest number in 𝑃ts. Alternatively: Calculate 𝑃𝑡𝑠 cost ratio or 

𝑃ts time ratio and choose test with the highest number which still follows a minimum in 𝑃ts 

(e.g., 70 %). 

 

If accelerated tests are desired, the lifetime model needs to be available for the SR test as well as the 

EoL test. However, the EoL test can also be used to estimate the lifetime model at the same time the 

lifetime quantile is estimated for reliability demonstration. The use of the 𝑃ts in this specific scenario 

can be found in [14], [42]. Step 3 and 4 can be combined if an applicable optimization algorithm is used 

for the identification of the optimal test in the individual scenario. However, the algorithm needs to be 

trusted for it to actually find the test plan with the desired conditions. 

 

3.1. The Probability of Test Success 

The Probability of Test Success 𝑃ts is defined as the statistical power of a reliability demonstration test. 

Since the hypotheses of such a test are always the same, the new term was first coined in [17] for 

convenience and better understanding in analogy to the confidence level 𝐶, which is already very well 

understood and used in the context of reliability engineering. The hypotheses are defined via the lifetime 

quantiles 𝑡𝑅𝑟
 at required reliability 𝑅𝑟 and the required lifetime quantile 𝑡𝑟 for EoL tests [3], [7], [8], 

[41]:  

 𝐻0: 𝑡𝑅r
< 𝑡r      (1) 

 𝐻1: 𝑡𝑅r
≥ 𝑡r      (2) 

Since SR tests only yield an estimate of the reliability itself via e.g., a binomial or beta distribution, the 

hypotheses for SR test are defined as follows: 

 𝐻0: 𝑅(𝑡r) < 𝑅r(𝑡r)     (3) 

 𝐻1: 𝑅(𝑡r) ≥ 𝑅r(𝑡r)     (4) 

Using the required confidence level 𝐶𝑟 = 1 − 𝛼, the 𝑃𝑡𝑠 is the complement of the statistical error 𝛽 (see 

e.g., [43] and [3]) of the test 

 𝑃ts = 1 − 𝛽       (5) 

and can be calculated for EoL tests, using the null and alternative distribution 𝑓𝐻0
 and 𝑓𝐻1

 of 𝑡𝑅𝑟
, which 

represent the distribution of the lifetime quantile under validity of the respective hypothesis [3], [8]: 

 𝐶r = ∫ 𝑓𝐻0
 d𝑡𝑅r

𝑡crit

−∞
     (6) 

 𝑃ts = ∫ 𝑓𝐻1
 d𝑡𝑅r

+∞

𝑡crit
     (7) 

The closed analytic form for calculating the 𝑃ts of an SR test using the binomial approach (see [3], [8], 

[17]), cannot be used here unaltered, since the uncertainty of prior knowledge needs to be considered 

[41]. In order to account for the uncertainty a bootstrap approach is presented in the following. 
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3.2. Calculating the Probability of Test Success 

The general procedure for calculating the 𝑃ts while considering the uncertainty of prior knowledge 

about the failure distribution is described in [41]. An abbreviated version of the therein used double 

bootstrap-algorithm for EoL tests is depicted in Fig. 1.  

 

Figure 1: Double Bootstrap Algorithm for the Calculation of 𝑷𝐭𝐬 of an EoL Tests [41] 

 
 

In the first step, pseudo-random failure times are drawn from the known failure distribution according 

to the initial sample size 𝒏𝟎 of the prior knowledge. These failure times are then used to estimate the 

parameters of the failure distribution in order to estimate the uncertainty of the parameters of the prior 

knowledge itself. Using these parameters, additional pseudo-random failure times are drawn, this time, 

according to the sample size 𝑛 of the tests to be analysed. These failure times are then used to estimate 

the failure distribution again. According to this distribution, the appropriate lifetime quantiles under 

validity of 𝐻0 and 𝐻1 are calculated. After iterating these steps multiple times (e.g., 10,000 times) the 

generated lifetime quantiles can be used to calculate the 𝑃ts using the null and alternative distribution 

𝑓𝐻0
 and 𝑓𝐻1

 and the equations 6 and 7. 

 

If no failure distribution is known from prior knowledge but instead prior knowledge from an SR test 

about the reliability itself, the binomial distribution (sample size 𝑛 and number of failures 𝑘) can be 

translated into a beta distribution with parameters 𝐴 and 𝐵 that describe the distribution of reliability, 

via 𝐴 = 𝑛 − 𝑘 and 𝐵 =  𝑘 + 1 for the corresponding relevant lifetime. If the runtimes of the specimen 

differ from the relevant lifetime (e.g., the required lifetime), a Weibull shape parameter is needed for 

example, see e.g., [44]. In rare cases, due to a lack in documentation, it could be the case that only a 

single value of the reliability for the corresponding lifetime is known. In this case, the approach of [27] 

can be used to still derive a beta distribution. 

Since the reliability is described by the beta distribution and the SR test result is described by a binomial 

distribution, the 𝑃ts can be calculated for an SR test using a beta-binomial distribution 

   𝑃ts = ∑ (𝑛
𝑖
)

𝛽(𝑖+𝐵0,   𝑛−𝑖+𝐴0)

𝛽(𝐵0, 𝐴0)
𝑘
𝑖=0         

      = 1 −
𝑛⋅𝛽(𝐴0+𝑛−𝑘−1,𝐵0+𝑘+1)Γ(𝑛)3𝐹2(1,𝐵0+𝑘+1,−𝑛+𝑘+1;𝑘+2,−𝐴0−𝑛+𝑘+2;1)

𝛽(𝐵0,𝐴0)𝛽(𝑛−𝑘,𝑘+2)Γ(𝑛+2)
  (8) 

and enables an analytic expression and calculation if the prior knowledge about the reliability is 

available via a beta distribution from another SR test with parameters 𝐴0 and 𝐵0 in order to account for 

the uncertainty of the reliability at suspension time of the SR test which has a sample size of 𝑛 and a 

maximum number of allowed failures of 𝑘. Here 𝛽(𝐴, 𝐵) is the complete beta function (see e.g., [38]) 

with parameters 𝐴 and 𝐵, Γ(⋅) is the gamma function (see e.g., [45]) and 𝑖3𝐹2(𝑝1, 𝑝2, 𝑝3; 𝑝4, 𝑝5; 𝑝6) is 

the generalized hypergeometric function (see e.g., [46]) which takes six values as input: 𝑝1 to 𝑝6. This 

equation 8 allows for a calculation of the 𝑃ts while considering the uncertainty of prior knowledge if 

only a beta distribution is known from prior knowledge. This is an advantage for the practical 

application, since no prior knowledge about the failure distribution is to be known, which previous 

approaches did require. In addition Equation 8 should coincide with the bootstrap approach presented 

in [41], if the beta distribution used in Equation 8 is generated from the failure distribution of prior 

knowledge using a bootstrap approach, e.g., the one presented in [30]. 

 

The use of the different types of prior knowledge for the calculation of the 𝑃ts is summarized in Table 1. 

It has to be noted, that due to the type of available prior knowledge, an EoL test cannot be planned using 

the 𝑃ts if only an SR test is available as prior knowledge. There needs to be an estimate about the failure 

distribution. 

Prior 

knowledge:

𝑛0 failure

times 𝑡𝑖

Sampling of

𝑛 pseudo-

random 

failure times

𝑡  𝑖 using

𝐹0
 (𝑡)

Estimate 

failure

distribution

𝐹 
0
 
(𝑡) of 𝑡  𝑖

Calculate lifetime

quantiles under

validity of 𝐻0 and 𝐻1:

𝑡𝑅𝑟,𝐻1
= 𝐹 

0
 −1

1 − 𝑅r

𝑡𝑅𝑟,𝐻0
=

𝑡𝑟 ⋅ 𝐹 
0
 −1

1 − 𝑅r

𝐹0
 −1

1 − 𝑅𝑟

 

Calculate 𝑃tsvia 

the estimates of

𝑡𝑅𝑟,𝐻1
and 𝑡𝑅𝑟,𝐻0

using 𝐶r

Iterate

Estimate 

failure

distribution

𝐹0(𝑡) of 𝑡𝑖

Sampling of

𝑛0 pseudo-

random 

failure times

𝑡 𝑖 using

𝐹0(𝑡)

Estimate 

failure

distribution

𝐹0
 (𝑡) of 𝑡 𝑖
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Table 1: Use of the Two Types of Prior Knowledge for 𝑷𝐭𝐬 Calculation for the Two Types of 

Tests Which can be Assessed or Planned 

 

Reliability engineers may find themselves in a situation, where although prior knowledge is available, 

the underlying sample size of this information may be unknown. This could be, for example, if the 

documentation is insufficient or the supplier only provides such information. For such uncertain sample 

size information, one can assume a conservative estimate: e.g., 𝑛 = 3 for failure distributions and e.g., 

𝑛 = 𝑙𝑛(0 5)/𝑙𝑛(𝑅p) (cf. [27]), for information about the reliability 𝑅p and subsequent generation of a 

beta distribution using 𝐴 = 𝑛, 𝐵 = 1. Although being very conservative, it most certainly is more 

representative of the actual information available, than neglecting the uncertainty, which translates to 

an assumed sample size of infinity. The consideration of the uncertainty of prior knowledge in 𝑃ts 

calculation generally leads to a decreased value in 𝑃ts. 

 

Ultimately, the 𝑃ts allows for a determination of the required sample size of the EoL test if a certain 

minimum value of 𝑃ts  shall be achieved by it. For an SR test, the 𝑃ts enables the assessment of the 

much less configurable configuration of it. Due to the sample size being coupled to the reliability 

requirement, only permissible failures, used lifetime ratios and acceleration in terms of higher loads 

allow a modified sample size. The 𝑃ts sheds light on these changes in terms of the expected outcome of 

the test. In Addition, the comparison of all the feasible tests with regard to cost and time constraints, 

allows for often more efficient EoL tests, when someone traditionally would not have considered such 

failure-based tests, due to the lack of an appropriate planning instrument like the 𝑃ts. 

 

 

4.  USING PRIOR KNOWLEDGE WITH BAYES THEOREM FOR RELIABILITY 

DEMONSTRATION 
 

Since two types of prior knowledge can be available to be taken into account via Bayes’ Theorem to 

enrich the obtained information of a reliability demonstration test, a distinction between these types is 

required. Bayes’ Theorem describes conditional probabilities and is mainly used to combine 

information or distributions to obtain more precise statements about the matter at hand [18]. The prior 

distribution (e.g., about reliability or lifetime quantile) gets updated with information from a current 

test to form the posterior distribution which holds both information [47], [48]. 

 

4.1.  SR Test as Prior Knowledge 

The reliability information of an SR test can be translated into a beta distribution. Since the binomial 

distribution of the to be planned SR test and the beta distribution of the prior knowledge are conjugate 

distribution on terms of Bayes’ Theorem [49], the posterior distribution of the combined information 

of the planned as well as the SR test of prior knowledge is the following [27], [30], [31]: 

 𝑓post (𝑅) = ℬ(𝑛 − 𝑘 + 𝐴0, 𝑘 + 𝐵0)     (9) 

With ℬ(𝐴, 𝐵) being the probability density function of the beta distribution or incomplete beta function 

with parameters 𝐴 and 𝐵. 

In order to use the prior knowledge of an SR test in the form of a beta distribution to enrich an EoL test, 

a beta distribution of reliability at the required lifetime of the EoL test has to be obtained. This can be 

  Test type to be panned / assessed 

SR test EoL test 

T
y

p
e 

o
f 

p
ri

o
r 

k
n
o

w
le

d
g

e 

SR test (Beta 

distribution) 

Beta-binomial distribution: 

𝑃ts =  ∑ (
𝑛

𝑖
)
𝛽(𝑖 + 𝐵0,   𝑛 − 𝑖 + 𝐴0)

𝛽(𝐵0,  𝐴0)

𝑘

𝑖=0
 

Not applicable: 

Does require knowledge 

about failure distribution 

EoL test 

(failure times or 

failure 

distribution) 

Generate beta distribution about reliability 

at test suspension time (see [30], [41]) and 

use beta-binomial distribution: 

𝑃ts =  ∑ (
𝑛

𝑖
)
𝛽(𝑖 + 𝐵0,   𝑛 − 𝑖 + 𝐴0)

𝛽(𝐵0,  𝐴0)

𝑘

𝑖=0
 

Alternatively: simulate test via bootstrap 

approach of [41] 

Use double bootstrap 

algorithm of Fig. 1 

(see also [41]) 
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done by performing a bootstrap on the EoL test data and fitting a beta distribution [17], [30], [31], see 

Fig. 1. Opposed to estimating lifetime quantiles, reliabilities should be estimated in order to fit the beta 

distribution. The beta distribution of the EoL test with parameters 𝐴 and 𝐵 can then be combined with 

the beta distribution of prior knowledge using Bayes’ Theorem [31]: 

 𝑓𝑝𝑜𝑠𝑡 (𝑅) = ℬ(𝐴 + 𝐴0 − 1, 𝐵 + 𝐵0 − 1)    (10) 

This confidence distributions of reliability of equations 9 and 10 can be used for the planning of the SR 

test by finding the sample size 𝑛 and maximum number of allowed failures 𝑘 so that the reliability 

requirement is met by: 

 ∫ 𝑓post(𝑅)d𝑅 ≥
?

𝐶r
1

𝑅r
      (11) 

 

4.2.  EoL Test as Prior Knowledge 

To make use of prior knowledge of an EoL test in the form of a failure distribution with sample size or 

failure times of the EoL test, the same bootstrap procedure can be used in order to obtain a beta 

distribution with parameters 𝐴0, 𝐵0 for combination with the result of an SR test (see Fig. 1). 

If an EoL test is to be combined with an EoL test, it has to be distinguished between the case of prior 

knowledge being the whole sample with failure times or only the information about the estimated failure 

distribution with a sample size. 

 

If the sample of the EoL test of prior knowledge is known (sample size 𝑛0), its likelihood function 𝐿0 

can be used as the prior distribution in the maximum a posteriori probability estimation (MAP) [50] 

with the likelihood of the sample of the new EoL test 𝐿1 as follows: 

 𝐿post~𝐿1 ⋅ 𝐿0 = ∏ 𝑓(𝑡𝑖)
𝑛
𝑖=1 ⋅ ∏ 𝑓(𝑡𝑗)

𝑛0
𝑗=1 =

𝑏

𝑇
∏ (

𝑡𝑖

𝑇
)
𝑏−1

𝑒
−(

𝑡𝑖
𝑇
)
𝑏

𝑛
𝑖=1 ⋅ ∏ (

𝑡𝑗

𝑇
)
𝑏−1

𝑒
−(

𝑡𝑗

𝑇
)
𝑏

𝑛0
𝑗=1   (12) 

The likelihoods are here exemplarily displayed for a two parameter Weibull distribution with scale 

parameter 𝑇 and shape parameter 𝑏 for uncensored samples. Naturally the likelihoods can also be used 

for arbitrarily censored samples. The MAP represents the application of Bayes’ Theorem by 

incorporating the likelihood of the sample from prior knowledge as the prior distribution of the 

distribution parameters which get updated by the likelihood of the sample of the current EoL test. To 

find the new, updated parameter estimates of the failure distribution, the posterior distribution does not 

need to be normalized. This is why Equation 12 is written as a proportional statement rather than an 

equation. Since the application of Bayes’ Theorem here results in a multiplication of the two likelihoods, 

the two samples of failure (and censored) times can simply be concatenated and used for a Maximum 

Likelihood Estimation (MLE) of the failure distribution. In other words, Bayes’ Theorem here acts as 

if both samples were drawn in the same experiment. 

 

If the prior knowledge of the EoL test is available as a failure distribution with known sample size, this 

simple combination cannot be used without an additional step. The proposed step here is very pragmatic, 

but should approximate well and is similar to the approach used in [3] for the generation of a synthetic 

sample for analytical calculation of the 𝑃ts. The values 𝑡𝑗
  of the here generated synthetic sample are 

calculated according to the distributions of order statistics [51]. Using the distribution of failure 

probability of the order statistics, just like in the approach for calculating beta-binomial confidence 

bounds, see [52]. For a known sample size 𝑛0 of prior knowledge about the failure distribution 𝐹0(𝑡), 

the 𝑛0 synthetic failure times 𝑡𝑗 are calculated as 

 𝑡𝑗
 = 𝐹0

−1(ℬ−1(0 5; 𝑗, 𝑛0 − 𝑗 + 1)) ≈ 𝐹0
−1 (

𝑗−0 3

𝑛0+0 4
).    (13) 

Here, the well-known approximation to the median of the beta distribution of Benard [53] is used. 

ℬ−1(𝑞; 𝐴, 𝐵)  being the inverse of the beta distribution, its quantile function for quantile 𝑞  with 

parameters 𝐴 and 𝐵. If a two parameter Weibull distribution is given by prior knowledge with scale 

parameter 𝑇0 and shape parameter 𝑏0, above equation becomes 

     𝑡𝑗
 ≈ 𝑇0 (− ln (1 −

𝑗−0 3

𝑛0+0 4
))

1/𝑏0
     (14) 

with ln (⋅) being the natural logarithm. 
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If censoring was present in the sample used for estimation of the failure distribution of prior knowledge 

and the censoring scheme is known, it best be accounted for accordingly in the synthetic sample. 

The use of prior knowledge for the two types and the two test types is summarized in Table 2. 

If multiple sources of prior knowledge are available, they need to be combined using Bayes’ Theorem. 

Multiple SR tests need to be combined into one beta distribution using Equation 9 or 10. Multiple EoL 

tests need to be combined using the MAP of Equation 12 with Equation 13 and 14 if needed. 

If both an EoL test as well as an SR test are available as prior knowledge, they should be used both 

according to Table 2, see also section 5. 

 

Table 2: Use of the Two Types of Prior Knowledge for Consideration with Bayes Theorem 

 

 

5.  USING BOTH PROBABILITY OF TEST SUCCESS AND BAYES THEOREM 

FOR RELIABILITY DEMONSTRATION AND TEST PLANNING 

 
The approach of test planning using the 𝑃ts as well as the approach of additionally using the available 

prior knowledge via Bayes’ Theorem are very valuable for reliability demonstration. In order to 

benefit from both approached to ensure a most efficient reliability demonstration, the two approaches 

need to be combined. The approach for this combined use of the concept of 𝑃ts and Bayes’ Theorem 

is presented here and an analysis of the cases for planning EoL tests or SR tests and doing so using 

prior knowledge about the failure distribution (e.g., from an EoL test) or prior knowledge about the 

reliability itself (e.g., from an SR test) is conducted. 

 

In the following, no applicability analysis of the prior knowledge is considered, which means, that the 

prior knowledge and information is assumed to be applicable in all cases and can be used to its full 

extend. In other words: there is no withdrawal of the prior knowledge taking place if the results of the 

conducted test correspond to the null hypothesis (reliability requirement is not met despite prior 

knowledge telling the opposite). It is always being used by means of Bayes’ Theorem, no matter the 

validity of the hypotheses. Some approaches for an applicability analysis do exist in the context of 

Bayes methods in reliability engineering, see e.g., [25], [36], [37], [54], [55]. However, these 

approaches do not facilitate a comprehensive procedure for an objective assessment in this regard and 

show some conceptual disadvantages in the formulation of the applicability factor. Since the focus of 

the work presented here is solely on the combination of 𝑃ts and Bayes’ Theorem, these approaches shall 

not be used here. However, they might be integrated in future studies. 

 

 

 

  Test type the prior knowledge shall be combined with 

SR test EoL test 

T
y

p
e 

o
f 

p
ri

o
r 

k
n
o

w
le

d
g

e SR test (Beta 

distribution) 

Combine beta distribution of prior 

knowledge (parameters 𝐴0 and 

𝐵0) with sample size 𝑛 and 

allowed failures 𝑘 of SR test: 

𝐴post = 𝑛 − 𝑘 + 𝐴0 

𝐵post = 𝑘 + 𝐵0 

Generate beta distribution about 

reliability at test suspension time (see 

[30], [41]) from EoL test sample to get 

𝐴 and 𝐵 and apply Bayes Theorem to 

get combined information in one beta 

distribution: 

𝐴post = 𝐴 + 𝐴0 − 1 

𝐵post = 𝐵 + 𝐵0 − 1 

EoL test 

(failure times 

or failure 

distribution) 

Generate beta distribution about 

reliability at test suspension time 

(see [30], [41]) from prior 

knowledge EoL test to get 𝐴0 and 

𝐵0 and apply Bayes Theorem: 

𝐴post = 𝑛 − 𝑘 + 𝐴0 

𝐵post = 𝑘 + 𝐵0 

Concatenate both EoL samples 

(sample from prior knowledge or 

synthetic sample from prior 

knowledge and sample from current 

EoL test) to make failure distribution 

estimation. Generate beta distribution 

about reliability using bootstrap 

approach of [30] if desired. 
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5.1.  Approach 

The approach combines the presented procedures of section 3 and 4. For planning SR tests, it is a two-

step approach, first, the prior knowledge is combined with the hypothetically to be obtained reliability 

information with regards to the sample size. After the required sample size is determined, the 𝑃ts is 

calculated based on the prior knowledge and the calculated required sample size. For EoL tests the 

procedure is similar, however, the integration of prior knowledge by means of Bayes’ Theorem is done 

during 𝑃ts calculation. In the following, the focus is on the calculation of the 𝑃ts itself. The procedure 

for identification of the optimal test is illustrated in section 6. 

 

5.1.1. Case 1: Planning an SR test with an SR test as prior knowledge 

For the calculation of the 𝑃ts of an SR test while using prior knowledge stemming from an SR test, the 

procedure is the following: 

1. Combine beta distribution of prior knowledge with binomial distribution of the SR test, see 

Equation 9. 

2. Calculate required sample size of the SR test, which is required to meet the reliability 

requirement, if the test is successful, using Equation 11: 

Find 𝑛r for which 𝐶r − ∫ 𝑓post(𝑅, 𝑛r)
1

𝑅r
d𝑅 is minimal 

3. Calculate 𝑃ts using the cumulative beta-binomial distribution of Equation 8. 

 

If test times other than the required lifetime are possible, an analysis of lifetime ratios with regard to 

the 𝑃ts can de done. The optimal test in this case is the one with the maximum in 𝑃ts, while still feasible 

in terms of cost and time constraints. However, in order to use lifetime ratios a Weibull shape parameter 

is required. 

 

5.1.2. Case 2: Planning an EoL test with an SR test as prior knowledge 

To calculate the 𝑃ts of an EoL test, prior knowledge about the failure distribution is necessary. Prior 

knowledge about the reliability itself from an SR test (e.g., in the form of a beta distribution) is 

insufficient. However, if the failure distribution can be estimated, but shall not be used via Bayes’ 

Theorem (e.g., expert knowledge), the EoL test can still be planned using the 𝑃ts while incorporating 

the prior knowledge of the SR test, see case 6.  

 

5.1.3 Case 3: Planning an SR test with an EoL test as prior knowledge 

The procedure is very similar to the one of case 1. However, the beta distribution of prior knowledge 

for the appropriate lifetime needs to be calculated from the prior knowledge of the EoL test, first. 

1. Calculate beta distribution of prior knowledge using bootstrap approach of section 3 (see Fig. 

1 and [30]). This bootstrap procedure needs to be of parametric form, if the failure distribution 

is given and can be of non-parametric form, if the sample from the EoL test is given as prior 

knowledge. 

2. Combine beta distribution of prior knowledge with binomial distribution of the SR test, see 

Equation 9. 

3. Calculate required sample size of the SR test, which is required to meet the reliability 

requirement, if the test is successful, using Equation 11: 

Find 𝑛r for which 𝐶r − ∫ 𝑓post(𝑅, 𝑛r)
1

𝑅r
d𝑅 is minimal 

4. Calculate 𝑃ts using the beta-binomial distribution of Equation 8. 

 

Sample sizes that differ to the calculated required one of step 3 may be possible, if lifetime ratios are 

analysed and feasible. The optimal SR test is the one with maximum 𝑃ts  within time and cost 

constraints. Alternatively, the one fulfilling a minimum value of 𝑃ts  (e.g., 𝑃ts > 80 % ) while 

minimizing time and/or cost. 

 

5.1.4. Case 4: Planning an EoL test with an EoL test as prior knowledge 

For calculating the 𝑃ts of the EoL test, samples are drawn from the known failure distribution and 

lifetime quantiles are calculated under validity of both hypotheses of Equation 1 and Equation 2, 
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cf. [41]. However, in order to incorporate the prior knowledge via Bayes’ Theorem, in each step of 

failure distribution estimation (of the samples of size 𝑛 of the to be planned EoL test), the sample of 

prior knowledge needs to be additionally considered. The procedure is the following: 

1. If not already available from prior knowledge: Estimate failure distribution 𝐹0 parameters, e.g., 

𝑇0 and 𝑏0 of a Weibull distribution, of the sample of size 𝑛0 of prior knowledge 

2. Iterate: 

a. Draw sample of size 𝑛0 from failure distribution 𝐹0 of prior knowledge 

b. Estimate failure distribution 𝐹0
  using sample of step 2 a. 

c. Draw sample of size 𝑛 of the to be planned EoL test from failure distribution 𝐹0′ and 

use censoring scheme of the test, if necessary. 

d. Concatenate the drawn sample of step 2 c by the initial sample of prior knowledge (of 

step 1). If no failure times of prior knowledge are available, create synthetic ones using 

Equation 13 or Equation 14 and 𝐹0  
e. Estimate failure distribution 𝐹′  using combined sample of step 2 d and calculate 

lifetime quantile 𝑡𝑅𝑟

 = 𝐹 −1(1 − 𝑅r). 

f. Calculate lifetime quantile under validity of 𝐻0 and 𝐻1, see [41]: calculated value of 

𝑡𝑅𝑟

  is valid for 𝐻1. For validity under 𝐻0 the value needs to be shifted by multiplying 

it by 
𝑡𝑟

𝐹0
′−1

(1−𝑅r)
. 

3. Calculate 𝑃ts using null and alternative distribution with Equation 6 and Equation 7. 

 

Using the values of 𝑃ts with regard to the sample size 𝑛 for the uncensored EoL test as well as for 

different censoring schemes can be very helpful to identify the most efficient EoL test for reliability 

demonstration. The test cost and test time can be calculated using the failure times of step 2 c and the 

sample size in order to identify feasible test configurations. 

 

5.1.5. Case 5: Planning an SR test with an EoL test and an SR test as prior knowledge 

If both a prior knowledge from an EoL test as well as from an SR test are available, the appropriate 

cases above need to be combined. For the planning of an SR test, the beta distribution of reliability 

needs to be calculated from the EoL test for the appropriate lifetime by means of the proposed bootstrap 

approach (see case 3). It then needs to be combined with the beta distribution of the SR test of prior 

knowledge using Bayes’ Theorem of Equation 10. The procedure of case 1 can subsequently follow 

using the combined prior knowledge as a single beta distribution.  

 

5.1.6. Case 6: Planning an EoL test with an EoL test and an SR test as prior kowledge 

If an EoL test is to be planned, the (synthetic) sample of the EoL test of prior knowledge needs to be 

considered using the MAP of case 4 and in addition, the prior knowledge of the SR test needs to be 

considered. In order to consider the distribution of reliability of the SR test, the more general 

formulation presented in [31] can be used: 

  𝑓(𝑅) = 𝑅
∑ (

𝑡𝑖
𝑡r

)
𝑏

𝑖 ⋅ ∏ (1 − 𝑅
∑ (

𝑡𝑗

𝑡r
)
𝑏

𝑗 )𝑗 ∫ 𝑅
∑ (

𝑡𝑖
𝑡r

)
𝑏

𝑖 ⋅ ∏ (1 − 𝑅
∑ (

𝑡𝑗

𝑡r
)
𝑏

𝑗 )𝑗 d𝑅
1

0
⁄    (15) 

Here 𝑡𝑖 are the lifetimes of the suspended specimen of the SR test, 𝑡𝑗 are the lifetimes of the failed 

specimen and 𝑏 is the Weibull shape parameter of the prior knowledge from the EoL test. If this 

equation now gets evaluated at 𝑅r and 𝑡r is considered as the argument of the function (instead of 𝑅), 

the distribution 𝑓(𝑡𝑅r
) of the lifetime quantile 𝑡𝑅𝑟

 stemming from the prior knowledge of the SR test is 

established: 

 𝑓(𝑡𝑅𝑟
) = 𝑅r

∑ (
𝑡𝑖

𝑡𝑅r
)
𝑏

𝑖

⋅ ∏ (1 − 𝑅r

∑ (
𝑡𝑗

𝑡𝑅r
)
𝑏

𝑗

)𝑗 ∫ 𝑅r

∑ (
𝑡𝑖

𝑡𝑅r
)
𝑏

𝑖

⋅ ∏ (1 − 𝑅r

∑ (
𝑡𝑗

𝑡𝑅r
)
𝑏

𝑗

)𝑗 d𝑡𝑅r

+∞

0
⁄  (16) 

This distribution of the lifetime quantile 𝑡𝑅𝑟
 can then be combined with the null and alternative 

distribution 𝑓𝐻0
 and 𝑓𝐻1

 of the bootstrap approach of the calculation of the 𝑃ts, see step 2 f of case 4 and 

Fig. 1 as well as section 3 (cf. [8], [41]). Since the calculations of Equations 6 and 7 take place using 
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the law of large numbers in empiric non-parametric form, the values of 𝑡𝑅𝑟
 under validity of the null 

hypothesis and the alternative hypothesis represented by 𝑓𝐻0
 and 𝑓𝐻1 need to be weighted by 𝑓(𝑡𝑅r

) 

(Equation 16). For the weighting to take place, the denominator of Equation 16 is not needed and the 

numerator is sufficient for practical calculation. 

 

It has to be noted, that due to the worst-case approach of the SR test, the combination of the distribution 

of the lifetime quantile and the distributions 𝑓𝐻0 and 𝑓𝐻1
 of the EoL (either already combined with prior 

knowledge from another EoL test or not) could lead to a more pessimistic distribution in terms of 

lifetime. This is because 𝑓(𝑡𝑅r
) of the SR test is highly right-skewed. It is effectively the application of 

Bayes’ Theorem. 

 

5.2.  Comment on Conducting and Evaluating Planned Tests 

The aforementioned procedures describe how the 𝑃ts can be calculated while considering uncertain 

prior knowledge and additionally use this prior knowledge via Bayes’ Theorem. If a test is planned 

using these procedures, the actual test that is being conducted, needs to make use of the Bayes’ 

Theorem. For the SR tests, this is already done by reducing the required sample size by prior knowledge, 

so no additional steps are needed after conducting the test. For an EoL test however, it is very important, 

that, after conducting the test, the failure distribution estimation and confidence interval estimation is 

done with the combined sample of the test and the prior knowledge. If an SR test is available as prior 

knowledge, the EoL test should additionally be enriched by this information. In order to do so, the 

(combined) sample of the EoL test needs to be translated into a beta distribution using the bootstrap 

approach of Fig. 1 (cf. [30], [31]). This distribution of reliability for the relevant lifetime then needs to 

be combined with the beta- or binomial distribution of the SR test of prior knowledge using Equation 9 

or Equation 10 respectively. 

 

 

6. EXEMPLARY CASES 

 

For an analysis of the interaction of the parameters and boundary conditions of the test planning and 

reliability demonstration using the 𝑃ts  and Bayes’ Theorem via the presented procedures, some 

exemplary cases are illustrated in the following. Prior knowledge shall be available as listed in table 3 

as well as the reliability requirement. 

 

Table 3: Available Prior Knowledge and Reliability Requirement of the Exemplary Cases 

 

 

 

 

 

 

 

 

 

 

 

If an SR test is to be planned, the procedures of section 5.1 are conducted. The resulting values of 𝑃ts 

can be seen in Fig. 2 for 𝑘 = 0, 1, 2 allowed failures. Higher numbers of allowed failures require higher 

samples sizes overall. For prior knowledge being only used for 𝑃ts calculation, the required sample size 

is 𝑛r = 45, 77  and 105  for the respective number of allowed failures, whereas for the case of 

considering the prior knowledge of the available SR test, the sample sizes are reduced to 𝑛r = 17, 47 

and 75. If both the prior knowledge from the SR test and the EoL test is used, the required sample sizes 

reduce additionally to 𝑛r = 1, 16 and 44. Using only one specimen in SR testing however, is not 

advisable. 

 

Reliability  

Requirement: 
𝑅r = 0 95; 𝐶r = 0 9; 𝑡r = 0 28 

Prior 

Knowledge of 

an SR test 

𝑛0,SR = 10 specimen survived the lifetime of 𝑡 = 0 4. 

Equivalent to 𝐴0,𝑆𝑅 = 28 34 and 𝐵0,SR = 1 for the lifetime 𝑡r = 0 28  

Prior 

Knowledge of 

an EoL test 

𝑛0,EoL = 12 Weibull distributed failure times with  

𝑇0 = 0 9274 and 𝑏0 = 2 9292: 

0.3933 0.6369 0.8355 0.9122 0.9004 0.5688 

0.6859 1.1409 0.4428 0.8663 1.0086 1.5254 

Resulting beta distribution for 𝑡r = 0 28: 𝐴0,EoL = 35 85, 𝐵0,EoL = 1 13 
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Figure 2: 𝑷𝐭𝐬 of the SR Tests and the EoL Tests for Three Scenarios of Considering Prior 

Knowledge. 

 
 

It can be seen, that the SR test without consideration of prior knowledge has a 𝑃ts which is below 50 % 

for none and only one allowed failure. For two allowed failures, the 𝑃ts is at 51 % but the required 

sample size is quite high with 105 required specimens. If the prior knowledge from the available SR 

test is being used, the required sample sizes reduce significantly and therefore also the values in 𝑃ts 

increase all to a moderate level of 61-62 %. The higher estimated reliability due to the consideration of 

the prior knowledge also results in higher values of 𝑃ts. Due to the additionally needed samples if 

additional failures are allowed during testing, the 𝑃ts does not rise significantly. If only the SR test of 

prior knowledge is considered, it would be unnecessary to allow for failures. If both sources of prior 

knowledge are considered, the required sample size shrinks an additional significant step. For no 

allowed failures only one single specimen is required. In addition, the values of 𝑃ts again increase to 

above 90 %. This is due to the lower sample sizes but also due to the additionally considered prior 

knowledge of the EoL test, which results in attesting a higher probability of survival and therefore a 

higher probability of the SR test succeeding. As with the case of only considering the prior knowledge 

from the SR test, the 𝑃ts decreases for allowing for more failures. This is due to more specimen having 

to survive the testing time. In conclusion: the SR test only becomes suitable at all, if the prior knowledge 

is considered using Bayes’ Theorem. This is due to the thereby increased values of 𝑃ts and reduced 

sample sizes. Only by assessing with the 𝑃ts, this fact becomes apparent. In general: the expenditure of 

the SR test can be reduced significantly by using prior knowledge via Bayes’ Theorem. The assessment 

with the 𝑃ts  enables profound and objective decision making in the planning of reliability 

demonstrations tests utilizing SR tests. This becomes even more apparent, if the test types are compared 

against each other. 

 

For the planning of an EoL test, several values of the 𝑃ts have been calculated for different sample sizes 

and three scenarios of prior knowledge consideration using Bayes’ Theorem: no consideration, only 

considering the EoL test and considering both the EoL test and the SR test. It can also be seen in Fig. 

2. Using no prior knowledge by means of Bayes’ Theorem, low values of 𝑃ts can be seen. However, 

moderate to high values are possible if large samples are used. If only the prior knowledge of the EoL 

test is used with Bayes’ Theorem the highest values in 𝑃ts can be achieved compared to the other two 

scenarios analysed here. However, only for sample sizes greater than 80, the advantage is visible. For 

smaller sample sizes, the consideration of both prior knowledge information bears the advantage of 

having the highest values in 𝑃ts. This is due to the SR test having a greater variance in its reliability 

distribution than the EoL test, which results in lower values of 𝑃ts for higher sample sizes and restrains 

the 𝑃ts in rising to 100 % with very large sample sizes. It can therefore be concluded, that the EoL test 

greatly benefits from the combined use of 𝑃ts assessment and consideration of prior knowledge using 
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Bayes’ Theorem. Here, a sample size of 10-30 is sufficient to guarantee a reliability demonstration test 

with a moderate chance of success with values of 𝑃ts of 60-70 %. 

 

If the SR test and the EoL test is compared, the SR test has the advantage of having an even greater 

chance of success with an even lower expenditure, due to a lower sample size. The SR test with only 

one specimen is not feasible, since the uncertainty, which inherits a sample size of one should be 

avoided in testing. For that reason, the SR test with a sample size of 16 and one allowed failure 

represents the best SR test. If one specimen costs € 300 and the testing time costs € 100 per time unit, 

the test cost of this SR test amounts to € 5.248, whereas the median cost of the corresponding EoL test 

with a sample size of 𝑛 = 16 amounts to € 6.122. However, the EoL test with consideration of both 

prior knowledge sources, has a value of only 𝑃ts = 64 % in contrast to the 95 % of the SR test. 

 

The analysed cases here all correspond to the reliability requirement of Table 3. If, however the required 

lifetime is changed, a very different behaviour of the 𝑃ts values could be seen. Here fore are four cases 

shown in Fig. 3. On the left, the achievable reliability due to the prior knowledge from the EoL test can 

be seen for the required confidence of 90 % and required lifetimes from 0 to 0.5. The four cases and 

their values of 𝑃ts can be seen on the right of Fig. 3 for 𝐴: 𝑡𝑟 = 0 2, 𝐵: 𝑡𝑟 = 0 24, 𝐶: 𝑡𝑟 = 0 28 and 

𝐷: 𝑡𝑟 = 0 32. If the prior knowledge does already meet the reliability requirement, the curve of 𝑃ts 

starts at very high values but decreases, before it rises again. This is due to the fact, that the prior 

knowledge is static. If it fulfils the requirement, it always does and taking the prior knowledge without 

or with a very small additional sample of the planned EoL test, the 𝑃ts will be nearly 100 %. The greater 

the additional sample size is, the greater the impact of sample to sample variability and therefore a 

decrease in 𝑃ts . However, for higher sample sizes, the 𝑃ts  increases again, which is due to the 

confidence bounds shrinking and therefore the chance of successfully demonstrating the requirement 

increases. This behaviour can only be seen, if prior knowledge is being used by means of Bayes’ 

Theorem. For cases without this additional consideration, the 𝑃ts is typically monotonically increasing 

with higher sample sizes. 

 

Figure 3: 𝑷𝐭𝐬 of the EoL Test for Four Scenarios with Different Required Lifetimes (Right) and 

Achievable Reliability with Confidence of the Prior Knowledge of the Available EoL Test (Left) 

 
 

 

7.  CONCLUSION 
 

This paper concerns with two approaches in reliability engineering: The Probability of Test Success, 

which enables a holistic and objective view on the available test types for reliability demonstration and 

identifies the one, which will be the most promising. It uses available prior knowledge and calculates 

the statistical power of the reliability test. Bayes’ Theorem on the other hand also uses prior knowledge, 

but it incorporates it into the reliability statement one obtains from tests. The combination of those two 

approaches has been established for several cases of available prior knowledge. The thereby newly 

presented approach enables the planning of efficient reliability demonstration tests by assessing them 

by means of the Probability of Test Success and also reducing test efforts by using the Bayes’ Theorem. 

Exemplary cases have shown some characteristics, which may occur during practical application. Both 
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the EoL test type as well as the SR test type benefit greatly from incorporating prior knowledge in this 

way. However, the problem of often very low Probability of Test Success of the SR test can be mitigated 

by the presented approach. A combined use of different types of prior knowledge is possible. But 

information stemming from an EoL test is always more valuable in this context than information 

stemming from an SR test. 

 

The procedures, approaches, analyses and methods presented herein all assume full applicability of the 

prior knowledge. Since it has very great impact on the statistical information which is obtained, it should 

undergo rigorous examination and validation with regards to aspects other than the sole reliability 

information, before the presented approaches commence. 
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