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Abstract: Critical infrastructure in the energy and industry sectors is dependent on the reliability of 
complex engineering systems (CESes), such as nuclear power plants or manufacturing plants; it is 
important, therefore, to be able to monitor their system health and make informed decisions on 
maintenance and risk management practices. One proposed approach is the use of a causal-based model 
such as a Dynamic Bayesian Network (DBN) that contains the structural logic of and provides a 
graphical representation of the causal relationships within engineering systems. A current challenge in 
CES modeling is fully understanding how different data stream discretizations used in developing the 
underlying conditional probability tables (CPTs) impact the DBN's system health estimates. This paper 
demonstrates the impact that different time discretization strategies have on the assessment accuracy 
performance of DBN models built for CES health assessments. Using simulated nuclear data of a 
sodium fast reactor (SFR) experiencing a transient overpower (TOP), different strategies for 
discretizing CES data streams are used to construct the CPTs for a health-based DBN model. This leads 
to different models determining different assessments of overall system health. By understanding how 
these design factors impact the model’s health assessments, future risk models can be developed to 
provide a more meaningful assessment of a system’s health, resulting in more informed decisions. 
 
 
1.  INTRODUCTION 
 
Complex engineering systems (CESes), large-scale systems that consist of integrated hardware, 
software, and human components, are imbedded within many critical infrastructures. Failure of these 
systems poses significant risks to public health and safety; therefore, it is important to monitor them to 
avoid total system failure. One approach is to develop health monitoring models that use operational 
data to generate health assessments that provide necessary information for system health management. 
A recent modeling method proposed for CES health management is to systematically integrate currently 
used prognostics and health management (PHM) and probabilistic risk assessment (PRA) techniques 
into a single approach (SIPPRA) [1]. However, there are still many questions about how to effectively 
design models, such as dynamic Bayesian networks (DBNs), that are intended for SIPPRA health 
management. 
 
The purpose of this paper is to demonstrate how one such DBN design decision, the method of 
discretizing operational data streams, impacts the assessment accuracy of models representing a sodium 
fast reactor (SFR) experiencing a transient overpower event (TOP). This paper first provides 
background information on SIPPRA health management and DBNs (Section 2). This is followed by a 
discussion of the case study (Section 3), as well as the method used to compare accuracy (Section 4). 
Results of the comparison are then presented (Section 5), followed by a discussion of the results (Section 
6) and conclusion (Section 7). The insight from this study supports effective model designs for SIPPRA 
health management. 
 
2.  BACKGROUND 
 
2.1.  SIPPRA 
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System-level SIPPRA models address current gaps in CES health management capabilities by scaling 
up PHM for larger systems [2,3] and introducing dynamic and forecasting elements into PRA [4,5,6]. 
SIPPRA provides a structured form for consistently utilizing available techniques and practices for 
monitoring, measuring, and evaluating system health across PHM and PRA. The structured SIPPRA 
framework outlined by Moradi and Groth [1] identifies system-level faults before incorporating online 
system data to perform health evaluation. System health management decisions made using this 
structure take a holistic view of the system while utilizing available and relevant data. 
 
There are multiple research efforts underway to model CES health using a mix of PHM and PRA 
techniques; however, it has yet to be widely applied in industry settings to support system management. 
This means that there are many questions left unanswered regarding effective means for representing 
CESes, including how to appropriately incorporate system-level data into the health models. Although 
there are many techniques for assessing CES health through SIPPRA, the remainder of this research 
will focus on one potential modeling method: dynamic Bayesian Networks.   
 
2.2.  Dynamic Bayesian Networks 
 
DBNs are an extension of Bayesian networks (BNs), directed acyclic graphs that describe conditional 
probability relationships between dependent nodes connected by arcs. In their literature review of BNs 
in fault diagnosis research, Cai et al. [7] indicates that for a given BN with 𝑋𝑋𝑛𝑛 variables, the underlying 
probability that a certain scenario would occur, 𝑃𝑃, is based on Equation 1:  

𝑃𝑃(𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛) = �𝑃𝑃�𝑋𝑋𝑗𝑗�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑋𝑋𝑗𝑗��
𝑛𝑛

𝑗𝑗=1

 (1) 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋𝑗𝑗) is the set of nodes with arcs into the variable 𝑋𝑋𝑗𝑗. This relationship allows BNs to 
model the probability of certain system conditions as a joint probability across the dependencies 
captured in the model. The type of BN dictates whether the marginal probabilities used in the network 
are static and describe constant relationships or dynamic, in which they vary over time. The latter 
models are referred to as DBNs and provide a more accurate relationship for complex systems with 
time-dependent attributes and parameters. DBNs are discrete-time models, meaning they work at 
specified points in time rather than a continuous timeframe [8]. DBNs are effective in calculating 
inferences on the node states that are not otherwise easily observable. Using Bayes’ Theorem, different 
inference techniques are possible with DBNs, including prediction, filtering, and smoothing. These 
different methods allow DBNs to be used for a wide range of system monitoring and health management 
applications [9]. 
 
DBNs are increasingly used in prognostics modeling and risk assessments for CES health management 
for their graphical representations of complicated causal relationships and powerful inference 
capabilities [7]. Lewis and Groth [10] found in their literature search on the use of BNs in reliability 
research that the number of articles related to DBNs published per year has been steadily growing since 
2012. These include studies related to structural engineering (e.g., [11,12]), mechanical engineering 
(e.g., [13,14]), and risk and system safety (e.g., [15]). A DBN's logic structure and inference capabilities 
make these models a common method for causal-based system-level research. The growing interest in 
using DBNs to solve reliability problems places additional motivation to create models that are effective 
and efficient in their inference capabilities. 
 
3.  CASE STUDY DESCRIPTION 
 
The remainder of this paper focuses on a sodium fast reactor experiencing a transient overpower event. 
This is a simplified version of the one studied by Jankovsky et al. [16]. SFRs can be considered a typical 
CES in that they feature the primary characters inherent for a CES; namely, they are composed of 
human, hardware and software components and generate a large amount of operational data from 
several data sources at varying rates. In addition to the nuclear core which consists of four distinct 
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channels as shown in Figure 1, the system in the case study has a SCRAM and reactor protection system 
(RPS) and a direct auxiliary cooling system (DRACS). For the purposes of this case study, although 
there are multiple components to a sodium fast reactor that provide a significant amount of system 
information through sensors and operational reports, only a limited number of data sources will be 
considered. These are, namely, the main indicators of the automatic SCRAM process for shutting down 
the reactor.  
 
The primary accident event described through the DBN model in this case study is a TOP event. TOPs 
can be caused by external factors, e.g., an earthquake, that results in a sudden surge of power generation 
in the reactor. When such an event occurs, the reactor's automatic SCRAM mechanism is expected to 
respond to operational changes by inserting control rods into the reactor to greatly reduce power 
generation; common indicators for the automatic SCRAM mechanism include changes to net reactivity, 
cold pool temperature, and other fuel feedback values [16]. Depending on the cause of the accident, 
however, SCRAM and RPS functions may be impacted, limiting their ability to prevent core reactions 
from further escalating. If this were to occur, the reactor would face a significant risk of fuel relocation 
and clad melting, resulting in a partial or full nuclear meltdown. A visual tree representation of the 
simplified event description is presented in Figure 2. 
 
The accident data used in this case study is modified from the study by Jankovsky et al. [16]. In their 
work, a dynamic event tree (DET) was used to construct a series of accident event scenarios that 
addressed potential failure points when responding to a TOP event. Based on software-generated event 
scenario specifications, simulation models focusing on different aspects of the nuclear reactor were 
used to produce different parameters necessary for monitoring overall system health. The models were 
run to simulate data readings throughout the reactor and BOP for a full day after the TOP event (86,400 
simulation seconds). The scenario was considered finished when either: the cladding fraction of the 

Figure 1: Representation of the SFR System Presented in the Case Study 

Figure 2: General Progression of SFR TOP Accident Event Leading to a Successful Scenario, Fuel 
Relocation Failure, or Clad Thickness Failure. 
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core channels reached an average of 90% (representing a clad melting failure), the temperature of the 
cold pool had reached a significantly high temperature resulting in a fuel relocation, or the reactor had 
survived the simulated day without reaching those other thresholds. In those instances, it is assumed 
that operators would have had enough time to address any problems with the system's processes.  
 
Lewis and Groth [17] constructed the DBN model shown in Figure 3 from the case study data to cover 
the primary elements of the SFR relevant to TOP-induced SCRAM failures. This model, constructed 
using the Bayesian Network software GeNIe, helps operators identify current system health status and 
potential failure modes following a TOP by providing knowledge about reactor component states, 
system and sensor information, human involvement, system diagnostics, and system prognostics 
information regions. The temporal loops included in the model add temporal causality to constrain 
outcomes to follow logical relationships (e.g., clad thickness only deteriorates, the operator will not 
become undecided once he or she has decided to intervene on the DRACS, and the state of the DRACS 
will not revert back to nominal once it has been either enhanced or degraded). This is distinct from the 
other nodes which have static conditional probabilities (i.e., a prediction of the current SCRAM state is 
not dependent upon the SCRAM state prediction from a previous measurement). This model will be 
used as the basis of comparison for this remainder of this paper. 
 
4.  METHOD 
 
To evaluate the impact that different discretization strategies have on model performance, a total of 
fifty-six different DBN models (summarized in ) are constructed using different discretization strategies 
defined by Lewis and Groth [18] and described in Sections 4.1-4.3. These models all have the same 
node structure shown in Figure 3; however, each discretization method generates different CPTs that 
describe the underlying conditional probabilities of the system, as separate sets of data are considered 
when constructing the tables. This produces distinct models to consider as viable alternatives for 
monitoring system health. 
 
 4.1.  Constructing DBNs with Time-based Discretization 
 

Discretization Descretization Description (Data collected…) Number of Cases 
Time-based Every 9s 60s 120s 1200s 4 
State-based when reactivity greater than -$0.1 $0 $0.02 $0.2 4 
Hybrid-based every X seconds until reactivity threshold; then, every Y sec  48 

Figure 3: Node Structure for the DBN in the SFR Case Study 

Table 1: Summary Description of Discretization Values Used in Model Comparison 
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 DBNs constructed with a time-based discretization approach are built on data collected over a specified 
period, as shown in Figure 4a. Four different data collection frequencies are evaluated in this 
comparison: 9, 60, 120, and 1,200 seconds. As this case study covers a period of 86,400 seconds, these 
rates translate to DBN models with 9,500, 1,440, 720, and 72 time-steps, respectively.  These values 
were selected to provide a range of feasible monitoring time periods, with the 9 second rate equivalent 
to the rate in which the simulation code generates temperature data. These models were constructed 
using the process outlined by Lewis and Groth [17].  
 
4.2.  Constructing DBNs with State-based Discretization 
 
DBNs constructed with a state-based discretization approach are structured on data pertaining to a 
certain operational state; this is shown in Figure 4b. For this case study, the reactor's net reactivity value 
was used as the trigger for data collection. Data is collected only when the net reactivity is evaluated 
over a specified threshold in each accident scenario. Net reactivity was selected as the triggering 
variable because that parameter indicates whether a nuclear reaction is moving towards additional 
power increases.   
 
Four net reactivity values were chosen to compare as thresholds for collecting system data: -$0.1, $0, 
$0.02, and $0.2. To build the CPTs for these models, data is evaluated over the smallest available 
interval for each accident scenario. If the value of the net reactivity is evaluated as greater than the 
specified threshold at a given measurement, then system data associated with that time is included in 
constructing the relevant CPTs. 
 
4.3.  Constructing DBNs with Hybrid Time-based Discretization 
 
The CPTs for DBNs developed using a hybrid time discretization approach are built from data collected 
over a specified interval; however, once a threshold state is reached on a triggering variable, data is then 
collected at a different rate. This type of model is shown in Figure 4c. 
 
For this study, different combinations of time-based discretization values are paired with a net reactivity 
threshold as the limit to switch from one data collection rate to another. This results in a total of forty-
eight distinct models. Two different situations were considered when defining the threshold state: when 
the initial time steps are larger than the subsequent ones, and when the initial time steps are smaller than 
the next steps. The first describes an instance of increasing the data uptake from the system; for those 
models, the second time steps begin when net reactivity is greater than the specified threshold. The 
second situation relaxes data uptake. There, the second time steps start when net reactivity is less than 
the specified threshold. 
 
4.4.  Evaluating Assessment Accuracy 

Figure 4: The CPTs in the DBN Compared in this Study are Generated from Data Derived by a) 
Time-based, b) State-based, and c) Hybrid Time-based Data Stream Discretizations. 
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In this study, assessment accuracy means how well the model's prior estimate of system health matches 
the underlying system safety of the accident scenario. This is a common approach to evaluating model 
performance; if a monitoring model is unable to provide an appropriately reflective health assessment, 
it is limited in its ability to be used as a health management tool.   
 
This alignment estimate is determined by calculating the joint prior probability for the “System Health 
Diagnostics" node derived from the model’s CPTs. The prior measurements for the last model step 
(86,400s or equivalent) are then compared in magnitude and by percent error to the DET assessment, 
calculated by the summation of failure probabilities, for the health of the system. The closer the 
assessment is to the baseline estimate (2.77 ∗ 10−7), the more aligned the model is to the DET 
assessment. In terms of percent error, those values should be as close to zero as possible. 
 
5.  RESULTS 
 
Table 2 shows a selection of estimated priors from models built using the different discretization 
approaches and their similarity with the underlying DET's baseline health estimate of 2.77 ∗ 10−7 
following a TOP. The values lie roughly within an order of magnitude to the baseline estimate. The 
models that collect more data (1200s time step vs. 120s time step, and reactivity threshold greater than 
$0.2 vs. greater than $0) appear to produce more conservative safety estimates with greater percent error 
from the baseline estimate. This trend is further expressed in Figure 5, which plots the calculated safety 
assessment for each state- and time-based values (the DET value is included as reference). The 
exception to this is the model built with 9s time steps, which has the value most similar to the baseline 

 Time-based State-based Hybrid Time-based 
 120s 1200s Net Reac.  

>=$0 
Net Reac.  
>=$0.02 

1200→ 120 
@ Net Reac. <=0.02 

1200→ 120 
@ Net Reac. <=0.02 

Prior Risk 2.59E-07 2.68E-07 5.16E-08 8.00E-08 8.65E-08 2.47E-07 
% Difference -6.36% -3.21% -81.4% -71.1% -68.8% -10.73% 

Table 2: Select DBN Model Prior Safety Estimates (vs. DET Baseline Safety Estimate of 𝟐𝟐.𝟕𝟕𝟕𝟕 ∗
𝟏𝟏𝟎𝟎−𝟕𝟕)  

 

Figure 5: Prior Safety Estimates for DBN Models Constructed Using a Time- and State-based 
Discretization Approach Compared to the Baseline DET Estimate. Time-based Values (Dashed 
Line) Align with the Lower Axis, while State-based Values (Dotted Line) Align with the Upper 

Axis. 
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estimate. Even though both time- and state-based discretization strategies have a similar trajectory, the 
state-based discretization cover a wider range of values. 
 
The percent errors for the hybrid discretization are compared alongside the time- and state-based 
discretization results in the heat map in Figure 6. The percent differences for time-based models 
(represented in the diagonal region) are consistently greater than the hybrid-based discretization models 
(the remaining values in the time-related portion of the table), but get progressively larger with smaller 
time step lengths. The upper-right hybrid model region is slightly worse than its diagonal counterparts, 
but the lower-left region is significantly further off from the baseline DET estimate and worsen with 
lower threshold states. 
 

6.  ANALYSIS 
 
6.1.  Analysis of State-based Discretization Model Performance 
 
A DBN literature search by Lewis and Groth [18] found that examples of time-based and state-based 
discretization methods were being used to develop DBNs for research. When applied to constructing 
DBNs for SIPPRA, both approaches seem to offer a way to reduce the overwhelming amount of CES 
data to consider when developing CPTs. Where the data is reduced, however, varies significantly. While 
adjusting time-based discretizations changes how many measurements are taken across all potential 
scenarios equally, a change in the threshold for state-based discretization alters the number of scenarios 
considered for as usable system information. If the measurement threshold would not be reached during 
a potential scenario, that scenario is not considered in building out the underlying conditional 
probabilities of that model.  
 
The elimination of certain scenarios during model construction distinguishes the metrics results for the 
models built with state-based discretization from those built with the time-based discretizaton. The 
range of prior assessment values is considerably larger for state-based models as only similar data are 
considered for use in constructing the CPTs; adjusting the threshold value changes what data are deemed 
“relevant.” The elimination of any data from certain scenarios is the transformation of CPTs across 
models and discretization values.  
 
Table 3 shows the same portion of a CPT across different time-steps and threshold values considered 
for this study. As the threshold and length of time steps get lower, the CPTs begin to approach a similar 
value; this is to be expected as with the smallest possible steps and no threshold for collecting data, both 
approaches would capture the same data. Moving away from that point, however is when the CPTs vary  

Figure 6: Heat Map Comparison of Percent Error of Safety Estimates Across Models and 
Discretization Strategies. 
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drastically. With a reactivity threshold value placed at $0.2, system data collected for that model would 
suggest that a scenario in which DRACS could be enhanced or degraded is not possible. With this albeit 
unrealistic threshold value, model designers are left to figure out an appropriate uninformed relationship  
to place in the empty spaces of the CPTs. As the threshold is lowered, however, evidence is made 
available about those scenarios, and the CPT can be filled in using available system data. This contrasts 
from the time-based discretization models, where even at the largest time step studied, the time-based 
discretization had access to available data for those scenarios.  
 
For these reasons, constructing a DBN health monitoring model using a state-based discretization is not 
a recommended approach. DBNs constructed with state-based discretization have too much uncertainty  
and variability associated with the amount of data above or below different threshold values to 
consistently predict their performance. Eliminating scenarios that do not meet a threshold also presents 
significant challenges in ensuring that the health monitoring model has appropriate scenario coverage; 
that is, the model is applicable for different scenarios of system operation. If the model is unusable in 
certain situations, i.e. when there is a SCRAM failure but not high net reactivity, then it will be not 
helpful in predicting the system's progression of system health. This problem is only exacerbated if 
sensors that are used to determine whether a threshold has been reached are inaccurate or broken. 
 
6.2.  Analysis of Time-based Discretization Model Performance 
 
Models built with the time-based discretization approach were shown to have the most similar safety 
assessments relative to the baseline estimates. However, there were challenges in calculating CPTs for 
models with larger time steps; building a model with a realistic monitoring of every two minutes took 
a considerable amount of time to construct. Time-based discretization models are also constrained by 
the length of time that they cover; for instance, given the limited capability for GeNIE to tackle models 
greater than 3,000 time steps, the models with the 9.5 second had to be split up over subsequent models. 
This space requirement is a major concern for time-based models over long forecasting periods; 
reducing the time of interest to focus on more upcoming events and scenarios may be beneficial for 
improving the performance of these models. 
 
As shown in Table 3, the CPTs for time-based models quickly converge; this is a product of the data 
from this study, as most of the accident scenarios have relatively constant data over the length of the 
simulation time. However, as these CPTs become relatively similar, the only noticeable difference 
becomes the amount of time steps present to represent the 86,400s period. As the model CPTs reflect a 
degrading system, more time steps indicate a greater likelihood of system failure. This explains why 
the time-based discretization models with more time steps have lower safety assessments than those  

React. 
Thresh. 

0.2 0 -0.1 

DRACS Enh. Nom. Deg Enh. Nom. Deg. Enh. Nom. Deg. 
Low No 

Evid. 
0.306 No 

Evid. 
0.068 0.018 0.095 0.084 0.002 0.083 

Middle No 
Evid. 

0.575 No 
Evid. 

0.932 0.184 0.905 0.916 0.061 0.917 

High No 
Evid. 

0.119 No 
Evid. 

0 0.797 0 0 0.937 0 

          
Time 
Step 

1200s 60s 9s 

DRACS Enh. Nom. Deg Enh. Nom. Deg. Enh. Nom. Deg. 
Low 0 0 0 0.001 6.2E-06 0.001 0.001 1.3E-05 0.001 
Middle 1 0.011 1 0.999 0.010 0.999 0.999 0.010 0.999 
High 0 0.989 0 0 0.990 0 0 0.990 0 

Table 3: Portion of “Radial" Node CPT over Different State- (Upper Table) and Time-based 
(Lower Table) Discretizations (“SCRAM" Node: “SCRAM Failure, Trip Success"; “RPS 

Pump" Node: “Operational" 
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with fewer. Furthermore, with fewer time steps, the beginning of the simulation time (where most of 
the data volatility occurs), is weighted more heavily against the more constant data of the success 
scenarios; this helps capture why, in this instance, the system safety assessment of the models utilizing  
larger time steps are approaching the same estimate as the time-based model that had a data rate 
measurement equivalent to the data generation rate. It should be noted that in more volatile scenarios,  
larger time-step values could overstep available information that indicated a SCRAM failure event had 
occurred. Without that information, the model would provide an incorrect assessment. Smaller time 
steps capture more data variations and data trends earlier, which, when incorporated into a CPT, help  
to create DBNs that are better aligned with the scenario; however, this results in increased 
computational requirements.   
 
6.3.  Analysis of Hybrid Time-based Discretization Model Performance 
 
The hybrid time-based discretization approach was introduced to address some of the challenges faced 
by the previous two discretization strategies, The aim of this approach is to reduce the computational 
costs of the time-based discretization strategies by emphasizing scenarios relevant to the model user 
while minimizing, but not eliminating the scenarios that do not meet the specified interests. 
 
The metrics results from the hybrid models indicate a discretization approach that provides comparable 
performance while reducing computational requirements. Table 4 shows how the CPTs for a hybrid 
time-based discretization compare to the same CPT for the two related time-based discretization 
scenarios. Depending on the threshold, some columns of the table may align more to one time-step 
length or another as the threshold value restricts data from certain scenarios. This is similar to the state-
based discretization approach, which is built from data of select scenarios; however, unlike that 
discretization approach, all scenarios are considered in building the CPTs. This is shown in the  
computational time required to build a hybrid time-based model's CPTs. In most instances studied, the 
computational time for these models lie between the computational time for the two measurement rates 
as they remove a number of excess measurements from scenarios that are of lower interest. However, 
it should be noted that as the number of scenarios meet the specified threshold, the additional time 
required to check scenario data causes these models to become equivalent, or even become greater than, 

Select Portion of Radial 
CPT 

Operational 
Context 

1 2 3 4 5 6 7 

Time-based Disc.: 
120s time steps 

Low 0.004 4.3E-06 0.0004 0.0004 0.006 0.0002 0.006 
Medium 0.996 0.010 0.9996 0.002 0.845 0.028 0.831 
High 0 0.990 0 0.998 0.149 0.971 0.162 

         
Time-based Disc.: 
60s time steps 

Low 0.001 5.6E-06 0.001 0.0002 0.006 0.0002 0.006 
Medium 0.999 0.010 0.999 0.002 0.845 0.028 0.831 
High 0 0.990 0 0.998 0.148 0.971 0.162 

         
Hybrid Time-based Disc: 
120s until net reactivity 
>0.02, then 60s time steps 

Low 0.001 9.3E-06 0.001 0.0002 0.006 0.0004 0.006 
Medium 0.999 0.017 0.999 0.001 0.845 0.055 0.831 
High 0 0.983 0.0 0.999 0.148 0.945 0.162 

         
Hybrid Time-based Disc: 
120s until net reactivity 
>0.02, then 60s time steps 

Low 0.0005 5.6E-06 0.0005 0.0002 0.006 0.0002 0.006 
Medium 0.9995 0.010 0.9995 0.001 0.845 0.028 0.831 
High 0 0.990 0 00.999 0.148 0.971 0.162 

         
Hybrid Time-based Disc: 
120s until net reactivity 
>0.02, then 60s time steps 

Low 0.004 4.3E-06 0.0004 0.0005 0.006 0.0002 0.006 
Medium 0.996 0.010 0.9996 0.003 0.845 0.028 0.831 
High 0 0.990 0 0.997 0.149 0.971 0.162 

Table 4: Comparison of “Radial” Node CPTs for Time-based Discretization and Sample 
Hybrid-time Discretization 
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the time required for a model constructed using single time-based discretization with the smaller time 
steps. 
 
The performance of the hybrid time-based models vary based on the time-step lengths used as well as 
the threshold value assigned to switch from one rate to another. This can be seen in the stark difference 
in the models' system safety estimates. Here is another instance in which the discretization of the 
operational data is affects model performance. For models whose primary time-step length is smaller 
than the secondary rate, more emphasis is placed on data after the threshold value has been met. In this 
situation, where an accident has already occurred, this switch gives data further away from the accident 
more weight in the CPTs. On the other hand, time step rates that are smaller immediately following an 
accident prioritize data closer to an accident that can offer a better picture of what is going on. These 
rates can be relaxed once more normal values have been met. 
 
6.4.  Implications of Comparison Results 
 
The differences in assessment accuracy across the three discretization strategies highlight the variations 
in model performance that arise when DBN CPTs are parameterized using data collected over different 
time windows and system characteristics. These findings serve as an initial step towards better 
understanding the impact of decisions made by dynamic risk model developers when determining what 
time discretization to use for a particular operational scenario. 
 
It should be noted that although these results are valid for this particular scenario and CES, inherently, 
conclusions cannot be separated from the purpose behind building a model and the assumptions that 
went into constructing it. This SFR TOP scenario has a number of unique features that may have 
contributed to these results. First, the scenario outlined in this case study is the aftermath of an external 
disaster that has damaged the system; as a result, the focus of this scenario is not the prevention of a 
disaster (that has already happened), but rather a better understanding of whether the system will be 
able to return to normal operations. To that end, the time period covered for this accident sequence is 
skewed far beyond most operational changes would occur to the system. As a result, the volatility of 
the parameters lessens over time, making inspection beyond a certain point unnecessary. This is seen 
in the relatively constant CPTs present in Table 4 constructed over time. Despite the additional 
information, the data was still incorporated into the CPTs at the same rate (as in, doubling the time steps 
over the period of time would just double the count of data to consider).   
 
6.4.  Future Work 
 
For the most part, the models provide roughly the same level of performance with respect to prior 
assessment accuracy, with time-based models providing slightly more similar results than either the 
state-based or hybrid time-based models. From this metric alone, the discretization strategies appear 
comparable in model performance; however, the results from other metrics studies could indicate that 
there are substantial differences in the performances of DBN SIPPRA health monitoring models based 
on the discretization approach used to derive model CPTs. Considering other performance metrics for 
SIPPRA health models identified by Lewis and Groth [19] will provide better understanding on how 
DBN discretization strategies impact SIPPRA model performance and allow risk model developers 
clearer insight for designing improved system health assessment models. 
 
Understanding CES operational scenario nuances is important when considering discretization 
strategies for a health monitoring model design, particularly in the case for hybrid time-based 
discretization. As previously mentioned, models built to assess system health within the context of the 
scenario in this study are intended to reflect the health of a system that has already experienced damage. 
Given that insight, the hybrid-time structure best suited for this study is one that collects more system 
data early on, gradually loosening restrictions once a certain threshold has been reached. Other CES 
operational data may appear differently than the accident data used in this study, however. For example, 
the scenario of interest may be the lead-up to a potential system failure based on component degradation 
or human intervention. In that instance, system parameter values begin as baseline values but become 
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more abnormal over time. There, it is reasonable to increase measuring rates once an abnormal threshold 
is met, as the aim there is to identify the likelihood of system failure as early as possible. To determine 
which discretization approach would be best suited for that CES scenario would require a similar study 
to the one carried out here that takes into consideration the operational nuances and requirements of the 
CES of interest.  
 
7.  CONCLUSION 
 
This paper presents the results of comparing assessment accuracy of fifty-six DBN-based SIPPRA 
health models for a sodium fast reactor experiencing a transient overpower built using different 
discretization techniques. The variations in assessment accuracy indicate that the modeling decisions 
one makes in the developing health monitoring models impacts this aspect of performance. State-based 
discretization resulted in less accurate models, while models built with a time-based discretization 
approach provided safety assessments that aligned more with the underlying data. Hybrid time-based 
models had the widest range of safety assessment predictions, making them potential design choices 
under the right conditions.  Considering these differences will allow risk model developers to design 
useful tools to provide risk managers clearer insight into potential accident scenarios and help to develop 
improved risk management strategies for CESes. 
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