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Modeling to engineers, economists, scientists, insurance companies, and others, is representing a complex world using 
mathematical relationships. We model for a variety of reasons, such as predicting sales, economic strength based on the price 
of oil, the rate that diseases spread, or how many component removals from an aircraft fleet will occur in a year. There are 
few limits to what we can model; all we need is a little understanding of the world, some basic math skills, and away we go. 
That is not to say that all models are simple, in fact some are amazingly complex, but no matter how complex the model is, it 
is a representation of an even more complex world. Additionally, with every model there is error and uncertainty. In this 
document, the authors compare a simplistic, exponential model to a more complex, cyclical model, when solving for the 
number of component removals from a fleet that had a staggered entry into service. This example is typical of the airline 
industry and military ground mobile vehicles, where accurate time or mileage on components are difficult to track.  

I. INTRODUCTION      

In terms of complexity, models can be anything from a simple relationship such as y = mx+b, a “back of an envelope” 
calculation, a multi-million dollar computer code, or anything in between. Although typically unrecognized, and no matter 
how simple or complex, there is always uncertainty and error present in the Model Of the World (MOW). Far too often 
reliability engineers hear the phrase “garbage in, garbage out”. This phrase has arisen since many the reliability predictions 
haven’t held “true”; however, what really occurred was that the error and uncertainty of the MOW were not understood, and 
the stakeholder expected more accuracy out of the analysis. Additionally, most stakeholders would say that the data is the key 
driver, but it is actually the MOW that drives the error and uncertainty, and they may not be entirely quantifiable.   

II. THE WORLD 

In aviation, Maintenance, Repair, and Overhaul (MRO) services is a multibillion dollar industry. The MRO industry is 
becoming increasingly competitive, with airlines, airline subsidiaries, manufacturers and repair shops competing for business.  
Airlines want to buy Cost Per Hour (CPH) agreements, or insurance policies, that guarantee costs on a flight hour basis. CPH 
agreements can run for 10-12 years, are difficult to predict with accuracy, and have significant implications on profit margins.  

 
Airline operators prefer limiting the number of MROs/suppliers they use for several reasons. There are fewer companies 

to deal with, larger Bill of Materials (BOMs) provide the operators with more purchasing power, and it makes financial sense 
to understand costs on a per flight hour basis for future business planning. BOMs included in the CPH agreements potentially 
reach 100 or more components; however, the financial risk is typically dominated by only 10-15% of the components due to 
either the expected large number of returns for particular components, or because the cost to repair those components is very 
high. Operators may not be forthcoming with data either, since they may be either unwilling or unable, or hoping the 
insurance company/MRO sells them a policy in their financial favor. It may seem obvious when using 10+ years of data to 
predict 1 year in the future, but CPH agreements can be for 10-12 years. Using 10 years to predict 10 years into the future can 
lead to big differences in results depending on the complexity of the model.   
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For a simple example, consider a CPH BOM in which only three components, A, B, and C, dominate the financial risk. 
The other components are secondary, and can be assessed using the method in Section III.A. The 16 year removal history for 
components A, B and C can be seen in Table I. The fleet flight time and average age are shown in time units of years.  

 
TABLE I. Removal History of Major Risk Components 

 A B C Flight Time 
(Years) 

Avg. Fleet Age 
(Years) 

Year 1 0 0 0 0.58 0.45 
Year 2 0 2 0 2.64 0.59 
Year 3 0 2 0 5.83 0.69 
Year 4 0 2 0 7.7 1.07 
Year 5 0 3 0 9.58 1.01 
Year 6 0 7 0 15.07 1.22 
Year 7 0 20 1 20.31 1.63 
Year 8 0 3 13 25.93 2.2 
Year 9 0 5 7 28.58 2.80 

Year 10 0 5 1 30.20 3.26 
Year 11 0 3 13 34.62 3.72 
Year 12 8 17 3 38.81 4.14 
Year 13 9 6 0 34.57 4.88 
Year 14 6 13 4 29.92 5.75 
Year 15 11 9 0 29.77 7.07 
Year 16 3 7 1 30.28 8.45 

 
Table II shows the flight hour estimates the operator expects to fly and the expected average age of the fleet. The third 

column may seem counter-intuitive in this example, with a fleet getting older and then younger, but that is common in the 
industry. As planes get older, they are replaced with newer or brand new aircraft, lowering the average age of the fleet. 

 
TABLE II. Future 10 Year Profile 

 Flight Time (Years) Avg. Fleet Age (Years) 
Future Year 1 14.88 9.64 
Future Year 2 27.90 9.38 
Future Year 3 26.53 9.28 
Future Year 4 25.91 10.12 
Future Year 5 24.38 10.49 
Future Year 6 19.66 9.34 
Future Year 7 14.63 8.24 
Future Year 8 11.71 7.8 
Future Year 9 8.63 7.19 

Future Year 10 3.08 3.97 
 

 
III. THE SOLUTIONS 
 

Two different solutions will be presented and compared. The first will be a simplistic exponential MOW, which is 
typical in the airline operator industry as most reliability metrics are calculated using that form based on the ATA SPEC 2000 
industry standard1. A second, more complicated approach using cyclical trend models is shown for comparison.  
 
III.A. Exponential MOW 

 
Exponential models for reliability metrics are used in the aviation industry as dictated by ATA SPEC 20001. Although a 

simplistic approach, when a MRO receive parts, the only data that they know for sure is the day that it arrived and what was 
discovered during the repair; all other data, such as Time Since Repair (TSR) or Time Since Overhaul (TSO) is not 
consistently provided by the operators. ATA Spec 2000 defines reliability metrics as subsets of Mean Time Between 
Removals (MTBR). If an aircraft has 2 of a particular component (known as the Quantity Per Aircraft or QPA), the fleet flew 
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1,000 Flight Hours (FH) in the time period, and there were 2 removals, then the Mean Time Between Removals (MTBR) 
would be calculated by the reciprocal of the maximum likelihood estimate for the exponential rate, or  
 

      (1) 
  
 

 
        (2) 

 
 
Examination of the data in Table I seems to show the removal distribution is not exponential (not a constant failure rate). 

It raises the question in these analyses, what time interval to use? Is 1, 3 or 5 years best, or maybe more? Table III shows the 
data and estimates for specific year MTBR values, and for the last 1, 3, 5 10 and 16 year look back estimates.  

 
TABLE III. Yearly Mean Time Between Removal Estimates and Various Look-Back Periods 

 

 A B C 
Flight 
Time 

(Years) 

Flight 
Time 

(Hours) 

A 
MTBR 

B 
MTBR 

C 
MTBR 

Year 1 0 0 0 0.58 5,081 infinite infinite infinite 
Year 2 0 2 0 2.64 23,126 infinite 11,563 infinite 
Year 3 0 2 0 5.83 51,071 infinite 25,535 infinite 
Year 4 0 2 0 7.7 67,452 infinite 33,726 infinite 
Year 5 0 3 0 9.58 83,921 infinite 27,974 infinite 
Year 6 0 7 0 15.07 132,013 infinite 18,859 infinite 
Year 7 0 20 1 20.31 177,916 infinite 8,896 177,916 
Year 8 0 3 13 25.93 227,147 infinite 75,716 17,473 
Year 9 0 5 7 28.58 250,361 infinite 50,072 35,766 

Year 10 0 5 1 30.2 264,552 infinite 52,910 264,552 
Year 11 0 3 13 34.62 303,271 infinite 101,090 23,329 
Year 12 8 17 3 38.81 339,976 42,497 19,999 113,325 
Year 13 9 6 0 34.57 302,833 33,648 50,472 infinite 
Year 14 6 13 4 29.92 262,099 43,683 20,161 65,525 
Year 15 11 9 0 29.77 260,785 23,708 28,976 infinite 
Year 16 3 7 1 30.28 265,253 88,418 37,893 265,253 
Last 3 20 29 5 89.97 788,137 39,407 27,177 157,627 
Last 5 37 52 8 163.35 1,430,946 38,674 27,518 178,868 

Last 10 37 88 43 302.99 2,654,192 71,735 30,161 61,725 
ALL 37 104 43 344.39 3016856.4 81,537 29,008 70,159 

 
Table III converts years to hours (365*24), and the exact calculation is shown instead of rounding for ease of reader 
duplication. Using the results from Table III, we can project a failure “rate” forward with the expected flight time, and predict 
what the number of removals will be on a yearly basis based on an exponential predictive model. The results are presented 
for components A, B and C based on the various look back periods. For component A, the yearly estimate and the total 
estimate over 10 years can vary by a factor of 2. For component B, the method really didn’t affect the results at all, and for 
component C, the total can vary by a factor of 3 from smallest to largest. Now let’s consider a more complex model.   
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TABLE III. Removal Predictions for Components Based on Exponential Model 
 

  
A B C 

 

Flight 
Time 

(Years) 
Last 

3 
Last 

5 
Last 
10 

All 
16 

Last 
3 

Last 
5 

Last 
10 

All 
16 

Last 
3 

Last 
5 

Last 
10 

All 
16 

Future 
Year 1 14.88 3.3 3.4 1.8 1.6 4.8 4.7 4.3 4.5 0.8 0.7 2.1 1.9 

Future 
Year 2 27.9 6.2 6.3 3.4 3.0 9.0 8.9 8.1 8.4 1.6 1.4 4.0 3.5 

Future 
Year 3 26.53 5.9 6.0 3.2 2.9 8.6 8.4 7.7 8.0 1.5 1.3 3.8 3.3 

Future 
Year 4 25.91 5.8 5.9 3.2 2.8 8.4 8.2 7.5 7.8 1.4 1.3 3.7 3.2 

Future 
Year 5 24.38 5.4 5.5 3.0 2.6 7.9 7.8 7.1 7.4 1.4 1.2 3.5 3.0 

Future 
Year 6 19.66 4.4 4.5 2.4 2.1 6.3 6.3 5.7 5.9 1.1 1.0 2.8 2.5 

Future 
Year 7 14.63 3.3 3.3 1.8 1.6 4.7 4.7 4.2 4.4 0.8 0.7 2.1 1.8 

Future 
Year 8 11.71 2.6 2.7 1.4 1.3 3.8 3.7 3.4 3.5 0.7 0.6 1.7 1.5 

Future 
Year 9 8.63 1.9 2.0 1.1 0.9 2.8 2.7 2.5 2.6 0.5 0.4 1.2 1.1 

Future 
Year 10 3.08 0.7 0.7 0.4 0.3 1.0 1.0 0.9 0.9 0.2 0.2 0.4 0.4 

TOTAL REMOVALS 39.4 40.2 21.7 19.0 57.2 56.4 51.5 53.5 9.9 8.7 25.2 22.1 
 
III.B. Cyclical MOW 
 

 If the world is examined more closely, airline operators rarely bring a whole fleet of aircraft online at the same time.  
They tend to get their fleets through a build-up, such as acquiring a new aircraft at a rate of one a month for a period of time 
as the planes are delivered new from the factory. The term staggered entry into service is a more appropriate description of 
this world, and has been characterized in the literature before referencing aerospace, military ground vehicles, industrial 
components, and general business applications.2-4 Although the term has been described before, to the authors’ knowledge, a 
solution of this type has never been demonstrated anywhere else. Figure 1 shows a depiction of an aircraft fleet buildup, 
although this could easily be a military ground vehicle being introduced into service over a period of time, and a simplistic 
time line of a particular component on that platform being removed periodically. Figure 2 shows a typical removal trend from 
the fleet that would be seen in total number of components removed or repaired in this situation.   
 

This model could be modeled using a simple regression fit to the data, however the use of OpenBUGS5 was chosen in 
order to have more complex MOW models, use Bayesian p-values6 for a goodness of fit tests instead of regression 
coefficients, and to calculate uncertainty values on the results. For this simulation, a few postulates were made. The first is 
that the number of removals in any year follows a Poisson process, the rate of the Poisson process can change from year to 
year, and the rate (based on Fig. 2) is a function of the average age of the aircraft fleet.  
 

The basic simulation and trend model is shown below in blue font, the postulated prior distributions for parameters in the 
distribution are in red font (the distribution uses parameters a, b and c, not to be confused with components A, B and C), the 
removal data and the expected usage of aircraft fleet in the upcoming ten years is shown in purple font, the initial parameters 
used in for the Markov chain are shown in green font), the p-value calculation is shown in gold font. Several trend models, 
parameter distributions and initial parameters with p-value results are shown in pink font. The solution process is one of 
postulating a trend model and parameters, finding the p-value, and examining other trend models if a better fit is possible. 
One reason to use fewer parameters and hard code in others (such as the 1.5, 1.4, 1.3 and 1.2 values in the old trend models), 
is to limit the number of parameters the Gibbs’ sampling routine has to solve for with such a limited data set, although for 
components B and C, 4 parameter models achieved reasonable p-values. 
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Fig. 1. Aircraft fleet buildup and periodic component removals 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2. Component removal trend from a platform that has staggered entry into service 
 
For component A, the OpenBUGS script is as follows: 
 

model { 
 for (i in 1:N) { 
 #Poisson likelihood function for each time interval 
 x[i] ~ dpois(mu[i])  
 #Poisson parameter for each time interval, lambda in /years 
 mu[i] <- lambda[i]*years[i]  
 #Trend model for lambda 
 lambda[i] <- c*((cos(b*avg[i]-a)+1.2)*(1-exp(-i/60))) 
 #Posterior predictive distribution 
 x.pred[i] ~ dpois(mu[i])  
 diff.obs[i]<-pow(x[i] - mu[i], 2)/mu[i] 
 diff.pred[i]<-pow(x.pred[i] - mu[i], 2)/mu[i] 
 } 
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 for (j in 1:M) { 
   returns[j] <- (c*((cos(b*age[j]-a)+1.2)*(1-exp(-(j+N)/60))))*fltyrs[j] 
 } 
#p-value calculation 
 chisq.obs<-sum(diff.obs[]) 
 chisq.pred<-sum(diff.pred[]) 
 p.value<-step(chisq.pred - chisq.obs)     
#Prior distributions 
 a ~ dunif(2,4) 
 b ~ dunif(.01,1) 
 c ~ dunif(0.025,.75) 
} 
#Average is in years 
Data 
x[] years[] avg[] 
0 .58 0.45 
0 2.64 0.59 
0 5.83 0.69 
0 7.7 1.07 
0 9.58 1.01 
0 15.07 1.22 
0 20.31 1.63 
0 25.93 2.20 
0 28.58 2.80 
0 30.20 3.26 
0 34.62 3.72 
8 38.81 4.14 
9 34.57 4.88 
6 29.92 5.75 
11 29.77 7.07 
3 30.28 8.45 
END 
list(N=16) 
list(fltyrs = c(14.88,27.90,26.53,25.91,24.38,19.66,14.63,11.71,8.63,3.08), age = 
c(9.64,9.38,9.28,10.12,10.49,9.34,8.24,7.8,7.19,3.97),M=10) 
Inits 
list(a=2,b=.75,c = .35) 
list(a=4,b=.5, c=.70) 
# OLD TREND MODELS 
# lambda[i] <- c*((cos(b*avg[i])+a)*(1-exp(-i/60))) p=.1445 
# lambda[i] <- c*((cos(b*avg[i]-a)+1.5)*(1-exp(-i/60))) p=.1623 
# lambda[i] <- c*((cos(b*avg[i]-a)+1.4)*(1-exp(-i/60))) p=.18 
# lambda[i] <- c*((cos(b*avg[i]-a)+1.3)*(1-exp(-i/60))) p=.1883 
# lambda[i] <- c*((cos(b*avg[i]-a)+1.2)*(1-exp(-i/60))) p=.1928 
# lambda[i] <- c*((cos(b*avg[i]-a)+1.2)*(1-exp(-i/60))) p=.2498 

 
Table IV shows the mean values, standard deviations, and 5th, 50th and 95th percentiles of the various parameters in the 

trend model, the p-value, and the predicted future returns of Component A for this trend model. This predictive model 
estimates 35.5 returns for the next ten years (by summing the returns for each year over the 10 year period).  Comparing the 
results to Table III, which estimated between 19 and 40 for this component based on the look-back period, the simple models 
could be off by as much as a factor of almost 2 (e.g., when using all the data, 19 for the simple model versus 35.5 for the 
more complex model). In the interest of space, the trend models and results for component B and C, are shown below in 
Tables V and VI. Components B and C had a best fits with the trend model abs(a+b*sin(c*avg[i])+d*cos(c*avg[i])). This is 
interesting in that components B and C are of the same type. 
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TABLE IV.  OpenBUGS Results for Component A Removal/Return Model 
 

 
Mean 5th 50th 95th 

p.value 0.2538 
   a 3.705 3.172 3.782 3.983 

b 0.5448 0.3832 0.5562 0.6693 
c 0.5116 0.3726 0.506 0.6719 
returns[1] 2.299 0.6237 2.088 4.772 
returns[2] 4.946 1.577 4.613 9.572 
returns[3] 5.087 1.725 4.79 9.597 
returns[4] 3.848 0.8463 3.243 9.114 
returns[5] 3.262 0.7191 2.514 8.549 
returns[6] 4.182 1.367 3.918 8.004 
returns[7] 4.297 2.376 4.237 6.472 
returns[8] 3.832 2.408 3.802 5.389 
returns[9] 3.104 2.181 3.084 4.115 
returns[10] 0.6705 0.4514 0.6584 0.9306 

 
In Table V, the expected number of returns is 55.6, which is close to the simplistic estimate. Although some may feel 

this might suggest to use the simple model, what it shows is that in some cases the complex model matches a simpler model, 
but use of the complex model seems to provide as-good-as or (much) better results as compared to the simpler model.  
Further, since the analysis time is similar for either case, the model that works for all cases should be preferred. 
 
 

TABLE V.  OpenBUGS Results for Component B Removal/Return Model 

 
Mean 5th 50th 95th 

p.value .1001 
   a 0.06623 -0.3726 -0.06122 1.062 

b 0.1265 -0.6042 0.2752 0.5668 

c -16.06 -47.17 -2.285 2.343 

d 0.03242 -0.6443 0.03716 0.6441 

returns[1] 5.3 1.416 5.501 8.382 

returns[2] 8.332 1.042 8.146 15.58 

returns[3] 8.76 2.025 8.361 16.77 

returns[4] 7.849 0.9724 7.907 13.89 

returns[5] 8.44 1.527 8.027 16.42 

returns[6] 6.702 1.512 6.657 11.36 

returns[7] 3.95 1.032 3.922 7.19 

returns[8] 2.747 0.237 2.526 5.873 

returns[9] 2.636 0.2485 2.523 4.577 

returns[10] 0.9524 0.2706 0.9613 1.419 
 

 
In Table VI, the expected number of returns is 32.6, which exceeds the worst case exponential estimate by 30%, and 

could have been more than 3 times the predicted value if the look back period was 3 years. 
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TABLE VI.  OpenBUGS Results for Component C Removal/Return Mode 

 
Mean 5th 50th 95th 

p.value 0.1236 
   a -0.0669 -0.1771 -0.06125 0.05315 

b -0.0491 -0.1941 -0.07524 0.158 

c -2.649 -8.554 -1.681 1.702 

d 0.07721 -0.2194 0.1745 0.2664 

returns[1] 4.249 2.623 4.269 5.84 

returns[2] 5.948 0.6363 6.529 9.663 

returns[3] 4.882 0.2366 5.646 8.586 

returns[4] 4.837 0.4984 5.302 8.141 

returns[5] 3.543 0.4327 3.182 8.199 

returns[6] 3.918 0.2499 4.421 6.647 

returns[7] 2.409 0.7038 2.14 4.954 

returns[8] 1.584 0.06961 1.888 2.901 

returns[9] 0.735 0.1204 0.6468 1.63 

returns[10] 0.4581 0.03694 0.514 0.7615 
 

   
IV. CONCLUSIONS 

 
There are several conclusions that can be learned from this example of predicting removals of components that have a 

staggered entry into service. Although this is a simple example, it is not a given that components behave as an exponential, 
and choosing one, or any other statistical model for convenience, can have far reaching effects on the results. In using a 
simplistic model to predict 10 years into the future, even using 16 years of past data may lead to results that are quite in error, 
and could have costly implications. This paper demonstrated the use of an OpenBUGS-based cyclical trend model to 
reasonably predict returns/removals of items based on the average age of the fleet, whether it be the aircraft example shown, 
military vehicles, farm machinery, or any platform that has a staggered entry into service, and usage time/mileage is difficult 
to obtain. One surprising find during this work was that similar types of components often had similar or identical trend 
model forms with only the parameters of that model changing. This allows us to reduce the number of unknowns in future 
predictions, and to use smaller data sets to obtain reasonable results.  
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