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Risk-Informed Design included in a VHTR design to ensure the level safety has been considered as an effective 
methodology. The use of risk information is essential to develop the next generation of NPPs. Therefore, a PSA for a VHTR 
was performed to assess the health effects on the public. However, there is no plant state of a VHTR comparable to the ‘core 
damage frequency’ and ‘large early release frequency’. Thus, it is necessary to implement a new PRA procedure for a VHTR. 
This paper deals with the sequence and consequence levels of a PSA. In the sequence level, several scenarios where 
radioactive materials could be release are selected. In addition, a traditional event tree method is used to find a probability 
distribution of the release frequency. To calculate the system unavailability used for an event tree head, a couple of analysis 
methods are used. One of them is the survival reliability, which is used as a traditional method. For the other method, a 
structural reliability was used for a passive safety system such as a Reactor Cavity Cooling System (RCCS) because it has 
100% reliability when calculated based on the survival reliability. After calculating the release frequency, the end states of 
an accident were defined according to the release categories of the radioactive materials. The consequence level of a PSA for 
off-site radioactive materials released during a severe accident was performed using the MACCS2 code. In addition, a risk 
profile was performed with a compensated cumulative distribution function (CCDF), which provides overall insights 
regarding the risk of VHTR accidents. In addition, the CCDF were compared to the CCDF of other plants in order to verify 
the safety of the VHTR. For further study, an assessment of the characteristics of a VHTR safety system and a precise 
quantification of its accident scenarios are expected to be conducted for a more certain consequence analysis. The 
methodology shown in this study might contribute to enhancing the safety of the VHTR design by utilizing the results having a 
far lower effect on the environment than the LWRs.  
 

 
I. INTRODUCTION 

 
Currently, fossil fuels are running out globally. If the current trends continue, crude oil will be depleted in 20 years and 

natural gas in 40 years. In addition, the use of fossil resources has increased the emissions of greenhouse gases such as 
carbon dioxide. Therefore, there has been a strong demand in recent years for producing large amounts of hydrogen as an 
alternative energy source (Ref. 1). To generate hydrogen energy, a very high temperature of more than 900℃ is required, but 
this level is not easy to reach. A Very High Temperature Reactor (VHTR), one of next generation reactors, is able to make 
reach this temperature, and is regarded as a solution to the above problem. In addition, a VHTR has excellent safety in 
comparison with existing and other next-generation reactors. In particular, a passive system, a Reactor Cavity Cooling 
System (RCCS), is adopted to remove radiant heat in the case of an accident. To achieve variety requirements of newly 
designed reactors, however, it is necessary to develop new methodologies and definitions that differ with the existing method. 
At the same time, the application of a probability safety assessment (PSA) has been proposed to ensure the safety of next 
generation NPPs. For this, risk-informed designs of the structures have to be developed and verified. In particular, the passive 
system needs to be evaluated for its reliability. The objective of this study is to improve the safety of a VHTR by conducting 
a risk profile. 

 
 

II. PROBABILISTIC SAFETY ASSESSMENT FOR VHTR 
 
II.A. Overview of VHTR PSA 

  
II.A.1. Very High Temperature Reactor (VHTR) 
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II.B.3. System Analysis 
 

The system failure rates after initiating events were evaluated by a Fault Tree Analysis (FTA). The data used for the FTA 
were mainly from the U.S. MHTGR reliability data. When the data were unavailable, the reliability data of a Korean LWR 
were used. Failure probabilities were assumed to have log-normal distributions. Fig. 4 shows the fault trees of the SCS and 
SGISO system. Meanwhile, the passive safety system, RCCS, is unable to be measured by the reliability data. Because it is a 
passive system, it has 100% reliability when calculated using the survival reliability method. Therefore, in this study, a load-
capacity model, which is a structural method, was used to calculate the failure probability of an RCCS (Ref. 7).  
 

    
 

Fig. 4. Fault tree of SCS (left) and SGISO (right) 
 

TABLE III. System Failure Probabilities and Error Factors 

Safety System 
Failure 

Probability 
Error 
Factor 

Reactor Trip, RT 5.1×10-6 5.0 

Loss of Secondary Heat Transport System: LSHTS 1.6×10-2 5.0 

Shutdown Cooling System: SCS 2.7×10-5 5.0 

Steam Generator Isolation: SGISO 3.9×10-8 5.0 

Reactor Cavity Cooling System: RCCS 1.1×10-4 1.2 

 
 
II.B.4. Accident Sequence Quantification 
 

The accident sequence quantification was performed with all accident scenarios followed by four initiating events. The 
scenarios obtained are classified according to whether or not the safety system is successful. Then, the end states are 
categorized based on a sequence in which an accident proceeds with identical system failures. In this study, those end state 
groups are named the ‘Release Fraction Group’ because it assumed that all sequences included in the same RFG have the 
same release fraction of radioactive materials. 

 The quantification is calculated with initiating event frequencies and failure rates of the safety systems. To calculate, 
Monte Carlo sampling was used to obtain the distributions of the event tree terminated states and RFGs, and the number of 
samples was 100,000 per state. By combining the sequences of the same initiating event type, the final distributions of the 
accident frequencies were obtained. The results are shown in table IV. The sum of all releases was 3.416x10-8/RY. 

The contributions of each RFG are shown in Fig 5. RFG-1 occupies most of the frequency and RGF-1 has the second 
largest contribution. Furthermore, the contribution of the initiating events is also shown in Fig. 5. The transient has largest 
contribution, and water ingress has smallest contribution. 
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TABLE VI. Whole Body Dose at Area Sets 

Distance 
(km) 

Whole Body Dose 

RFG-1 RFG-2 RFG-3 RFG-4 RFG-5 RFG-6 

1.0-2.0 36.20 5220 1.38 1560 14.5 73.6 

2.0-3.0 18.60 3040 0.74 809 7.49 37.9 

3.0-4.0 11.70 2000 0.47 513 4.73 23.8 

4.0-5.0 8.18 1060 0.34 358 3.30 16.6 

5.0-7.5 4.90 733 0.21 217 1.99 9.91 

7.5-10.0 2.78 335 0.12 123 1.13 5.62 

10.0-15.0 1.43 212 0.06 63.7 0.58 2.88 

15.0-20.0 0.69 105 0.03 30.6 0.28 1.38 

20.0-25.0 0.36 53.2 0.02 16.2 0.15 0.73 

25.0-30.0 0.20 31.5 0.01 9.09 0.08 0.41 

 
TABLE VII. Mean individual Cancer Fatality 

Distance(km) RFG-1 RFG-2 RFG-3 RFG-4 RFG-5 RFG-6 

Mean 

7.5-10.0 7.38×10-8 2.44×10-6 1.92×10-9 2.40×10-6 2.81×10-8 1.47×10-7 

10.0-15.0 3.78×10-8 1.23×10-6 9.85×10-10 1.23×10-6 1.44×10-8 7.52×10-8 

15.0-20.0 1.81×10-8 5.81×10-7 4.71×10-10 5.85×10-7 6.87×10-9 3.59×10-8 

20.0-25.0 9.53×10-9 3.03×10-7 2.50×10-10 3.08×10-7 3.62×10-9 1.89×10-8 

25.0-30.0 5.33×10-9 1.68×10-7 1.41×10-10 1.72×10-7 2.03×10-9 1.06×10-8 

 

TABLE VIII. 95 Percentile Individual Cancer Fatality 

Distance (km) RFG-1 RFG-2 RFG-3 RFG-4 RFG-5 RFG-6 

95 
Per-

centile 

7.5-10.0 7.61×10-8 2.50×10-6 1.94×10-9 2.47×10-6 2.87×10-8 1.50×10-7 

10.0-15.0 3.91×10-8 1.27×10-6 1.02×10-9 1.27×10-6 1.48×10-8 7.81×10-8 

15.0-20.0 1.85×10-8 6.03×10-7 4.84×10-10 6.08×10-7 7.17×10-9 3.73×10-8 

20.0-25.0 9.89×10-9 3.17×10-7 2.59×10-10 3.22×10-7 3.77×10-9 1.95×10-8 

25.0-30.0 5.58×10-9 1.74×10-7 1.46×10-10 1.77×10-7 2.13×10-9 1.11×10-8 
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II.C.4. Risk Profile 
 

For PRA applications, the radiological consequences are presented in the form of a complementary cumulative 
distribution function (CCDF). It shows the frequency in which a consequence will exceed a given magnitude. The cancer 
fatalities are shown in Fig. 7 for each accident scenario.  

 

  

  

  
Fig. 7. CCDF Results of Each Accident Scenario 
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By summing the CCDF results for each accident scenario, the total CCDF of a VHTR was obtained as shown in Fig. 8. 
The RFG-1 and RFG-3 have the largest effect on the total CCDF. This is because these two accidents have a relatively high 
frequency or large release amount of radioactive materials. 

 

 

Fig. 8. Total CCDF of VHTR 

 

Furthermore, to compare the results of a VHTR accident consequence with the existing LWR and advanced reactor, an 
accident consequence assessment on the Korea Standard Nuclear Power Plant (KSNP), OPR1000, and APR1400 was 
conducted. The risk of every scenario is evaluated for the VHTR, OPR1000, and APR1400. A comparison graph of the 
results is shown in Fig. 9. As the figure shows, the VHTR has a lower cancer fatality risk compared with the existing LWR. 

 

 

Fig. 9. Comparison of CCDF Result 
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III. CONCLUSIONS 

 
An offsite consequence analysis for a VHTR using the MACCS code has been performed. Because a passive system, the 

RCCS (Reactor Cavity Cooling System), is equipped, the frequency of occurrence of accidents has been evaluated to be very 
low (Ref. 5). For further study, an assessment of the characteristics of a VHTR safety system and a precise quantification of 
its accident scenarios are expected to be conducted for a more certain consequence analysis. The methodology shown in this 
study might contribute to enhancing the safety of a VHTR design by utilizing the results of having a far lower effect on the 
environment than the LWRs. 
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