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        Sampling placement has been determined empirically in practice. This paper discusses optimal additional sampling 
planning along a river for liquefaction countermeasure based on Value of Information (VoI) considering seismic hazard. The 
proposed VoI-based objective function for optimal placement quantifies the risk reduction of decision making error 
considering the uncertainty of estimation in a Gaussian random field. Seismicity, namely the probability of exceedance of 
scenario earthquake is considered in the VoI formulation. Optimal number of additional sampling is also evaluated from 
total cost, i.e., sum of observation cost and VoI. The balance of penalties and observation cost determines the optimal 
placement and the number though the penalties are difficult to determine rationally. The difference of seismicity reflects the 
optimal number. The seismicity is the higher, the number of optimal sampling is the more. The results show that optimal 
sampling placement may be obtained with a feasible computational cost. Optimal number of additional sampling is also 
evaluated depending on the seismicity of the site. 
 

 
I. INTORODUCTION 

 
Sampling placement has been determined empirically. Some researches try to establish a quantitative method to obtain 

optimal sampling placement. Most of the studies, however, considered only the uncertainty of the estimation. The optimal 
observation placement problem contains two aspects, minimization of the relevant uncertainties (maximization of the 
accuracy) and minimization of total costs. Several measures of uncertainty, such as covariance matrix or information entropy 
have been used in optimal observation placement problems (Ref. 1). The various norms of the parameter or prediction 
covariance matrix may be used to express overall uncertainty. For example, Ref. 2 use information entropy to study 
observation scheme for ground deformation prediction, while Ref. 3 use geometric mean of reduction ratio of standard 
deviation of model or response parameters of a slope.  

Traditional measures of uncertainty, such as covariance matrix or information entropy, however, do not depict the 
significance of uncertainty if the consequence due to the uncertainty is not considered. Ref. 4 describe intensively the theory 
of Value of Information (VoI) in decision making under uncertainty. VoI can be interpreted to be expectancy of risk 
reduction or benefit obtained by the information. Ref. 5 points out that no theory that involves just the probabilities of 
outcome without considering their consequences could be adequate to a decision maker, and shows an application of VoI-
based decision making to a bidding problem. Ref. 6 introduce an example of application of VoI to project decision making 
with decision tree. Ref. 7 propose a Bayes decision procedure model with VoI concept optimizing the process of post-
earthquake emergency response in highly uncertain conditions to prevent secondary damage by emergency shut-off of lifeline 
services. Ref. 8, 9 and 10 describe intensively concept and application of VoI in maintenance problem of infrastructures. Ref. 
11 discuss the application of VoI-based method to structural health monitoring. Ref. 12 discuss decision making framework 
for earthquake early warning with VoI concept. Ref. 13 point out that VoI based method seeks to minimize expected cost 
attributable to uncertainty, and helps decision makers to decide whether the data should be collected or not. New samplings 
information reduces the variance of parameters, however, quantification of reduction in variance is not enough to answer the 
question whether sampling (observation, measurements) should be collected or not. To answer these questions, we need to 
estimate the worth of the information content in data, i.e., the value of information (VoI).  

Ref. 14 proposes an efficient method based on VoI to answer where additional sampling points should be placed and 
how many sampling should be collected in a Gaussian random field. In this paper we consider seismicity of the site in the 
formulation of VoI based objective function and discuss how the seismicity affect the optimal number of additional sampling. 

 
 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 
2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

2 

II. VALUE OF INFORMATION FOR OPTIMAL SAMPLING PLACEMENT 
 
II.A. Linear inverse problem and Kriging 

 
Prior information as to random variable vector x is given as,  

wxx                          (1) 
where x  and w are mean and random component of prior information. Here, it is postulated that the observation z is 
expressed as a linear function of x and is contaminated with a Gaussian noise v as follows. 

z = Hx + v                            (2) 
v and w are Gaussian random variable vector with zero mean and their covariance matrices R, M. Best posterior estimate 
(MAP) and its covariance matrix are, 

)(1 xHzRPHxx  T               (3)      111 )(   MHRHP T                (4) 

Kriging is a probabilistic interpolation method in a Gaussian random field (e.g. Ref. 15; Ref. 16), and is derived as a special 
case of above mentioned linear inverse problem (Ref. 17). Assume that the observation vector z and parameters x are the 
same physical parameters at discrete spatial points in the Gaussian random field. 
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where x1 denotes variables at observation site; x2 denotes parameters at the region to be estimated. The observation equation 
Eq.(2) becomes, I denotes unit matrix; 0 denotes zero matrix. By substituting Eq.(5) , (6) into Eq.(3), (4),  we have, 
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It is noted that Prior covariance matrix M is separated into M11, M12, M21, M22 corresponding to x1 and x2. Prior covariance 
matrix M is formulated often based on auto-correlation function. Several types of auto-correlation function are proposed. In 
this paper, the following equation is used. 
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where, d1, d2, d3 stand for a distance, a1, a2, a3 stand for an auto-correlation distance in each direction in three dimensional 

space; 2 is variance of the field. 
 

II.B. Quantification of VoI in a Gaussian random field 
 
It is assumed that observation is performed to obtain useful information to make decision by comparing estimator x with 

threshold limit value x0, e.g., to judge contaminated soil or ordinary soil by comparing poisonous material concentration x 
and its threshold limit value x0, or to judge necessity of liquefaction countermeasure on embankment along a river by 
comparing liquefaction potential x with its threshold limit value x0.  

Statistical test has two kinds of error. A type I error (or error of the first kind) is the incorrect rejection of a true null 
hypothesis. A type II error (or error of the second kind) is the failure to reject a false null hypothesis. Referring to these error 
types, we define two types of false decision making.  
i) Decision error type 1 

Judge x< x0 when true x> x0 (e.g., to judge that liquefaction countermeasure is not necessary when it is necessary actually) 
 
ii) Decision error type 2 

Judge x> x0 when true x< x0 (e.g., to judge that liquefaction countermeasure is necessary when it is not necessary actually) 
 

The probabilities of decision error type 1, 2 are denoted as P1, P2 (= 1-P1). The risk of the decision error can be 
calculated with penalties per unit area C1, C2 for the decision errors and the probabilities. Naturally we should make decision 
to take lower risk.  
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Fig. 1. Risk of decision error, type 1 and 2, and mean of estimator, standard deviation of estimator=0.4, 
penalties C1=10，C2=2 

Suffix i indicates a region for estimation of risk. Total risk is calculated by summing up the risk over the area for the 
estimation.  

Let’s have an example that we have estimator x=3 when threshold limit value x0=3. It is assumed that the estimator 
involves uncertainty and its mean is 3. It is also assumed that penalties of the error type 1, 2 are 10, 2 respectively. These 
assumed values are only for the illustration, and do not have any actual meaning. If the estimator is judged to be less than the 
threshold value, the probability of error is 0.5, and its risk is 5. If the estimator is judged to be larger than the threshold value, 
the probability of error is also 0.5, and its risk is 1. The former and latter are called as risk 1 and 2 respectively. Since the 
smaller risk should be taken naturally, we should take risk 2. Fig. 1 shows the risk we should take for estimator of which 
mean is 0 to 4. It is assumed that the estimator is Gaussian and its standard deviation is 0.4.  

When the mean of estimator is 3, the risk 1 and 2 are plotted at 1 and 2 respectively. When the mean becomes small, risk 
1 also becomes small, on the other hand risk 2 becomes large. The point xc that risk 1 is equivalent to risk 2 indicates a 
threshold value for the judgement under uncertainty. We should judge that the estimator is larger than threshold limit value x0 
when the mean of estimator is larger than the threshold value for the judgement xc. The difference between the xc and x0 
expresses safety margin. The threshold for judgement xc is determined by uncertainty of the estimator and the ratio of penalty 
1 and 2, C1, C2.  

In general, it is difficult to compute VoI so that MC approach is proposed(Ref. 10; Ref. 13; Ref. 18). VoI can be, 
however, computed easily in updating of Gaussian random field, i.e., Kriging, described in 2.2. It is assumed that observation 
data at new locations are obtained at each observation step. 
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where zk, Zk represent observation data at step k and up to step k. Mean vectors at three types of places are obtained by 
referring Eq.(7),  
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where k
1x  represents a mean vector at places where the observation Zk is given; k

2x  is a mean vector at places where new 

observation zk will be given; k
3x  presents a mean vector at area where decision error risk is evaluated. Their covariance 

matrices are given as: 
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It is noted that locations of x2 are those of observation points at k+1 step, and the observation data is not obtained yet. As 
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mentioned above penalty is imposed on false decision making. The risk can be evaluated from the product of probability of 
false decision making and the penalty.  
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  is the standard Normal (Gaussian) cumulative distribution function; k
i,3  is standard deviation of k

ix ,3  which can be 

obtained from diagonal component of covariance matrix M33
k shown in Eq.(14); Ps is probability of exceedance of specific 

level of seismic motion. The total risk at the decision making area is given by: 
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The decision error risk is reduced by the new information zk+1. After we obtained observation vector zk+1, the mean and 
covariance matrix of x3 is updated as:  
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Naturally value of the new information zk+1 is not given yet. Therefore x2
k instead of zk+1 is used in Eq.(17). The expectancy 

of risk reduction is defined as VoI. The expectancy of risk considering observation data in next step zk+1 is 
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Integration with respect to x2
k is required, but it cannot be performed analytically. When dimension of x2

k is high, numerical 
integration is not practical to implement. Thanks to reproductive property of Gaussian, the numerical integration can be 
always reduced to one-dimensional numerical integration. Consequently VoI can be calculated easily even if the dimension 
of zk+1 (the number of additional observation points) is large, e.g., more than 10. 

When the dimension of vector zk+1 is low, it is not difficult to optimize the location of new observation. You can 
determine the optimal location by evaluating VoI at every possible combination of locations. It is, however, difficult to 
evaluate them due to “curse of dimensionality” when the dimension of the vector zk+1 is high. In this paper PSO (Particle 
Swarm Optimization) is introduced to optimize a set of location of new observation with respect to VoI. PSO is one of global 
optimization methods, which was proposed by Ref. 19. It is said that PSO is a simple method with a few parameters to for 
optimization but efficient for optimization with regard to real number variables. 

 
III. OPTIMAL ADDITIONAL BORING FOR LIQUEFACTION COUNTERMEASURE 
 
III.A. Liquefaction along river and liquefaction potential PL 

 
Ref. 20 report damages caused by liquefaction along a river in the 2011 off the Pacific coast of Tohoku Earthquake. The 

optimal additional boring planning is studied in term of VoI in the region STA 30-35, where the number of existing boring is 
18, relatively small. STA indicates the distance (km) from its estuary. At each existing boring point PL value is evaluated. PL 
is a liquefaction potential index to estimate the severity of liquefaction degree at a given site (Ref. 21). The value of PL is the 
larger, the site has higher possibility of liquefaction. The logarithm of PL along the river is modeled as a Gaussian random 
field with mean, standard deviation and auto correlation distance, 1.0, 0.3 and 200m. Standard deviation of observation error 
is 0.087. These parameters are determined based on the PL values calculated at all existing boring site by Ref. 20. 

It is assumed that liquefaction countermeasure is implemented to each 100m length unit when its PL value is larger than 
15, which corresponds to threshold limit value x0 =15.  It is also assumed penalty C1, C2 are 10, 2 respectively. PL value at 
each unit is estimated by using Kriging illustrated from PL values at 18 existing boring sites which is shown in Fig. 4(1) 
(denoted as “old” in the figure). The probability of exceedance of specific level of seismic motion Ps, which is caused by 
scenario earthquake assumed in order to evaluate PL, is considered as 30% in this calculation. The probability of exceedance 
Ps is defined in a specified period, e.g., 50 years. The mean of estimate and threshold xc for judgement considering 
uncertainty are also shown in the figure. The units where the countermeasure is judged to be implemented are also shown in 
the figure (denoted as “P.of C.”).   
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III.B. VoI of additional boring data 
 
It is required to make decisions of the liquefaction countermeasure under uncertainty and risk. Decision makers 

sometimes have the possibility to gather further information prior to making the decision. Such additional information 
reduces the uncertainty and thus facilitates improved decision making. It is assumed that additional boring investigation in 
the region is allowed to improve the decision making. The locations of additional boring are determined such that the risk 
reduction by additional information is maximized in terms of VoI.  

An optimal set of sites for additional boring are evaluated as a solution of optimization problem by PSO (Particle Swarm 
Optimization). The objective function is VoI, the variables for optimization are coordinate of the additional boring sites. Fig. 
5 shows the obtained optimal set of boring sites when the number of additional boring is 6. The sites where are far away from 
existing boring sites are basically selected for the additional boring. 

When necessity of countermeasure is judged based on existing boring data only, the area for countermeasure 
implementation is shown deterministically, namely probabilities of countermeasure (P.of C.) are 0 or 1. When we consider 
additional boring data, countermeasure probabilities between 0 and 1 are indicated as shown in Fig. 5(1), because information 
obtained in future is taken into account. Figure 5(1) also indicates a distribution of standard deviation of the mean of 
estimator PL. Note that the means are Gaussian random variables because x2

k is used instead of zk+1 in Eq.(17). Fig. 5(2) 
shows standard deviation of estimator, threshold for judge xc with and without additional boring (“prior”, “post” in the figure). 
Fig. 5(3) shows distributions of risk. Standard deviation of estimator around new boring site shown in Fig. 5(2) is reduced, 
consequently risks are also reduced. The threshold for judgement xc is increased because the uncertainty of estimator is 
reduced. The sum of differences between the risk with and without additional boring information corresponds to VoI, which 
is -7.08 in this case. 

Optimal placement of additional boring and its VoI are evaluated to the cases that the number of additional boring is 0 to 
15. When we assume more number of additional boring, the deterministic area (probability is 0 or 1) for the liquefaction 
countermeasure area is decreased, because the judgement of necessity of countermeasure is based on the numerical value of 
observation (PL) obtained in future. It is also indicated that the expectancy of total area of countermeasure is the less, when 
the more additional boring is taken. 

 
III.C. Optimal number of additional boring 

 
Fig. 6 shows the distribution of obtained VoI for the cases of which the number of additional boring is 0 to 15. When the 

number of additional boring is 0, naturally the numerical value of VoI is 0 because VoI indicates the expectancy of reduction 
of risk by the new information. The VoI decreases (its absolute value increases) with respect to the number of additional 
boring. The relation is not linear but convex downward, which means the value of new information gradually decreases. 
Total cost is evaluated by adding observation cost to VoI. Observation cost is the expense which is necessary for single 
boring and related investigation or test. When the observation cost is 1, then a curve of total cost shown in Fig. 6(1) is 
obtained. It is a convex downward curve, and has a minimum point at 2. If we assume observation cost is 2, then the optimal 
number is 6 as shown in Fig. 6(2). When observation cost is the higher, the optimal number is the less. 

These optimal number is determined by the balance of penalty and observation cost. Many researches have studied the 
best safety level (how safe is safe enough) from total cost or life cycle cost considering risk of disaster, e.g., Ref. 22. Despite 
the difficulty of evaluating the consequence of disaster quantitatively, this type of research provides useful insights for the 
balance of safety and economy. The proposed method in this paper is also expected to provide useful insights for the balance 
of quantity of observation and economy in the same manner. 

For comparison, a site with higher seismicity is considered. The probability of exceedance of specific level of seismic 
motion Ps, is 30% in the previous example. As a high seismicity site, Ps, is assumed to be 100% in specific period. Fig. 7 
shows the obtained optimal set of boring sites when the number of additional boring is 6. Fig. 8 shows distribution of 
obtained VoI for the cases of which the number of additional boring is 0 to 15.  

 
IV. CONCLUSION 

 
This paper discusses an efficient method to obtain optimal sampling (observation, boring) placement considering 

seismicity of site, which is based on Value of Information (VoI) in a Gaussian random field. VoI is closely related to 
traditional uncertainty measures such as variance and covariance, information entropy. VoI, however, contains cost 
attributable to the uncertainty to assess the usefulness of observation information considering the consequence due to the 
uncertainty. The proposed method is applied to additional boring placement for liquefaction countermeasure. Optimal 
number and placement of additional sampling are evaluated depending on the assumed seismicity of the site. One of the 
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difficulties in practical applications of VoI lies in the determination of parameters like penalties. This will be future topics to 
be discussed. 
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(2) Threshold for decision xc of prior and post, standard deviation of estimator (St.Dev.) 

 
 
 
 

0

0.5

1

1.5

2

30 30.5 31 31.5 32 32.5 33 33.5 34 34.5 35

Ex
p
e
ct
e
d
 C
o
st

STA

prior post Old New

 
(3) Distribution of risk of decision error of prior and post 

 
Fig. 5. Locations of additional six boring and distributions of related parameters, low seismicity, Ps=0.3 
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Fig. 6. The number of additional boring, VoI and Cost, low seismicity, Ps=0.3 (O.N.: Optimal number of observation, T.C.: 

Total Cost) 
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Fig. 7. The optimal sampling placement when the number of additional boring is 6, high seismicity, Ps=1.0 
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(1) Observation Cost=1 (O.N.=8, T.C.=-8.75)    (2) Observation Cost=2 (O.N.=5, T.C.=-3.22) 
 

Fig. 8. The number of additional boring, high seismicity Ps=1.0 
 (O.N.: Optimal number of observation, T.C.: Total Cost) 
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