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Abstract: This paper aims to present a fundamentally new way of exploring supervised binary 
classification by using support vector machines (SVMs) to intelligently guide the sampling process 
through very high-dimensional parameter spaces in order to analyse logical flaws in the complex design 
of a system. Currently, the machine learning (ML) field is dominated by pattern recognition, data 
representation, and forecasting, whereas research into ML techniques for discovering logical fallacies 
is lacking. The proposed methodology utilizes ML to develop a computational method for tackling the 
problem of analyzing logical constructs such as fault trees represented as Boolean expressions.  
The primary goal of the proposed methodology is to use intelligently guided space sampling methods 
to drastically reduce the number of system configurations needing analysis. This methodology will 
enable researchers to auto-detect potential vulnerabilities in system designs, devices, and networks in 
order to reveal previously unseen issues, minimize human error, and reduce costs by allowing analysts 
to focus on critical areas via intelligent and efficient sampling of the system’s parameter space.  
 
 
1. INTRODUCTION 
 
A primary limitation of modern probabilistic risk assessment (PRA) techniques is that development of 
risk scenarios and system vulnerabilities is performed manually by analysts and critically depends on 
their qualifications, the system information available to them, and their ability to understand and 
“discover” system vulnerabilities (and to properly describe these vulnerabilities via Boolean logic). In 
other words, modern PRA is a method for documenting analysts’ discoveries, not for suggesting new, 
previously unknown risks. A method is needed for auto-detecting potential vulnerabilities in system 
designs in order to reveal previously unseen issues, minimize human error, and reduce human costs by 
allowing analysts to focus on critical areas by intelligently and efficiently sampling the system’s 
parameter space. In addition, the method must not be reliant on waiting for training data, since “real 
data” in this context would represent system/subsystem failures. 
 
This paper aims to present a fundamentally new way of exploring supervised binary classification, 
based on using support vector machines (SVMs) to intelligently guide the sampling process through 
very high-dimensional parameter spaces in order to analyze logical flaws in the complex design of a 
system. Currently, the machine learning (ML) field is dominated by pattern recognition, data 
representation, and forecasting, whereas research into ML techniques for discovering logical fallacies 
is lacking. The proposed methodology utilizes ML to develop a computational method for tackling the 
problem of analyzing logical constructs such as fault trees represented as Boolean expressions.  
 
The primary outcome from this project will be a new, broadly applicable methodology that uses 
intelligently guided space-sampling methods to drastically reduce the number of system configurations 
needing analyzed. The methodology will enable researchers to auto-detect potential vulnerabilities in 
system designs, devices, and networks in order to uncover previously unseen issues, minimize human 
error, and reduce costs by allowing analysts to focus on critical areas via intelligent and efficient 
sampling of the system’s parameter space. The second outcome will be a demonstration of ML benefits, 
as derived from a case study involving the application of a computational risk assessment to PRA. 
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2. METHODS  
 
2.1. PRA and Support Vector Machines 
 
PRA is a mature and influential technology that relies on two core methodologies: fault tree analysis 
and statistical parameter estimation. The fault tree analysis employs Boolean logic to combine various 
paths to failure. Once such paths are exhaustively enumerated, elementary probability rules are applied 
to aggregate component probabilities of failure into a total probability of failure for a system. This 
approach allows for delineating system responses to different initiating events, calculating the system’s 
probability of failure under different scenarios, and determining system vulnerabilities. But despite its 
impressive past successes, PRA is plagued by inherent fundamental limitations [1],[2],[6]. 
 
One primary limitation of PRA is that development of risk scenarios and system vulnerabilities is 
performed manually by analysts and critically depends on their qualifications, the system information 
available to them, and their ability to understand and “discover” system vulnerabilities (and to properly 
describe these vulnerabilities via Boolean logic). In other words, modern PRA is a method for 
documenting analysts’ discoveries, not for suggesting new, previously unknown risks [1],[10],[11]. 
Currently, PRA methodologies are both a science and an art. 
 
A natural extension of this limitation is the difficulty of applying PRA to highly complex and dynamic 
systems, due to the number of permutations analysts must consider when evaluating risk scenarios. For 
large multi-component systems, this number is astronomical, beyond the capacity of humans to 
efficiently handle. In theory, it would also be possible to determine system behavior and vulnerabilities 
by collecting failure data; however, most modern complex systems are reliable enough to make actual 
system failure data points sparse. Our approach bypasses the need for failure data by producing systems 
and associated system insights via an automated approach that is then evaluated using advanced 
computational methods. 
 
While modern PRA can analyze sensitivity of top event to basic initiating events through importance 
measures, no methodology exists for enabling the discovery and analysis of logical flaws, 
vulnerabilities, and weaknesses in fault trees and the complex design of a system. A novel method is 
needed for auto-detecting possible vulnerabilities in system designs in order to reveal previously unseen 
issues, minimize human error, and reduce human costs by allowing analysts to focus on critical areas. 
 
This paper aims to demonstrate a fundamentally new way of exploring supervised binary-classification 
SVMs [7],[4] to intelligently guide the sampling process through very high-dimensional parameter 
spaces in order to analyze logical flaws in the complex design for a system. Currently, the ML field is 
dominated by pattern recognition, data representation, and forecasting [3],[5],[8],[9], whereas research 
into ML techniques aimed at discovering logical fallacies is lacking. The reason for selecting fault trees 
as a test bed for the proposed methodology is that they represent logical constructs in their purest, most 
concise, and most rigorous form. 
 
The proposed approach is built on a regularized kernel-based technique called SVM [4],[5], which 
corresponds to minimization of the following functional: 
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is Vapnik’s -insensitive loss function, C is the regularization parameter, Y is vector of measurements, 
X is a vector of inputs, f is the separating hyperplane, and N is the number of training patterns. The loss 
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function assigns zero loss to any errors less than , thus safeguarding against overfitting. In other words, 
this function fits not a crisp value but a tube with radius . This is similar to a fuzzy description of the 
function. The other important thing about this loss function is that it minimizes the least modulus but 
not the least squares. Strictly speaking, it is known that least squares are optimal for Gaussian noise 
models and that the least squared loss is sensitive to outliers, since it tends to penalize more large 
deviations. However, if the noise is not Gaussian, then, as Huber showed, under assumptions of 
symmetry and convexity of noise probability density function [4],[5], the best approximation is 
provided by the least modulus, not the least squares. Thus, if one possesses only general information 
about noise density (as is usually the case), it is better to minimize the least modulus. Parameter  also 
plays a very important role in providing a sparse representation of the data, which is important for data 
reduction. Note that Eq. (1) is very similar to the ridge functional with  = 1/2C. 
 
In [5],[4], it is shown that, under very general conditions, the minimizer of Eq. (1) can be written as: 
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where ci is the solutions of a quadratic programming (QP) problem. K(xi,x) is the so-called kernel 
function, which defines the generalized inner product. Several choices of kernel K are available, such 
as Gaussian, sigmoid, polynomial, and splines. What is interesting is that, for different types of kernels, 
SVM corresponds to different approximation techniques; for example, the Gaussian kernel corresponds 
to RBF networks, sigmoid to multilayer perceptron with one hidden layer, and polynomial to 
polynomial approximation. In this manner, SVM comprises different learning techniques “under one 
roof.” Kernel K should be chosen prior to applying the SVM. Only coefficients ci are defined by the 
data, and are obtained by maximizing the following quadratic form: 
 

𝑚𝑖𝑛( 𝐸(𝑐)) =
1

2
෍ 𝑐௜𝑐௝𝐾(𝑥௜ , 𝑥௝) − ෍ 𝑐௜𝑌௜ + 𝜀 ෍ |𝑐௜|

ே

௜ୀଵ

ே

௜ୀଵ

ே

௜,௝ୀଵ
 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

 

∑ 𝑐௜
ே
௜ୀଵ = 0, −

஼

ே
≤ 𝑐௜ ≤

஼

ே
,                𝑖 = 1. . . 𝑁                                          (3) 

 
The fundamental thing about Eq. (3) is that, as a QP problem, it possesses a unique solution. In contrast 
to neural network training, in which a complex nonlinear optimization with many local minima is 
performed, SVM conducts quadratic optimization using a single global minimum, meanwhile providing 
capabilities for learning any nonlinear relations and emulating neural networks. Due to the nature of 
this QP problem, only a certain number of coefficients ci will be nonzero, and the data points associated 
with them are called support vectors (SVs), thus the name SVM. Parameters C and  are regularization 
parameters that control the flexibility or complexity of SVMs. These parameters should be selected by 
user through resampling or other standard techniques. However, it should be emphasized that, in 
contrast to classical regularization techniques [6],[7], a clear theoretical understanding of C and  
remains elusive, and is the subject of both theorical and experimental efforts. In this paper, the SVM 
parameters were selected via cross-validation.  
 
2.2. Analysis of Systems with Existing Fault Trees 
 
For existing systems with available fault trees, the proposed novel methodology first stochastically 
generates large volumes of training data by “rewiring” the fault trees of the target system. Rewiring 
includes randomly changing the gate logic and the occurrence of fundamental events (i.e., basic or 
initiating events). Rewiring existing target datasets skews the training data toward existing systems but 
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provides the needed variation by generating millions of training examples. The combination of fault 
tree logic and Boolean variables representing initiating events can be called a configuration. 
 
A case in point is the example given in Figure 1, which shows a water pumping system [[2]] that can 
be tested for its reliability. In this case, the top undesirable event is T = “no water flow to the reactor.” 
The primary initiating events that can cause the top event to occur are: A = “pump A fails to run”; B = 
“pump B fails to run”; and C = “valve C fails to open.” The minimal cut sets’ expression for the top 
event in this example is T = C˅A˄B; that is, no water flow to the reactor will occur if either valve C 
fails to open or both pumps A and B fail. 
 

Figure 1. Water pumping system. 

 
 
Fault tree analysis is an analytical technique for determining ways in which the top undesirable event 
might occur. Figure 2 shows the original fault tree for the system, along with a rewired fault tree. For 
the rewired tree, the AND gate has been changed to an OR gate. 
 

Figure 2: Original (left) and rewired (right) fault trees for the water pumping system. The 
changed gate is underlined.  

 
 
The rewired fault tree is of interest because it represents a situation in which a common cause failure in 
the two pumps was overlooked when developing the original fault tree. For a common cause failure in 
the two pumps, the failure of one effectively implies failure of the other, thus changing the AND gate 
to an OR gate. The truth tables for the two fault trees are shown in Tables 1 and 2, where T is Boolean 
“1” (meaning failure has occurred) and F is Boolean “0” (meaning the component is operational). 
 
 
 

Gate(1) 

Gate(2) 
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Table 1: Truth Table for the Original Fault Tree 
A T T T T F F F F 
B T T F F T T F F 
C T F T F T F T F 

T=C˅A˄B T T T F T F T F 
 

Table 2: Truth Table for the Rewired Fault Tree 
A T T T T F F F F 
B T T F F T T F F 
C T F T F T F T F 

T=C˅A˅B T T T T T T T F 
 
Note that, under the same combination of initiating events, the two fault trees produced opposite results 
in terms of system failure, as shown in the columns marked in red. For the original fault tree, failure of 
pump A does not cause the top event to occur, but for the rewired tree, the system fails. Since the two 
fault trees produce opposite results regarding the occurrence of the top event, the SVM categorizes them 
into two opposite classes.  
 
SVM is a pattern recognition technique that requires representation of the input data as numerical, as it 
operates on Euclidean distance. The fault trees are represented as binary vectors, with logical OR 
represented as 1 and logical AND represented as 0. 
 
For an existing fault tree, the machine-generated data vectors train the supervised binary-classification 
SVM with two output classes: occurrence and non-occurrence of the top event. During training, along 
with classifying each input data vector, SVM algorithms also find SVs in the training data, as shown in 
Figure 3. By the very nature of the training algorithm, SVM focuses only on those points that are most 
difficult to tell apart. Because in our case the points are realizations of fault trees, SVM will discover 
the most similar fault trees from both classes, thus also pointing to the most “vulnerable” configurations. 
 
Figure 3 illustrates the process of binary classification using SVM in 2-D space. It is for illustrative 
purposes only, as the higher dimensional spaces to be used in this project cannot be visualized. Even 
for the water pumping system in Figure 1, the input space will be 5-D, as there are three Boolean 
variables (representing basic events) and two logical gates. In the proposed novel methodology, the 
training data will represent insights from fault trees, so the algorithm will find support fault trees. The 
SVs are the input data most important for separating the two classes—failure vs. non-failure—and most 
notably, they represent only a very small portion of the input data. Since in this case the input data are 
characterizations of the fault trees, the SVM training will produce system configurations that represent 
the “borderline” between failure and non-failure scenarios. These support trees can be further 
scrutinized for insights into the system’s logical vulnerabilities and risks.  
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Figure 3: Illustration of binary-classification SVM with support vectors. 

 
 

3. RESULTS AND DISCUSSION  
 
In this paper, we first demonstrated the proposed approach on the two-pump system shown in Figure 1. 
This system has only two logical gates and thus only four combinations representing the different logical 
schemes. The truth tables for those combinations are shown in Tables 3–6, where T is Boolean “1” 
(meaning failure has occurred) and F is Boolean “0” (meaning the component is operational). The truth 
densities for every Boolean function were also calculated, representing the ratio of the function’s true 
values to the total number of outputs for that function. If the true value of the output represents a failure, 
the truth density gives an estimate of the reliability of the system represented by that specific function. 
 
As seen from the tables, the least reliable configuration for the two-pump system is that of Table 4. That 
configuration has both the logical operators set to OR and has a truth density of 87.5%. The most reliable 
function is that of Table 6, with both the logical operators being set to AND. In general, systems with 
a larger number of AND operators tend to be more reliable than those with a larger number of OR 
operators.  
 

Table 3: Truth Table for T = C OR (A AND B); Truth Density = 5/8 = 62.5% 

A T T T T F F F F 

B T T F F T T F F 

C T F T F T F T F 

T=C˅A˄B T T T F T F T F 
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Table 4: Truth Table for T = C OR (A OR B); Truth Density = 7/8 = 87.5%. 

A T T T T F F F F 

B T T F F T T F F 

C T F T F T F T F 

T=C˅A˅B T T T T T T T F 

 
Table 5: Truth Table for T = C AND (A OR B); Truth Density = 5/8 = 37.5% 

A T T T T F F F F 

B T T F F T T F F 

C T F T F T F T F 

T=C˄A˅B T T T F F  F F  F 

 
Table 6: Truth Table for T = C AND (A AND B); Truth Density = 1/8 = 12.5% 

A T T T T F F F F 

B T T F F T T F F 

C T F T F T F T F 

T=C˄A˄B F F F F F F F T 

 
Table 3 represents the truth table for the original two-pump system, with a truth density of 62.5%. 
Changing the AND operator to OR, we obtained the Boolean function represented in Table 4. We see 
that changing the gate made the system less reliable, as its truth density was 87.5%. This heightened 
truth density was due to the two columns marked in red. While the values of the arguments of the 
Boolean functions are identical, changing the gate added two additional true values to the Boolean 
function’s output, thus increasing the truth density. Table 5 shows the truth table for the function with 
two operators switched, changing the truth density to 37.5% and making the system more reliable. On 
the other hand, in Table 6 we see that setting both logical operators to AND produces a highly reliable 
system with a truth density of 12.5%. The red columns in Table 6 indicate the functions’ values that 
were changed from the original configuration. Table 7 shows all possible configurations for the two-
pump system. The four different combinations of logical operations are color-coded. For example, the 
red columns correspond to the original Boolean function T = C OR (A AND B). Column T corresponds 
to the top event and is used as response variable for SVM training. A SVM with an RBF kernel was 
trained using the data from all 32 configurations. The hyperparameters of the SVM were optimized via 
cross-validation. Since cross-validation splits data randomly, there is variation in the hyperparameter 
values and hence the number and values of SVs produced by the SVM. The SVM was trained 100 
times—each time using a different cross-validation split—and after each training, the SVs were 
recorded. Each time an input vector was selected as a SV, it was counted. A histogram was built showing 
how many times a given input configuration was selected as an SV. This histogram for the two-pump 
system is shown in Figure 4. The y-axis in Figure 4 represents the counts for each configuration to be 
selected as a SV, out of the 100 training sessions. For example, configuration 1 was never selected as a 
SV, while configuration 2 was selected in each of the 100 training sessions. As seen from the histogram, 
some configurations are consistently selected as SVs, while others are never selected. Intuitively, the 
ones that are never selected are deep into failure or non-failure categories, while frequently selected are 
borderline.  
 
Notice that the blue-coded combination of gates T = C AND (A AND B), with both logical operators 
set to AND, has the fewest number of configurations selected as SVs. This combination of gates has 
the lowest truth density and is deeply into the safe category. The same is true for the green-coded 
combination T = C OR (A OR B), which features both operators set to OR, has the highest truth density, 
and is deeply into unsafe category. The other two gate combinations (with truth densities of 62.5 and 
37.5%) have the largest number of configurations consistently selected as SVs—namely, 4 out of 8.  
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Table 7: All possible configurations for the two-pump system. The logical gates are coded OR = 
1, and AND = 0. 

Configuration C Gate(2) A Gate(1) B T 

1 0 1 0 0 0 0 
2 1 1 0 0 0 1 
3 0 1 1 0 0 0 
4 1 1 1 0 0 1 
5 0 1 0 0 1 0 
6 1 1 0 0 1 1 
7 0 1 1 0 1 1 
8 1 1 1 0 1 1 
9 0 0 0 0 0 0 
10 0 0 1 0 0 0 
11 1 0 0 0 0 0 
12 0 0 1 0 1 0 
13 0 0 0 0 1 0 
14 1 0 1 0 1 1 
15 1 0 1 0 0 0 
16 1 0 0 0 1 0 
17 1 1 1 1 1 1 
18 1 1 0 1 1 1 
19 1 1 0 1 0 1 
20 0 1 0 1 0 0 
21 1 1 1 1 0 1 
22 0 1 0 1 1 1 
23 0 1 1 1 0 1 
24 0 1 1 1 1 1 
25 1 0 1 1 0 1 
26 1 0 0 1 1 1 
27 0 0 1 1 1 0 
28 1 0 1 1 1 1 
29 0 0 0 1 0 0 
30 0 0 0 1 1 0 
31 1 0 0 1 0 0 
32 0 0 1 1 0 0 

 
This demonstrates that, of the four different combinations of gates, these two combinations may require 
further analysis and scrutiny, as they produce the largest number of borderline configurations. Also note 
that specific configurations that are deeply into the safe or unsafe categories are never selected as SVs, 
indicating them to be more or less irrelevant for classification. For example, configuration 9, in which 
all the components are operational and both logical operators are set to OR, is never selected as an SV, 
as it is a very safe configuration. Similarly, configuration 17, in which all the components failed and 
both logical operators are set to AND, is never selected as a SV, since it is deeply in the unsafe category. 
Under this approach, analysts will look for those combinations of logical gates and specific 
configurations that appear most often as SVs, as they represent the most vulnerable situations and 
require in-depth analysis.  
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Figure 4: Support vector configuration histogram for the two-pump system.  

 
An attractive feature of SVM is that the number of SVs is significantly smaller than the total number of 
input patterns (often only a fraction of a percent), as demonstrated in Table 8, which represents a SVM 
analysis of the Boolean expression A&B|C|D&E|F&G|J&K. The total number of configurations 
generated by this expression, including all possible rewirings and basic event permutations, is 131,072.  
 
The first column in Table 8 relates how many input vectors out of the total 131,072 were used to train 
the SVM. The other columns represent the percentage/number of SVs with respect to the total number 
of inputs, along with the type of kernel function used, the training loss (error) achieved, and the run 
time required to train the SVM on a laptop computer. The most important column, marked in bold, is 
the percentage of all input vectors that are SVs. As we can see, the number of SVs is a fraction of a 
percent of the total amount of possible configurations. Having identified those support configurations, 
we can focus our analysis on a very small sample, thus facilitating the overall safety analysis and design. 
Table 8 also demonstrates that the percentage of SVs is very stable and does not depend on the number 
of training vectors or SVM parameters (e.g., kernel type). Analysis of the SVs showed that SVM 
consistently selects the same configurations, as the support configuration and class-membership of 
those configurations normally depend on a single gate. 
 

Table 8: SVM Analysis of the Boolean Expression A&B|C|D&E|F&G|J&K 
Number of 
inputs used 
for training 

Percent of 
all input 
vectors 

Number 
of SVs 

Percent of used 
training inputs 

Percent of 
all input 
vectors Loss 

Time 
(sec) 

Kernel 
function 

512 0.3906 110 21.4844 0.0839 0.2056 23.5 polynomial 
516 0.3937 89 17.2481 0.0679 0.3968 24.3 polynomial 
548 0.4181 120 21.8978 0.0916 0.2376 87.6 polynomial 
612 0.4669 110 17.9739 0.0839 0.1428 71.1 Gaussian 
708 0.5402 141 19.9153 0.1076 0.1308 63.3 polynomial 
836 0.6378 339 40.5502 0.2586 0.1234 49.6 Gaussian 
996 0.7599 197 19.7791 0.1503 0.1013 56.6 polynomial 

1188 0.9064 291 24.4949 0.2220 0.0910 75.2 Gaussian 
1412 1.0773 282 19.9717 0.2151 0.0866 52.3 polynomial 
1668 1.2726 413 24.7602 0.3151 0.0673 56.6 Gaussian 
1956 1.4923 359 18.3538 0.2739 0.0671 83.3 polynomial 

C
ou

nt
s
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Number of 
inputs used 
for training 

Percent of 
all input 
vectors 

Number 
of SVs 

Percent of used 
training inputs 

Percent of 
all input 
vectors Loss 

Time 
(sec) 

Kernel 
function 

2276 1.7365 423 18.5852 0.3227 0.0445 247.9 polynomial 
2628 2.0050 460 17.5038 0.3510 0.0459 98.7 polynomial 
3012 2.2980 462 15.3386 0.3525 0.0374 94.9 polynomial 
3428 2.6154 538 15.6943 0.4105 0.0398 2011.5 polynomial 
3876 2.9572 384 9.9071 0.2930 0.0344 84.6 polynomial 
4356 3.3234 642 14.7383 0.4898 0.0194 104.9 polynomial 
4868 3.7140 648 13.3114 0.4944 0.0220 126.6 polynomial 
5696 4.3457 713 12.5176 0.5440 0.0139 163.0 polynomial 
6288 4.7974 769 12.2296 0.5867 0.0101 697.7 polynomial 
6912 5.2734 830 12.0081 0.6332 0.0097 194.9 polynomial 
7568 5.7739 834 11.0201 0.6363 0.0093 1020.9 polynomial 
8256 6.2988 826 10.0048 0.6302 0.0058 212.3 polynomial 
8976 6.8481 1059 11.7981 0.8080 0.0101 192.8 Gaussian 
9728 7.4219 965 9.9198 0.7362 0.0056 1112.2 polynomial 
10512 8.0200 1017 9.6747 0.7759 0.0028 1163.8 polynomial 
11328 8.6426 979 8.6423 0.7469 0.0027 414.3 polynomial 
12176 9.2896 980 8.0486 0.7477 0.0043 1130.7 polynomial 
13056 9.9609 1019 7.8048 0.7774 0.0040 1071.0 polynomial 
13968 10.6567 1020 7.3024 0.7782 0.0021 998.9 polynomial 

 
4. CONCLUSIONS 
 
SVM can be a valuable tool for analyzing vulnerabilities in complex systems. The presented results 
demonstrate it to be capable of finding a small number of SVs in binary patterns which represent fault 
trees of certain engineering systems. The detected SVs are consistent and do not depend on the SVM 
parameters. For relatively large Boolean expressions, the number of SVs is only a fraction of the number 
of training patterns. Analysts can further scrutinize the SVs to improve system reliability and resiliency.  
 
While the application of SVM to regression and classification problems is a very well-researched topic, 
the utility of SVs themselves is less understood, constituting a research gap in ML. The scientific goal 
of the proposed project is to develop a novel SV-based methodology for intelligently sampling high-
dimensional spaces and discovering logical flaws in the experiment design, traffic patterns, and 
reliability constraints of systems, using PRA as a proving ground. An innovative aspect of this research 
is that, if proven viable, it will reveal logical flaws that indicate how a complex system may be improved 
(i.e., moved toward the success state) or otherwise potentially impacted (i.e., moved toward the failure 
state).  
 
Auto detection of logic paths and possible vulnerabilities in system designs will improve risk 
quantification by revealing previously unseen issues, minimizing human error in regard to the 
completeness of the risk assessment, and enabling subject matter experts to focus on critical areas, 
thanks to intelligent and efficient sampling of the system’s parameter space. The future work will 
include analysis of more complicated fault trees and in-depth analysis of selected support 
configurations. 
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