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        Human reliability analysis (HRA) methods typically analyze human failure events (HFEs) at the overall task level. For 

dynamic HRA, it is important to model human activities at the subtask level. There exists a disconnect between the dynamic 

subtask and static task levels that presents issues when modeling dynamic scenarios. For example, the SPAR-H method is 

typically used to calculate the human error probability (HEP) at the task level. Quantification in SPAR-H does not 

necessarily translate to the subtask level. In this paper, two different discrete distributions were considered for each of the 

eight SPAR-H performance shaping factors (PSFs) to define the frequency of each PSF level. The first distribution 

considered was a uniform discrete distribution that presumed the frequency of each PSF level was equally likely. The second 

non-continuous distribution took the frequency of each PSF level as identified from a subjective assessment of the HERA 

database. These two different approaches were created, so that the HEP could be calculated and a distribution identified. 

The HEP distribution that appears closer to the previously observed HEP, a log-normal centered on 1E-3, is the more 

desirable. Each HEP distribution then has median, average, and maximum HFE calculations applied. To calculate these 

three generic human actions—HFE A, B and C—are generated from the PSF level frequencies comprised of subtasks. The 

summary statistics for the HFE are applied as aggregate functions at each PSF level and then the HEP is calculated. The 

same data set of subtask HEPs yields starkly different HEPs when aggregated to the HFE level in SPAR-H. Assuming that 

each PSF level in each HFE is equally likely creates an unrealistic distribution of the HEP that is centered at 1. Next the 

observed frequency of PSF levels was applied with the resulting HEP behaving log-normally with a vast majority of the 

values under 2.5% HEP. The median, average and maximum HFE calculations did yield different answers for the HFE. The 

HFE maximum grossly overestimates the HFE, while the HFE distribution occurs less than HFE median, and greater than 

HFE average. 

 

I. INTRODUCTION 

 

The legacy of human reliability analysis (HRA) is that almost all methods to date have been static (Ref 2), meaning the 

approaches model a given set of human failure events (HFEs) but do not adapt to changing conditions in the model.  Just as 

the adaptation from design-basis to beyond-design basis is difficult for static methods, the problem is made more complex 

when introducing dynamic HRA methods, which look at the emergent evolution of an event instead of analyzing a 

prescripted set of scenarios.  The promise of dynamic methods is that they will be able to model performance more 

completely than the expert judgment processes required for completing static HRAs. The downside of dynamic methods is 

the increased methodological and implementational complexity that leads to longer calculation times. The general challenge 

of making HRA dynamic is increased multifold when dynamic methods must tackle the inherent uncertainty of severe 

accidents. Not only is the method complexity increased, but so is the modeling complexity. 

 

Static methods are based on analyzing human performance for a pre-defined set of tasks that are generally clustered as 

HFEs.  The challenge in extrapolating from these HFE snapshots to dynamic models is that many of the basic assumptions of 

these methods have not been validated for dynamic applications.  For example, as depicted hypothetically in Fig 1, a 

sequence of events can be parsed in many ways.  The horizontal axis divides the event along a chronological progression, in 

this case in terms of minutes.  The dotted vertical lines demark subtasks during the sequence of events. Finally, the blue 

boxes denote HFEs.  Each minute reveals a different outcome in terms of the dynamic HEP calculation.  Similarly, the 

subtasks and HFEs track the changing HEP.  Yet, HRA methods are not designed to track at all three levels of delineation.  

An HRA method that is applied successfully to three sequential HFEs as part of an event progression may not adequately 

cover further delimiting the HFE into 9 subtasks or 10 minute-long time slices.  To model the event progression, however, it 
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is necessary to model the HFE at a finer granularity corresponding to the 9 subtasks or 10 time slices.  The static HRA 

method may not lend itself to these different units of analysis.  Moreover, the error quantification approach used may not 

prove accurate for the different unit of analysis. 

 

To frame the event progression in Fig 1 differently, consider the case of a major flooding incident.  Major damage to the 

plant is sustained around the 4-minute mark along the timeline.  HFE1 corresponds to the pre-initiator, HFE2 encompasses the 

initiating event, and HFE3 spans the post-initiator recovery.  As can be seen, the human error probability (HEP) remains low 

during the pre-initiator period, surges during the initiating event, and remains high during the recovery period.  Static HRA 

methods, which would tend to analyze the event in terms of the three HFEs, may not fully model the changes to operator 

performance within each HFE.  For example, a sudden increase in stress that causes a surge in error during HFE2 actually 

consists of three different slopes of the error plot—an initial relatively flat period, a rapidly rising period, and a plateau that 

shows signs of gradually declining.  The flooding has differing effects on the plant and the operators, but conventional static 

parsing of the event may not fully map the dynamic progression of the event and the equally dynamic error curve associated 

with different tasks and time slices. 

 

 
Fig 1. Human event progression according to time slices, subtasks, and HFEs. 

 

This paper reviews what happens to HRA when the unit of analysis is changed from an HFE to a unit of analysis suitable 

for dynamic modeling.  Underlying this discussion is the key assumption that dynamic HRA requires a finer grain of 

modeling precision than the HFE.  Ideally, the HFE represents a thorough human factors subtask analysis (Ref 5; 7, and 8).  

The human reliability analyst will then quantify the event at the appropriate level of aggregation.  HRA methods treat the unit 

of quantification differently.  For example, the original HRA method, the Technique for Human Error Prediction (THERP, 

Ref 10) quantifies at the subtask level.  In contrast, the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-

H) method (Ref 6) analyzes events at the HFE level, despite being derived from THERP (Ref 1).  Ideally, the quantification 

approach should transfer between different framings of the event space. Additionally, associated with each HEP is also a 

measure of uncertainty.  The uncertainty discussion centers on statistical considerations associated with propagating 

uncertainty over a large number of units of analysis. 

 

II. SPAR-H FRAMEWORK 

 

SPAR-H is a widely accepted method to determine the HEP based on expert estimation using calculation worksheets.  

Estimations are carried out using weighted performance shaping factors (PSFs) and a standard diagnosis failure probability.  

In many HRA methods, including SPAR-H, context-specific probabilities are generated by multiplying a nominal HEP by 
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multipliers representing the effect of specific context elements which were deemed relevant to the problem by the method 

developers.  This has resulted in the following equation: 

 

HEP = NHEP * PSF (1) 

 

where HEP is the human error probability for the HFE; NHEP is the nominal human error probability, which is assumed to 

be 1E-3 based upon the Action worksheet in SPAR-H; and PSF is the product of all eight PSFs in the method (Ref 6).  PSFs 

come in many flavors, with SPAR-H defining: available time, stress and stressors, complexity, experience and training, 

procedures, ergonomics and human-machine interface, fitness for duty, and work processes.  Each PSF has different levels 

with a corresponding multiplier for diagnosis and action as seen in Table 1. 

 

Table 1. The SPAR-H PSFs with their respective levels, action multiplier, diagnosis multiplier, action frequency, uniform 

frequency, Human Event Repository and Analysis (HERA) frequency (Ref 4), uniform probability, and HERA action 

probability.  P(F)=1 stands for the probability of failure is equal to 1. 

PSF PSF Levels Diagnosis Multiplier

Action 

Multiplier

Uniform 

Action 

Frequency

HERA 

Action 

Frequency

HERA 

Action 

Probability

Uniform 

Action 

Probability

Inadequate Time P(F)=1 P(F)=1 91 5 0.009 0.167

Available Time = Time Required 10 10 91 26 0.048 0.167

Nominal Time 1 1 91 500 0.914 0.167

Time Available > 5x the Time Required 0.1 0.1 91 10 0.018 0.167

Time Available > 50x the Time Required 0.01 0.01 91 4 0.007 0.167

Insufficient Information 1 1 91 2 0.004 0.167

Extreme 5 5 149 2 0.003 0.25

High 2 2 149 92 0.154 0.25

Nominal Time 1 1 149 500 0.839 0.25

Insufficient Information 1 1 149 2 0.003 0.25

Highly Complex 5 5 134 3 0.006 0.25

Moderately Complex 2 2 134 31 0.058 0.25

Nominal 1 1 134 500 0.933 0.25

Obvious diagnosis 0.1 - - - - -

Insufficient Information 1 1 134 2 0.004 0.25

Low 10 3 140 50 0.089 0.25

Nominal 1 1 140 500 0.893 0.25

High 0.5 0.5 140 8 0.014 0.25

Insufficient Information 1 1 140 2 0.004 0.25

Not Available 50 50 112 1 0.002 0.2

Incomplete 20 20 112 20 0.036 0.2

Available but Poor 5 5 112 40 0.071 0.2

Nominal 1 1 112 500 0.891 0.2

Diagnostic/symptom oriented 0.5 - - - - -

Insufficient Information 1 1 112 0 0 0.2

Missing / Misleading 50 50 107 3 0.006 0.2

Poor 10 10 107 30 0.056 0.2

Nominal 1 1 107 500 0.938 0.2

Good 0.5 0.5 107 0 0 0.2

Insufficient Information 1 1 107 0 0 0.2

Unfit P(F)=1 P(F)=1 127 0 0 0.25

Degraded Fitness 5 5 127 8 0.016 0.25

Nominal 1 1 127 500 0.984 0.25

Insufficient Information 1 1 127 0 0 0.25

Poor 2 5 160 120 0.188 0.25

Nominal 1 1 160 500 0.782 0.25

Good 0.8 0.5 160 19 0.030 0.25

Insufficient Information 1 1 160 0 0 0.25

Fitness for Duty

Work Process

Available Time

Stress

Complexity

Experience

Procedures

Ergonomics
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As per SPAR-H, Ref 6, HEP is calculated with the action or diagnosis multiplier value is substituted in for the respective PSF 

levels to produce the following equation: 

 

HEP = NHEP * available time * stress * complexity * experience * procedures * ergonomics * fitness for duty  

* work process 

(2) 

 

where each PSF is substituted with the respective PSF level’s multiplier.  Of course, each level of a PSF is not equally likely.  

As such, the frequency of PSF level assignments was taken from Ref 4.  Additionally, for the purposes of this exploratory 

analysis, only the SPAR-H Action worksheet PSF multipliers are used.  The adjustment factor is applied when three or more 

PSFs are negative, as per equation (3): 

 

HEP = (NHEP * PSF) / [NHEP * (PSF - 1) + 1] (3) 

 

A negative PSF is when a multiplier is larger than 1, and contributes to increasing the HEP. The probabilities and frequencies 

used in the differing simulation and analysis can be seen in Table 1. 

 

III. HUMAN FAILURE EVENT SIMULATION 

 

The HFE simulation is based on the probabilities of a PSF level in Table 1 and Equation (2). A simulation of 5,000 data 

points was run to represent the distribution of a single task.  This is then repeated for Tasks A, B, C, D, E, and F so that there 

are a total of 30,000 data points in Fig 2.  Tasks A, B, C, D, E, and F are seen as generic human actions that should be 

comparable to one another other than their differing PSF frequencies. Tasks A, B, and C come from a uniform PSF frequency 

and D, E and F come from the HERA frequencies.  The frequencies used are from their respective Table 1 columns. 

 

When the uniform PSF levels are implemented, distributions as in Fig 2 right are generated, and Tasks A, B and C 

visually appear to be similar and be strongly skewed toward an HEP of 1.  To verify the similarity of the generic human tasks 

from the simulation, a one-way analysis of variance could be used to compare means of three or more groups.  However, the 

distributions of the Tasks and HFE are clearly not normally distributed, thus a non-parametric approach, Kruskal-Wallis H 

test (KWH), is suggested for comparison purposes. When generic human Tasks A, B, and C are compared using a KWH with 

2 degrees of freedom, a p-value of 0.8813 is received.  Likewise generic human Tasks D, E, and F are also similar to one 

another; however, they are skewed toward an HEP of 0.  These tasks are compared to one another using a KWH with 2 

degrees of freedom the resulting p-value is 0.4027.  Both of the p-values are severely not significantly different as they are 

greater than 0.05. They are considered generic human tasks and should be very similar to one another.  Violin plots which 

display the distributions of Tasks A, B, C, D, E and F can be seen in Fig 2. 

 
Fig 2.  Violin plots of Tasks A, B and C assuming each PSF level is equally likely. Violin plots of Tasks D, E and F take into 

consideration PSF frequencies from Ref 4. Tasks A, B, C, D, E, and F are considered generic human actions and are 

simulated in the same manner, other than the PSF level frequencies.  Each task was sampled 5,000 times from each PSF with 

frequencies. 

 

Violin plots are displayed in Fig 2 and Fig 3, they are considered very useful for visualizing data because they are a 

boxplot with a histogram overlay. The boxplot identifies the quantiles, and the ends of the thick black bar in the middle of 
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each violin plot of Fig 2 identify the 25
th

 and 75
th

 percentile. The thin black line is the whiskers in the boxplot going from the 

25
th

 to the minimum and the 75
th

 to the maximum.  Lastly the white dot in the thick black part of the box plot symbolizes the 

median. The images in Fig 2 and Fig 3 do not display an exemplary violin plot, because the data is so severely skewed.  All 

analysis and graphical output were generated from R 2.2.3 (Ref 9). 

 

Additionally, some anomalies occur in the data.  Such anomalies occur when a PSF multiplier is P(F)=1 and when a HEP 

is greater than 1, even when the adjustment factor from equation (3) is use.  A PSF multiplier of P(F)=1 transpires in two 

PSFs: available time and fitness for duty. A P(F)=1 automatically pushes the HEP to 1; however, the approach to the 

aggregate functions in this case needs special consideration.  In order to quantify P(F)=1, equation (2) is solved for the 

respective PSF.  If P(F)=1 occurs for both available time and fitness for duty it is assumed that they have equal bearing on the 

impending failure. This is necessary so that the aggregate functions can be empirically evaluated.  An example of the 

quantification for the PSF multipliers is detailed in Table 2. 

 

Table 2. Example of how the multipliers are quantified when P(F)=1 is present for available time and fitness for duty. Grey 

rows have P(F)=1 and the white rows have the multiplier values subbed in for the P(F)=1. 

Available 

Time 
Stress Complexity 

Experience 

/ Training 
Procedures 

Ergonomics / human 

machine interface 

Fitness for 

Duty 

Work 

Process 
HEP 

P(F)=1 1 5 1 1 1 5 1 1 

40 1 5 1 1 1 5 1 1 

0.1 2 2 1 50 0.5 P(F)=1 1 1 

0.1 2 2 1 50 0.5 100 1 1 

P(F)=1 5 5 0.5 50 10 P(F)=1 5 1 

0.016 5 5 0.5 50 10 0.016 5 1 

 

Additionally there are combinations of PSF that can calculate a HEP greater than 1, when this occurs, the HEP is assumed to 

remain 1.  The PSF multipliers remain at their original values and are not altered.  An example of PSF multipliers producing 

an HEP greater than 1 is displayed in Table 3. 

 

Table 3. Example of SPAR-H multipliers that the produced HEP is greater than 1. 

Available 

Time 
Stress Complexity 

Experience 

/ Training 
Procedures 

Ergonomics / 

human machine 

interface 

Fitness 

for Duty 

Work 

Process 
HEP 

1 1 1 0.5 50 50 1 1 1 

1 1 1 1 50 50 1 1 1 

 

Specifically for the combination of PSF multipliers in Table 3 the adjustment factor from equation (3) is not applied because 

the number of negative PSFs is only 2.  The HEPs would have been 1.25 and 2.5 respectively.  However the HEP is assumed 

to be 1, as a human action cannot have a failure likelihood greater than 1. 

 

Multiple tasks are often grouped as HFEs and SPAR-H assumes the unit of analysis is the HFE.  If HFE1 is comprised of 

Tasks A, B, and C (see Fig 1), there are then several ways to calculate the HFE based on a PSF multiplier or group of PSF 

multipliers.  The maximum HFE calculation selects the largest PSF level values across three tasks.  The assumption is that 

the analysis should capture the strongest manifestation of the PSF, even if the PSF changes across the evolution of the HFE. 

An example of this would be when a human reliability analyst decides to make a conservative or worst case estimation of the 

a changing set of tasks within a single HFE.  

 

This HFE is then repeated with each respective aggregate function being applied at the PSF level across three tasks for: 

median, average, and multiplication.  The methods are very similar to what intuition would produce when executed.  The 

median takes the median PSF multiplier of three tasks.  The average, the average of three tasks, and the multiplication 

approach takes the product of three tasks for a single PSF.  An example of these aggregate function applied to three tasks for 

a single PSF, stress, is available in Table 4. The distributions for the different HFE aggregate functions can be seen in Fig 3. 
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Table 4. An example showing how aggregate functions are applied to the stress PSF of tasks A, B, and C.  The same 

aggregate functions are used at the PSF level to quantify the HEP of tasks D, E, and F. 

Available 

Time
StressComplexity

Experience 

/ Training
Procedures

Ergonomics / 

human machine 

interface

Fitness for 

Duty

Work 

Process
HEP

Max 

Stress

Median 

Stress

Average 

Stress

Multiplication 

Stress

Task A 1 5 1 3 5 50 1 1 0.79

Task B 1 1 1 0.5 20 1 5 5 0.2

Task C 1 5 2 0.5 1 1 40 5 1

5 5 3.6667 25

 
 

 
Fig 3. Violin plots of HFEs calculated in four different methods using the aggregate functions. (Left) Tasks generated from 

PSF levels that are equally likely, then the aggregate functions are applied.  (Right) Tasks generated from PSF levels that are 

informed from the HERA data (Ref 4). The Maximum (max) calculation selects the largest of the three tasks. Median (med) 

selects the median value of the three tasks.  Average (avg) calculates the average of the three tasks.  The left is calculated 

using frequencies from Ref 4, while the right is calculated assuming a uniform frequency for all PSF levels. 

 

Tasks A, B, C and their respective aggregate functions were compared using a KWH.  This was then repeated for tasks D, E, 

and F and their associated aggregate functions.  The comparisons, degrees of freedom, chi-square, and p-value for these 

analyses are displayed in Table 5. 

 

Table 5. Results from the comparison using KWH. 

Comparison Degrees of Freedom (df) chi-square p-value 

Task A, B, C, & Max 3 4862.2  < 0.001 

Task A, B, C, & Median 3 137.12  < 0.001 

Task A, B, C, & Average 3 3102.8  < 0.001 

Task A, B, C, & Multiplication 3 3764  < 0.001 

Task D, E, F, & Max 3 3950.4  < 0.001 

Task D, E, F, & Median 3 1136.2  < 0.001 

Task D, E, F, & Average 3 1387.3  < 0.001 

Task D, E, F, & Multiplication 3 4415.5  < 0.001 

 

Tasks A, B, C and Maximum HFE were compared using a KWH analysis and received p-value < 0.001 with 3 degrees 

of freedom (df).  Tasks A, B, C and Average HFE were compared using a KWH and received p-value < 0.001, df=3.  Both 

of these p-values indicate that Maximum HFE and Average HFE are significantly different from Tasks A, B, and C (Fig 4).  

Additionally, Tasks A, B, C and Median HFE were compared using a KWH and received p-value < 0.001, df=3.  While still 

significant, visually and empirically Median HFE is the closest in distribution to the three tasks.  The same results are found 

for Tasks D, E and F and their associated aggregate functions. Median PSF multipliers are the closest approximation to the 

task. A graphical representation can be seen in Fig 4.  Generally, Maximum HFE overestimates Tasks A, B, and C and 

Average HFE underestimates Tasks A, B, and C.  Again all 14 distributions, Task A, B, C, D, E, and F and their associated 

Max HFE, Median HFE, Average HFE and multiplication HFE can be seen in Fig 4. 
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Fig 4. (Left) HFE Maximum, and HFE Average, HFE Median, HFE Multiplication, Tasks A, B, and C, with frequencies 

from a discrete uniform distribution.  (Right) HFE Maximum, and HFE Average, HFE Median, HFE Multiplication, Tasks D, 

E, and F with frequencies from Ref 4. Please note the large difference in the y-axis range. 

 

IV. CONCLUSION 

 

This exploration into dynamic subtask to HFE task translation has provided examples of the process using the SPAR-H 

method.  Dynamic task modeling is very difficult to peruse through the framework of SPAR-H; distributions associated with 

each PSF need to be defined, and may change depending upon the scenario.  However it is very unlikely that each PSF level 

is equally likely as the resulting HEP distribution is strongly centered at 100%, which is unrealistic.  Continuous distributions 

need to be identified for PSFs, to facilitate the transition to dynamic task modeling.  Additionally discrete distributions need 

to be exchanged for continuous so that simulations for the dynamic HFE can further advance. 

 

The SPAR-H decomposition shows approximation methods (median, average, max, multiplication) and applying SPAR-

H to the sub-task level so a time series could be built.  Based on these results SPAR-H quantification breaks down if the task 

level is not carefully controlled.  Conceptually it is difficult to proceed with a dynamic model in SPAR-H given one of the 

PSFs is available time, rather than time impacting other relevant PSFs.  The inaccuracy in SPAR-H HEP quantification only 

exists at the subtask modeling for dynamic HRA.  The current level of analysis in existing HRAs using the method as defined 

would cause no need to worry about this issue nor need to revisit their quantification. It is expected that the concerns with 

ensuring the correct level of task decomposition for quantification apply across a wide variety of HRA methods beyond 

SPAR-H. 
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