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Abstract: Planetary protection (PP) is a discipline that focuses on minimizing the biological contamination 
of spacecraft to ensure compliance with international policy. The National Aeronautics and Space 
Administration has developed a set of requirements (NPR 8715.24) based on recommendations from the 
Committee on Space Research that each mission must comply with regarding both forward and backward 
PP. Biological cleanliness requirements to target bodies, such as Mars, include spacecraft assembly control 
and the direct testing of the microbial bioburden of different components to comply with PP requirements. 
The data for each component are collected using either swabs or wipes. For each component, a number of 
samples are collected on one given date or on several different dates along the course of the part assembly. 
Given the clean spacecraft, on the average 93% of the swabs and 63% of the wipes have no colony forming 
units (CFU) count at 72 hours, resulting in ~85% of the 39,379 petri dishes yielding 0 CFU. Due to low 
CFU counts and small sampling areas, given the Poisson distributional model, the bioburden density 
estimates have inflated variance and confidence intervals. Shrinkage estimators are standard tools to deal 
with large variance and estimate inconsistencies. This paper presents the performance results of six 
shrinkage estimators along with the maximum likelihood, population-average, and zero estimators applied 
to the bioburden density estimation using InSight mission data. The results show that, for poolable data 
sets, the best estimator is population average, while for nonpoolable data sets, the Tsui estimator along with 
the empirical Bayes estimator produced the lowest mean squared error. 
 
1. INTRODUCTION 
The planetary protection (PP) discipline’s primary objective is to minimize the inadvertent microbial 
contamination of other planetary bodies via hitchhiking microbes present on robotic spacecraft destined for 
these planetary bodies. PP engineers thereby constantly monitor, assess, and mitigate the microbiome of 
spacecraft surfaces and cleanroom assembly environments to ensure the responsible exploration of the solar 
system. Although a suite of molecular techniques have been used to thoroughly characterize and profile the 
microbiome of various cleanroom environments and spacecraft, the gold standard remains the physical 
enumeration of microbes via culturing of samples directly taken from spacecraft and associated surfaces. 
These samples are then subjected to laboratory processing and result in colony forming units (CFU) counts 
that are ultimately represented as bioburden density (CFU/m2). However, due to technical, budgetary, and 
programmatic constraints, only a manageable portion of the entire spacecraft surface is directly sampled. 
PP engineers are then tasked with estimating the bioburden density and total microbial burden of the entire 
spacecraft in order to demonstrate compliance with stringent requirements set forth by the National 
Aeronautics and Space Administration (NASA), which are specific to each mission and its unique scientific 
objectives. The InSight mission, to explore the interior structure and processes of Mars with two primary 
instruments, had an at-launch bioburden requirement for the entire spacecraft of 1.50 × 105 spores while 
the cruise stage had a requirement of 5 × 105 spores. The landed spacecraft hardware had to remain <3 × 
105 spores while maintaining a bioburden density of <300 spores/m2. 
 
To manage and track the bioburden density and total bioburden throughout the lifecycle of the entire 
mission, PP engineers maintain a PP equipment list, which tracks the surface area, related bioburden, and 
overall assembly hierarchy of each spacecraft component, subsystem, and system. Historically, several 
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different statistical approaches to estimate bioburden density were developed and adopted to the needs of 
each unique spacecraft mission highlighted in References  [1],[2],[3]. To meet the demands of more 
biologically sensitive spacecraft missions and develop a robust approach to account for uncertainties 
associated with the sampling and recovery process, a Bayesian statistical model was developed and applied 
to perform bioburden calculations on datasets generated from spacecraft missions [4]. 
 
This study compares and contrasts different shrinkage estimators and their performance in evaluating 
microbial bioburden data collected from the InSight mission. 
 
2. DATA COLLECTION AND PREPROCESSING 

Data samples were collected using either cotton Puritan (Guilford, ME) 806C swabs or TexWipe 
(Kernersville, NC) TX3211 polyester wipes. Swabs sampled a maximum of a 0.0025 m2 surface area while 
wipes sampled up to a 1 m2 surface area. Prior to sampling, both swabs and wipes were premoistened with 
sterile water to improve microbial capture. After sampling, swabs were resuspended in 10 ml of distilled 
water. While in storage, TX3211 wipes were stored in sterile glass screw cap bottles prior to transporting 
them for processing. To begin the wet laboratory processing, wipes were suspended in 200 ml of 
polypropylene rinse solution. Both swab and wipe samples were then subjected to 2 minutes of sonication 
and 15 minutes of an 80°C heat shock. The heat shock step selects for the hardy subpopulation of 
microorganisms that represent the higher threshold of heat tolerance. These organisms are a proxy for the 
total microbial bioburden present and present the highest risk of organisms surviving the cleaning 
procedures (primarily dry heat exposure) and potential for surviving space conditions. A 2 ml aliquot from 
either the swab or wipe samples (suspended in 10 ml and 200 ml of suspension respectively) are taken and 
plated onto 4 and 25 petri dishes respectively, resulting in a total of 8 ml’s being plated from the 10 ml 
swab samples and 50 ml’s being plated from the 200 ml wipe sample. Due to this experimental procedure, 
the swabs assume a pour fraction of 0.8 and the wipes 0.25, representing the portion of the total sample 
solution plated and analyzed for CFU counts. These plates were then overlayed with ~20 ml of tryptic soy 
agar nutrient media to promote CFU growth. Once plates dried, they were incubated at 32°C for 72 hours, 
and CFUs were counted at 24-hour intervals for 72 hours. The surface area sampled are estimated by the 
samplers while appropriate negative and positive controls ensure aseptic processing. 
 
For estimator analyses, the raw data for each component were represented by pairs (xi,Ei), i=1,2...,N, where 
xi is the CFU counts for the i-th swab or wipe sample and Ei is the exposure calculated as the area covered 
with a swab or wipe multiplied by the corresponding pour fraction and N is the number of samples collected 
for a component. We have used “exposure” and “effective sampled area” in this paper interchangeably. 
This study analyzed eight different InSight components that represent a range of different total CFU counts, 
effective areas sampled, and total areas of the components. The components were selected to represent 
typical ranges of CFU counts, exposures, and percent of sampled area. Table 1 summarizes this data. 
 

Table 1: Summary of Bioburden Data for the Eight Components. 

Component 
CFU 

Count 

Number 
of 

Samples 

Area 
Sampled, 

m2 

Total Exposure: Area 
Sampled*Pour Fraction, 

m2 

Total Surface 
of the 

Component, m2 

% Sampled=Area 
Sampled/Total Area 

9 0 49 0.6031 0.2167 0.7580 79.5650 
38 12 27 3.1050 0.8065 10.0000 31.0500 
67 0 27 2.4200 0.6160 2.7400 88.3212 

169 1 17 0.2400 0.1920 0.5850 41.0260 
243 5 34 0.2800 0.1140 0.2980 93.9600 
261 52 24 0.0600 0.0480 0.3120 19.2310 
283 5 8 4.5710 1.1427 12.0000 38.0920 
300 1 9 2.6600 0.6705 5.0000 53.2000 
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3. DATA POOLABILITY AND RISK FUNCTION 

Prior to finding the bioburden density, a number of assumptions for the CFU counts need to be made: 
 
1. The probability of finding a CFU on any specified small exposure area is proportional to the 
exposure area and does not depend on where that exposure area is located. In other words, the bioburden 
density does not depend on location. 
2. The probability of finding more than one CFU on a given small exposure area is negligible in 
comparison with probability of finding exactly one CFU on that area. 
3. Finding CFUs on disjoint exposure areas is a statistically independent event. 
 
If the above assumptions hold, the probabilistic model applied to the number of CFUs counts is a Poisson 
distribution with the probability mass function: 
 

𝑃(𝑋 = 𝑥|𝜆) =
(ఒ∙ா)ೣ

௫!
∙ 𝑒ିఒ∙ா , 𝜆 ≥ 0, 𝑥 = 0,1, …      (1) 

 
where X is the random variable describing CFU counts, x is the actual number of CFUs found on the 
exposure area E, and λ is the bioburden density or expected number of CFUs per unit of exposure, which 
is unknown and the subject of the statistical inference. If the observed CFU count is xi for a given exposure 
Ei, λi can be estimated as: 
 

𝜆ప
 =

௫

ா
, 𝑖 = 1, … 𝑁       (2) 

 
where N is the number of samples. 
 
This estimate is the maximum likelihood estimate (MLE) [1] currently used by NASA to evaluate the 
bioburden density and total CFU counts for biologically sensitive missions [1]. The MLE allows the 
bioburden density for each sample to be examined separately, and it has a number of desirable statistical 
properties [5]. However, it also has a number of shortcomings, such as large variance, and most importantly, 
for small number of observed CFUs, it can overfit the data. For example, if the number of CFUs registered 
on an exposure surface is zero, MLE will produce a bioburden density estimate of zero, which is highly 
unlikely, as achieving absolute cleanliness is practically impossible considering the presence of humans 
during spacecraft assembly. On the other hand, if Assumption 1 is valid and each sample has the same λ, 
the data from different samples can be pooled to obtain a single estimate of λ, which can be used for each 
sample. In this case, the pooled λ is estimated as: 

𝜆መ =
∑ ௫

ಿ
సభ

∑ ா
ಿ
సభ

        (3) 

 
If Assumption 1 is correct, the data can be pooled for a given component to obtain a single estimate of 
bioburden density, which can be used as an estimate for each sample in an assay. The validity of assumption 
1 can be verified by a number of techniques [6], such as graphical techniques or more rigorous statistical 
tests. The graphical technique, uses a caterpillar plot for λi, estimated separately for each sample. On the 
plot, each λi is accompanied by its confidence interval. The analysis of the plot can reveal trends, outliers, 
and differences in bioburden densities for different samples. 
 
If the graphical analysis indicates a significant λ variability among the samples, it suggests that a more 
rigorous statistical test is in order to quantify the difference between samples. The statistical test normally 
employed in this case is the “chi-square” test [6]. The chi-square test assumes that H0 is the hypothesis of 
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the same λ for all samples, while the alternative hypothesis H1 is that the λs are different for different 
samples. If H0 is true, the data from different samples can be pooled and the same population-average λ can 
be used for all samples. On the other hand, if H0 is rejected, each sample needs to be treated separately, that 
is as having sample-specific λs. To perform the chi-squared test, a χ2 statistic is: 

 

𝜒ଶ = ∑
(௫ି௫)మ

௫

ே
ୀଵ         (4) 

 
where xi is the observed CFU count, exi is the expected CFU count for i-th sample calculated as 𝑒𝑥 = 𝜆መ ∙

𝐸 with 𝜆መ being the pooled population-average bioburden density as defined in Eq. 3, and 𝐸 is the exposure 
for the i-th sample. The statistic has an χ2 distribution with N-1 degrees of freedom, and its 1-α quantile is 
compared with the value of the statistic calculated using Eq. 4. If the calculated value of the statistics is 
larger than the 1-α quantile, the null hypothesis is rejected at the α significance level. For example, the 
Component 261 data in Table 1 has the statistics value of 181.5 while the 95% quantile is 35.1, indicating 
that the null hypothesis of equal λs for all samples has to be rejected at the 5% significance level. The 
rejection of the null hypothesis calls for utilizing sample-specific λs for each sample. However, using single 
sample data with small exposure for each sample increases the uncertainty of bioburden density estimates. 
Pooling the data from different samples would increase the total exposure, as evident from Eq. 3; however, 
the statistical test does not support the evidence of the same λ for each sample. Fortunately, statistical theory 
offers a compromise between the two alternatives, which can be derived in the Bayesian inference 
framework [7],[8]. The Bayesian analysis requires assuming the Gamma-Poisson compound distribution 
model shown in Eq. 5: 
 

𝑃൫𝜆௦௧/𝑥൯ᇣᇧᇧᇤᇧᇧᇥ
௦௧

= 𝒢(𝑥 + 𝛼ᇣᇧᇧᇤᇧᇧᇥ
ఈೞ

, 𝐸 + 𝛽
ᇩᇭᇭᇪᇭᇭᇫ

ఉೞ

) =

(ഊ∙ಶ)ೣ

ೣ!
షഊ∙ಶ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ಽೖ

∙
ഁ

ೝೝ

ഀೝೝ
∙ഊ

ഀೝೝషభ
∙

షഊ∙ഁೝೝ

೨(ഀೝೝቁᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ುೝೝ

⌡

⎮
⎮
⌠

(ഊ∙ಶ)ೣ

ೣ!
షഊ∙ಶ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ಽೖ

∙
ഁ

ೝೝ

ഀೝೝ
∙ഊ

ഀೝೝషభ
∙

షഊ∙ഁೝೝ

೨(ഀೝೝቁᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ುೝೝ

ಮ

బᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ಶೡ

ௗఒ

   (5) 

 
where λ is the bioburden density of a sample, λpost is the posterior value of λ, αprior and βprior are prior values 
of prior gamma distribution parameters, Γ is the gamma function, e is the sample’s exposure value, x is the 
sample’s CFU count, 𝒢 is the gamma distribution function, and αpost and βpost are posterior parameters of 
the gamma distribution. The posterior distribution can be summarized by a number of point estimates, such 
as its mean value, maximum value, or median. Under the quadratic loss function, the point estimate that 
delivers the smallest loss is posterior mean value [9]. The analysis presented in this paper assumes the 
quadratic loss and posterior mean value as summary statistics of the posterior distribution. Quadratic loss 
for a single sample is defined as: 
 

𝐿 ቀ𝜆௧௨, 𝜆መ(𝑥)ቁ = (𝜆௧௨ − 𝜆መ(𝑥))ଶ     (6) 

 
where 𝜆௧௨ is the true unknown value of the bioburden density, called the estimand, and 𝜆መ(𝑥) is bioburden 
density estimate, which depends on data x. The risk of an estimator 𝜆መ(𝑥) is defined as mathematical 
expectation of the loss function taken over the data distribution, generally: 
 

𝑅 ቀ𝜆௧௨ , 𝜆መ(𝑥)ቁ = ∑ (𝜆௧௨ − 𝜆መ(𝑥))ଶ ∙ 𝑝(𝑥; 𝜆௧௨)௫     (7) 

 
This risk function is known as the mean squared error (MSE) and is used for all the results in this paper. 
The MSE is a function of the true unknown λ as well as the data. 
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4. MAXIMUM LIKELIHOOD AND SHRINKAGE ESTIMATORS 

A natural estimator of λ is the MLE, which in case of a Poisson distribution in Eq. 1, takes the form of 
Eq. 8, where x is the number of observed CFUs and e is the exposure: 
 

𝜆መொ =
௫

ா
       (8) 

 
If only one sample of the data is available, this is the best estimate in the sense of minimizing the risk in 
Eq. 7. However, if several measurements are available and the problem is to estimate several λs 
simultaneously, the MLE is no longer the best, and there are estimators with smaller risk 
[7],[8],[9],[10],[12],[13]. For several measurements, all λs could be the same, thus making the data set 
poolable, or λs may differ from sample to sample, making the data set nonpoolable. The problem of 
simultaneously estimating several λs generated from a family of Poisson distributions can be formulated as 
follows: suppose we have N Poisson variables X1, X2,…,XN with corresponding exposures E1,E2,…EN 
generated from Poisson distributions with λ1,λ2,…λN and we wish to obtain the vector of λ estimates 
𝜆ଵ, 𝜆ଶ, … 𝜆ே,  using the entire vector of observations X1,X2,…XN. The usual MLE estimator in Eqs. 2 and 8 
is an unbiased minimum variance estimator, which is admissible for N=1 [11],[10]. Two different options 
concerning λs can be considered for the above problem statement, the first option is when all λs are the 
same and the data can be pooled to obtain an estimate presented in Eq. 3. The second option is when all λs 
are different and each measurement needs to be treated separately. In both cases, our goal is to obtain an 
estimate that minimizes the risk function in Eq. 7. While these two options represent extreme cases, there 
is a continuous range of possibilities between them represented by shrinkage estimators that perform partial 
pooling by relying on the current and other measurements or some prior information. The idea of shrinkage 
estimators is best presented using the Bayesian framework, specifically in our case the gamma-Poisson 
compound distribution model shown in Eq. 5. Under this model for a single measurement, the mean value 
of posterior distribution can be written as: 
 

 
where 
 

𝐵 =
ఉೝೝ

ାఉೝೝ
≤ 1       (10) 

 
is the shrinkage factor, αprior and βprior are parameters of the prior gamma distribution. An analysis of Eq. 9 
reveals that the conjugate gamma-Poisson model performs shrinkage estimates by subtracting a fraction, 
defined by B, of the difference between MLE and prior mean expressed as 

౦౨౨

ஒ౦౨౨
 from the MLE estimate 

thus it is shrunk towards the prior mean. For B=1, the gamma-Poisson model is equivalent to replacing the 
MLE estimate with a prior mean, while for B=0, it is equivalent to the MLE. If the prior distribution variance 
is zero (βprior is going to infinity, meaning data are poolable), every measurement is reset to the population 
average (prior average)—accomplishing complete pooling. If the prior distribution variance is infinity (βprior 

𝐸(𝜆|𝑥) =
௫ାఈೝೝ

ୣାఉೝೝ
= 

ா

ାఉೝೝ
൨ ∙ ቀ

௫

ா
ቁ + 

ఉೝೝ

ାఉೝೝ
൨ ∙ ൬

ఈೝೝ

ఉೝೝ
൰ = [1 − 𝐵] ∙ ቀ

௫

ா
ቁ + [𝐵] ∙ ൬

ఈೝೝ

ఉೝೝ
൰ = ቀ

௫

ா
ቁ −

[𝐵] ∙ ൮
௫

ா
−

ఈೝೝ

ఉೝೝᇣᇤᇥ
ாೝೝ(ఒ)

൲ = ቀ
௫

ா
ቁ − 

ఉೝೝ

ାఉೝೝ
൨ ∙ ൬

௫

ா
−

ఈೝೝ

ఉೝೝ
൰  (9) 
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is going to zero), every measurement is left untouched—resulting in no pooling at all. Between these two 
extremes, the gamma-Poisson model performs partial pooling. If exposure is zero, all measurements are set 
to the prior mean because the collected data are sampled from an infinitesimal surface. If exposure is 
infinite, the measurement is set to the MLE, as we have an infinite amount of data and prior distribution 
does not matter anymore. Using Eq. 9, we can express a general shrinkage estimator: 
 

𝜆ప
 =

௫

ா
− 𝐵 ∙ ቀ

௫

ா
− 𝑇ቁ , 𝑖 = 1, … 𝑁    (11) 

 
where T is the shrinkage target value and B is the shrinkage factor. Setting T=0, we obtained an estimator 
that shrank all MLE estimates toward zero: 
 

𝜆ప
 =

௫

ா
− 𝐵 ∙ ቀ

௫

ா
ቁ , 𝑖 = 1, … 𝑁      (12) 

 
The performance of shrinkage estimators critically depends on the T and B value selection, and the main 
difference between shrinkage estimators is how those values are inferred. For the gamma-Poisson model, 
the method of moments (MOM) [1] can be applied to infer the parameters of prior gamma distributions, 
αprior and βprior. Having inferred the parameters, we applied Eq. 9 to construct shrinkage estimators that we 
call Empirical Bayes with MOM parameter inference (EB-MOM). In addition to the EB-MOM estimator, 
there are a number of different shrinkage estimators for the simultaneous estimation of Poisson means. One 
of the most popular is the Clevenson-Zidek (CZ) estimator [10]: 
 

 𝜆ప
 =

௫

ா
−

ఊାேିଵ

∑
ೣ
ಶ

ାఊାேିଵ
∙ ቀ

௫

ா
ቁ , 𝑖 = 1, … 𝑁    (13),   

 
which shrinks the MLE estimate toward zero with parameter 0≤γ≤N-1. Notice, for large values of 

௫

ா
, the 

estimator is close to the MLE. Peng [12] has proposed another shrinkage estimator: 

𝜆ప
 =

௫

ா
−

(ேିேబିଶ)శ

ௌ
∙ ℎ ቀ

௫

ா
ቁ , 𝑖 = 1, … , 𝑁    (14) 

where N0 is the number of observations equal to zero, (𝑁 − 𝑁 − 2)ା = maximum of 0 and (𝑁 − 𝑁 − 2)ା, 

ℎ ቀ
௫

ா
ቁ = ∑

ଵ



ೣ
ಶ

ୀଵ
, if xi=1, 2,…,: h(0)=0,𝑆 = ∑ ℎଶ ቀ

௫

ா
ቁே

ୀଵ . The Peng estimator also shrinks the MLE 

estimate towards zero. Zero-shrinking estimators usually perform very well for very small values of the 
true λ, as the shrinkage target in this case is close to the true value of the parameter. The original Peng 
estimator sets samples with zero CFUs to zero. In practice, nonzero estimates are desirable even though no 
CFUs are observed. In this case, a modified Peng estimator [12] can write the estimate of the true λ: 
 

𝜆ప
 =

௫

ா
−

(ேିேబିଶ)శ

ௌାேబ
∙ ℎ ቀ

௫

ா
ቁ , 𝑖 = 1, … , 𝑁    (15) 

 

if xi=1, 2,…, or minimum {
(ேିேబିଶ)శ

ௌାேబ
, 1 −

(ேିேబିଶ)శ

ௌାேబ
}, if xi=0. Both Peng estimators shrink the estimate 

towards zero. However, in practice, shrinkage towards other target values, such as the mean value or median 
of the observations, is often desirable. Estimators proposed by Tsui accomplish this task using [13]: 
 

𝜆ప
 =

௫

ா
−

(గ)

ௌಹ
∙ 𝐻 ቀ

௫

ா
ቁ , 𝑖 = 1, … , 𝑁    (16) 

 

where 𝐻 ቀ
௫

ா
ቁ = ℎ ቀ

௫

ா
ቁ − ℎ(𝜋), 𝑆ு = ∑ 𝐻ଶ ൬

௫ೕ

ாೕ
൰ே

ୀଵ , 𝑟(𝜋) = (𝑁 − ∑ 𝑁 − 3గ
ୀ )ା, and Nj is the number of 

observations equal to j. The function h is the same as in Peng’s estimator in Eq. 14. The above estimator 
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shrinks the MLE towards the prespecified mean value of π. The final estimator we considered in this paper 
is the Tsui median estimator [13], which shrinks the MLE estimator towards the median of the data. If the 
median of the data is M, the Tsui median estimator is defined as: 
 

𝐻 ቀ
௫

ா
ቁ = 1 + ∑

ଵ

(ାெ)
 𝑖𝑓 

௫

ா
≥ 𝑀 + 2

ೣ
ಶ

ିெ

ୀଶ

= 1 𝑖𝑓 
௫

ா
= 𝑀 + 1 

= 0 𝑖𝑓 
௫

ா
= 𝑀 + 1 

= −𝑏 𝑖𝑓 
௫

ா
≤ 𝑀 

     (17) 

 
where b is any positive constant. Larger b values can indicate a belief that λs are nonzero. Further,  

𝑆ெ = ∑ 𝐻ଶ ൬
௫ೕ

ாೕ
൰ே

ୀଵ  is defined similar to the previous Tsui estimator and  

𝑟ெ = (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑀 − 2,0 )ା. The median Tsui estimator is given by: 
 

𝜆ప
 =

௫

ா
−

ಾ

ௌಾ
∙ 𝐻 ቀ

௫

ா
ቁ , 𝑖 = 1, … , 𝑁    (18) 

 
Despite the seemingly diverse nature of the proposed estimators, all shrinkage estimators exploit the same 
idea of trading a small bias for a significant reduction in estimators’ variance. The MSE of the MLE 

estimator for a single measurement can be written as 
ఒೝೠ


, so for small exposures, the loss can be rather 

large despite the fact that MLE is unbiased. For the generalized shrinkage estimator presented in Eq. 11, 
the MSE bias variance can be written as: 
 

𝑀𝑆𝐸ௌ =
ఒೝೠ


∙ (1 − 𝐵)ଶ + ൫𝐵 ∙ (𝜆௧௨ − 𝑇)൯

ଶ
     (19) 

 
where 0≤B≤1 is the shrinkage factor and T is the shrinkage target. The first term on the right-hand side of 
Eq. 19 is the variance of the generalized shrinkage estimator, while the second term is the bias. For B=0, 
the MSE of the shrinkage estimator is equal to the MSE of the MLE estimator with no bias, while for B=1 
the MSE of the shrinkage estimator is the square of the difference between the true value of λ and the 
preselected target value T. The values of B between zero and one are used to trade bias for variance. The 
bias-variance tradeoff as a function of B is illustrated in Figure 1. 
 
Since the MLE MSE does not depend on B, it is a constant; as B increases, the bias of the estimator is also 
increasing while the variance is decreasing. The yellow curve in Fig.1 is Eq. 19 plotted as a function of B. 
Here, B has the optimal value where the MSE of the shrinkage estimator reaches the minimum, which is 
significantly lower than the MLE MSE. In this case, the optimal B value happened to be 0.4. More 
importantly, B has a wide range of values where the shrinkage estimator dominates the MLE (i.e., it has a 
lower MSE than the MLE). The closer the target value is to the true λ, the stronger the domination. 
Shrinkage parameter B controls the information exchange between prior information expressed as T and 
the data. If the target value is equal to the true λ, there is no bias, but the shrinkage estimator MSE is still 
lower than for the MLE. Knowing the true value of the parameter is the extreme case of prior information. 
Figure 1 can also be interpreted as the overfitting vs. underfitting tradeoff, since for small B values, the 
shrinkage estimator relies more on the data, and if the data is noisy, it is prone to overfitting. On the other 
hand, for large B values, the estimator tends to ignore data in favor of prior information, and thus, is prone 
to underfitting. The difference between shrinkage estimators presented in this paper is in how they select 
the shrinkage target value T and shrinkage factor B. 
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Figure 1: Bias-Variance Tradeoff for Shrinkage Estimators 

 
 
To analyze the performance of different shrinkage estimators, we adopted the simulation approach as the 
true bioburden densities are unknown. From prior work on bioburden density estimation [1],[4],[2],[3], 
typical bioburden densities range from less than 1 CFU/m2 up to 2,000 CFUs/m2. To simulate having 
poolable data, for an equally spaced set of true λs from this range and for swab and wipe exposures, we 
generated a vector of Poisson variables. Using this vector of Poisson variables and known exposure, we 
applied nine different estimators and plotted their MSE as a function of the true λ. The nine estimators were: 
MLE; zero estimator, which sets all estimates to zero regardless of the data; grand mean estimator, which 
pools all the data and is represented by Eq. 3; Empirical Bayes estimator, which uses the MOM to fit the 
prior distribution for λ; CZ estimator; Peng; modified Peng estimators; and two Tsui estimators, one 
shrinking to a prespecified mean value and the other shrinking towards the data median. 
 
To simulate nonpoolable data sets, we treated the equally spaced vector of true λs as the vector of means of 
a gamma distribution with a variance of 105, which is approximately the variance of the population 
variability for bioburden data. We also applied the same nine estimators mentioned above to nonpoolable 
data. 

 
4. RESULTS AND DISCUSSION 

The simulation results for poolable data sets for two exposures are shown in Figure 2 and Figure 3. As they 
show, in case of poolable data, the best performing estimator with the uniformly lowest MSE is the 
population mean or grand average estimator, as there is only one λ to estimate and the vector of Poisson 
variables is essentially a repetition of the same measurement. Also, of note is the performance of the zero 
estimator for small values of the true λ. For small values of the true λ, the zero estimator outperforms all 
estimators except for the population-average estimator. The reason the grand mean estimator performs best 
is that, in the case of poolable data, it is an unbiased estimator with variance, and hence, the MSE reduced 
proportionally to the number of measurements. We also expected a good performance from the zero 
estimator for small true λ values, as the shrinking target of the zero estimator is close to the true value, 
hence the estimator has a small bias and by definition a zero variance. The gain for the zero estimator over 
MLE is especially pronounced for the swab exposure, as in this case, the MLE by definition has a large 
variance. Notice that, for the swab exposure, the MLE starts to dominate the zero estimator for λtrue>500 
CFUs/m2. 
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The second-best performing estimator for the swab exposure is EB-MOM, which has a significantly lower 
MSE than other estimators across almost the entire true λ range, except for small values of true λs where it 
is dominated by the zero estimator. For the wipes, the pecking order of different estimators is similar, with 
the population mean estimator uniformly dominating all others. However, the region of the zero estimator’s 
domination over MLE is much smaller, as the larger exposure of wipes reduces the MLE MSE. The EB-
MOM and CZ estimators dominate the zero estimator for the whole range of true λs while the performance 
of other shrinkage estimators is on par with the MLE. These results confirm that, for poolable data, the best 
strategy is to pool the data, as in this case, the pooled estimate has the smallest MSE. 
 
The nonpoolable data set is presented in Figure 4 and Figure 5 for two types of exposures—swabs and 
wipes, respectively. The nonpoolable data sets were generated from a set of gamma distributions with 
increasing mean values and fixed variance equal to 105 for wipes and 106 for swabs. Figure 4 shows MSEs 
for the nine estimators for the wipe exposure and shows that, for nonpoolable data sets, the zero and 
population-average estimators are the worst performing due to the bias introduced by both estimators. On 
the other hand, the MLE and all shrinkage estimators perform well, with the Tsui estimator outperforming 
other estimators for small values of true λs, as shown in the top insert in Figure 4. However, the second 
insert in Figure 4 shows that, for true λ values higher than 750 CFUs/m2, the EB-MOM estimator starts to 
dominate all other estimators, including the Tsui estimator. Notice that the legend’s color coding for the 
bottom insert in Figure 4 is different from the main figure and top insert. This result demonstrates that, for 
different true λ ranges, there might be different best estimators for nonpoolable data collected with wipes. 
 
For the swab exposure, we used the same data-generating procedure except that the variance of the data-
generating gamma distribution was set to 106 as the variance of the data collected with swabs is larger than 
for wipes. The results for the swab data simulations are shown in Figure 5. As can be seen from the figure, 
the Tsui estimator dominates all other estimators up to the true λ value being approximately 350 CFUs/m2, 
after that, the EB-MOM takes over for the remaining range of λ. This result is similar to the result obtained 
for the wipe exposure except that the value where the two estimators flip is different. 
 
To investigate the performance of shrinkage estimators on the data collected during the InSight mission, 
the data for the eight components shown in Table 1 were fitted with a gamma distribution that reflects the 
sample-to-sample variability of the data. The parameters of the fitted gamma distribution were α= 0.0447 
and β= 2.5463∙10-4, with a λ average equal to 176 CFUs/m2 and λ variance equal to 7∙105 CFUs2/m4. The 
population variability distribution for the InSight data is shown in Figure 6. Having fit the data, the 
parameters of the population variability distribution generated true λ vectors of length 100, and those true 
λs have been used to generate Poisson variables for a given exposure. This process has been repeated 100 
times to quantify the uncertainty for each estimate. The performance of different shrinkage estimators for 
InSight data is shown in Figure 7 and Figure 8. As shown in those figures, the Tsui estimator dominates all 
other estimators for both types of exposure. This is in agreement with simulations shown on previous 
figures, as for relatively small true λ values, the Tsui estimator has the lowest MSE. 
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Figure 2: MSE as a Function of the True λ for Poolable Data with Swab Exposure Equal to 0.002 m2. 

 

Figure 3: MSE as a Function of the True λ for Poolable Data with Wipe Exposure Equal to 0.25 m2. 
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Figure 4: MSE as a Function of the True λ for Nonpoolable Data with Wipe Exposure Equal to 0.25 

m2. Bioburden Density λs Were Generated from a Gamma Distribution with a Changing 
Distribution Mean Value While Keeping the Variance Constant at 105. 

Figure 5: MSE as a Function of the True λ for Nonpoolable Data with Swab Exposure Equal to 
0.002 m2. Bioburden Density λs Were Generated from a Gamma Distribution with a Changing 

Distribution Mean Value While Keeping the Variance at 106. 
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Figure 6: Sample-to-Sample Variability of InSight Data Approximated by a Gamma Distribution 
with Parameters α=0.0447, β=2.5463∙10-4, λ Average=175.5488 CFUs/m2, and λ Variance=6.8943∙105 

CFUs2/m4. 

 

 

Figure 7: Performance of Different Shrinkage Estimators on a Simulated Gamma Distribution of 
InSight Data for Swab Exposure. 
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Figure 8: Performance of Different Shrinkage Estimators on a Simulated Gamma Distribution of 
InSight Data for Wipe Exposure. 

 

4. CONCLUSION 
 
We investigated the performance of nine different estimators on simulated data as well as the bioburden 
data collected during the InSight mission and used the data collected from eight different InSight 
components to generate test data to validate the estimators. The estimators’ performances were evaluated 
with respect to the mean squared loss function. The results show that, for poolable data sets, the best 
estimator is the population-average estimator, which uniformly dominates all other estimators in the 
relevant true λ range. For nonpoolable data sets, the estimators’ performances varied depending on the 
exposure. For the wipe exposure and true λ values less than 750 CFUs/m2, the Tsui estimator dominates all 
other estimators; however, for larger true λ values, the EB-MOM estimator overtakes all other estimators 
by producing the lowest MSE. The same is true for the wipe exposure except for the fact that EB-MOM 
starts to dominate at true λ values around 350 CFUs/m2. These results show that, for different true λ values, 
different estimators may be preferable. The future work will include comparison of shrinkage estimators 
with hierarchical Bayesian analysis.  
 
For the data generated from the gamma population variability distribution obtained from the eight 
components of the InSight spacecraft, the estimator with the lowest MSE was the Tsui estimator, with all 
other estimators, except the population mean and zero estimators, having statistically similar MSEs 
independent of the exposure. 
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