
 1  

 

CHARACTERIZATION OF EXTREME/RARE EVENTS AND DATA ANALYSIS 

 

 

 

 
Zhigang Wei

1
    Kamran Nikbin

2
    Limin Luo

1
    Litang Gao

1
 

 
1
Tenneco Inc., Grass Lake, Michigan, USA 

2
Department of Mechanical Engineering, Imperial College London, UK 

 

 

 

ABSTRACT 

In this paper the fundamental probability concepts and two commonly used probabilistic distribution functions, i.e. the 

Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An events quadrant is subsequently 

established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the 

key for a quantitative measurement, is also discussed based on the framework of probability diagram. Four case studies, i.e. 

vehicle road test score, the fatigue life distribution of a metallic material, the city population distribution in 3 countries, and 

the earthquake distribution worldwide and in the USA, are provided to demonstrate the probabilistic approaches on events 

characterization and data analysis. Two possible holistic mechanisms, i.e. equilibrium and evolution based mechanisms, for 

empirical distributions are provided in the Appendices.  

1. INTRODUCTION 

A probabilistic distribution function roughly consists of two parts: the middle and the tails. Based on the contribution of 

the tails to the overall damage or impact, probabilistic events can be divided into two categories: (1) extreme/rare events, and 

(2) spectrum events [1]. The damage caused by the extreme/rare events, such as 100-year flood or mega-earthquake or nuclear 

accident etc. is controlled by the tails. By contrast, the damage caused by the constituents in the spectrum events is 

comparable, oftentimes, dominated by the mean behaviors. The two categories of the probabilistic events are different in 

nature. How to characterize and categorize these probabilistic events and subsequently analyze the data are critical to 

probabilistic risk and safety management [2]. 

The traditional continuous two-parameter normal, lognormal, and Weibull distributions are often used to describe the 

probabilistic distribution of spectrum events such as fatigue life. Since these functions have either infinite lower bound or 

infinite upper bound, or both, they are not capable to accurately describe the tail behaviors though they are often used in 

practice. To properly overcome the shortcomings of the two-parameter distribution functions, multiple-parameter distribution 

function which considers the tail behaviors have been developed [1]. For the extreme events which are controlled by the tail 

behavior, the conventional distribution functions do not work well. Other distribution functions such as the Pareto power law 

and exponential functions are more appropriate. The difference and similarity between the functions for spectrum events, such 

as Weibull, and the functions for extreme/rare events, such as Pareto, and the relationship between them is of significant 

importance in fundamentally understanding of the probabilistic events and in practical applications. 

It is well known that many phenomena in both the natural and social sciences have power law statistics (Pareto 

distribution). The phenomena include city sizes, incomes, word frequencies, earthquake magnitudes, and many other natural 

and manmade engineering events [3]. A power-law distribution implies that small occurrences are extremely common, 

whereas large instances are extremely rare. However, it has been found that despite the fact that a power law models the tails 

of the empirical distribution well, the largest events are significantly outlying, meaning much larger or smaller than what 

would be expected under the power law. Such events are interpreted as “Dragon Kings” as they indicate a departure from the 

generic process underlying the power law [4, 5]. The extreme/rare events are difficult to understand in their nature and are 

traditionally treated as “Black Swan” phenomena [6] meaning they rarely happen, with significant consequences when they 

happen, but are unpredictable. However, since these phenomena bear significant consequences, deep understandings of these 

“Dragon Kings” behaviors and substantial development of the related predictive tools would be highly demanded [4, 5]. 

In this paper, the general probabilistic description of events is given first, with emphasis on the Weibull and Pareto power 

law distributions, their relationships, similarities and differences. Level of measurement, which is fundamental in 

quantitatively assessment of probabilistic events is also reviewed and discussed. Events categorization based on 

commonality/rarity and impact/effect are described subsequently and an events quadrant is proposed for ease of events 

categorization. Finally, several examples are provided to demonstrate the concepts and ideas developed in this paper.   
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2. CHARACTERIZATION OF PROBABILISTIC EVENTS 

2.1 Description of a probabilistic event and level of measurement 

Probabilistic approaches are more appropriate than the deterministic approaches to describe the natural and engineering 

world, which contains a wide variety of uncertainties. The traditional deterministic approaches produce exactly the same 

result no matter how many times the event is repeated under the same condition. Probability is a measure of likelihood that an 

event will occur, and it is quantified as a number between 0 and 1. The higher the probability of an event, the more certain 

that the event will occur. 0 indicates impossibility and 1 indicates certainty. The probabilistic behavior of an event can be 

described by several parameters as schematically shown in the probability-variable ( xP  ) diagram, Fig.1. In Fig.1 x
 

along the horizontal axis represents the variable of interest while P  along the vertical axis represents the cumulated 

distribution function (CDF), which relates the probabilistic density function (PDF)  xp
 
through    

x

a
xpxP  and 

    
b

a
xpbP 1 . The lower limit a

 
and the upper limit b  are finite values for most of the real problems. The infinites 

a
 
and b  are often a mathematical idealization.  

 
 

Fig.1 Schematic of relationship among several probabilistic measures. 

 

For a sequence of n
 
independent and random tests, there will be a corresponding discrete sequence of values of x , say 

1x , 
2x ,… 

nx  (ranked in an ascending order). No matter what the  xp  looks like,  xP  can always be estimated 

based on the ranked data. The accuracy of the estimation depends on the sample size and the estimation model. For a given 

reasonably accurate model, the larger the sample size, the more accurate the estimated  xP . The simplest estimation of 

 xP
 
is ni [7], which obviously has some issues. For example, when 0i  and ni  , the formula results in 

nxP 1)( 1   and 1)( nxP , which contradicts the fact that any randomly generated data can be close to but never reach 

1P . Similarly, several other simple formulae such as   ni 1 ,   ni 21 , and  1ni  have similar issues [7]. Based 

on the cumulative binomial distribution and median rank (MR) formula, the so called Benard’s approximation, Eq.(1), has 

been developed and now widely used in industry to estimate  xP [7]. 

 
4.0

3.0






n

i
MRxP i  

                  (1)
 

where n  is the total number of tests and i  is the rank order number. It should be noted that the randomly generated data as 

projected onto the vertical axis P  is uniformly distributed so that the binomial distribution can be assumed regardless of the 

information about  xp . It should be emphasized here that the generation process of uniformly distributed random number is 

also the first step in Monte Carlo simulation for generating random number for any specific distributions, such as Weibull or 

Lognormal. The working mechanism of creating a probability plot using the median rank approach is schematically illustrated 

in the xP   diagram shown Fig.1. The distribution of  xp  is determined by the location of the data on x  axis, which 

are obtained by vertically projecting the data located on the xP   curve, which are initially projected horizontally from the 

uniformly generated data on the P  axis. Corresponding to the uniform distributed data points on the vertical axis P , the 
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intervals between the adjacent limits on x  axis are unequally spaced with the dense segments near the peak of the  xp  

curve. The segments become coarser as the distance from the peak goes further from the peak. 

The exact forms of
 

 xP  and  xp  also depend upon the level (unit) and the scale of the x
 
axis. Level of 

measurement or scale of measure is a classification that describes the nature of information within the numbers assigned to 

variables. Some physical quantities, such as cycles to failure, energy, city population etc., can be directly used. The use of unit 

in log or exponential form and other objective and subjective measurements are also very common. Oftentimes, classification 

with 3-, 4-, 5-, 10-, 12-, 100- level measures are frequently used for ease of communication and simplicity. For example, 

Beaufort wind force scale (0-12) is an empirical measure that relates wind speed to observed conditions at sea or on land. The 

wind speed on a Beaufort scale (B) is based on the empirical relationship: 23836.0 BV   m/s. Richter magnitude scale for 

earthquake assigns a magnitude number to quantify the energy or moment released by an earthquake. Richter scale is a base-

10 logarithmic scale, which defines magnitude as the logarithm of the ratio of the amplitude of the seismic waves to an 

arbitrary, minor amplitude. Earthquakes are classified as moderate if their magnitude is in the range of 5-5.9, strong if the 

magnitude is in the range of 6-6.9, major if the magnitude is in the range of 7-7.9, and great if the magnitude is 8 or larger [8]. 

The decibel (dB) is also a logarithmic unit used to repress the ratio of two values of a physical quantity, often power or 

intensity. The Numeric Rating Scale (NRS-11) is an 11-point scale for patient self-reporting of pain. The FICO credit scores 

are designed to measure the risk of default by taking into account various factors in a person's financial history. The generic or 

classic FICO score is between 300 and 850. There are some other measures without numbering system but with color to 

represent severity level. For example, the US Homeland security advisory system is a color-code terrorism threat advisory 

scale: Green (Low), Blue (Guarded), Yellow (Elevated), Brown (High), and Red (Severe). A similar scale is also used in risk 

level characterization: Low (Green), Medium (Yellow), and High (Red). Clearly, different measures of the variables result in 

different distributions. Therefore, the empirical interpretation of the probabilistic behavior must be consistently based on a 

certain level of measurement. The commonly used Weibull distribution for spectrum events and the Pareto distribution for 

extreme/rare events are described below. 

 

2.2 Weibull distribution functions 

In many engineering applications, Weibull distribution functions are often used to describe a spectrum load, with which 

all of the loading spectra under normal operating conditions are evaluated so that the dominating contributions can be 

properly considered in product design and validation [1]. These loads include the loads experienced by the components in 

nuclear power plants, ground vehicles, and landing gears of aircrafts. A spectrum event, e.g. the fatigue life distribution from 

the left tail to the right tail, often shows a lower bound and an upper bound, meaning there is no failure below the lower bound 

while there is no survival beyond the upper bound. In these cases, the introduction of the threshold parameters, i.e. a floor 

parameter for the lower bound and the ceiling parameter for the upper bound, are necessary. The floor parameter is important 

in product validation and quality control while the ceiling parameter is directly related to lifecycle management, new product 

development, and profit generation for the manufactures.  

The general five-parameter Weibull CDF [1] shown in Eq.(2) is such an example that can cover both the middle and the 

tails (both left and right) properly. 
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In Eq.(2), a  and b  are the floor and ceiling parameters for characterizing the lower and the upper bound thresholds. 

1  and 
2  are two shape parameters respectively controlling the shape of the distribution at the left and the right tails.   

is the characteristic parameter controlling the location of the overall distribution function. The corresponding PDF can be 

easily obtained as     dxxdPxp   but will not be elaborated here. 

When   21
 and   , Eq.(2) can be reduced to the four-parameter Weibull distribution (omitted here). When 

1 xb , the four-parameter Weibull distribution can be reduced to the three-parameter Weibull distribution, Eq.(3). 
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When 0a , the three-parameter Weibull distribution can be further reduced to the conventional two-parameter (2P) 

Weibull distribution, Eq.(4). 
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It should be noted that similar kinds of four- and five-parameter Weibull distributions have been developed and applied to 

the strength distribution of glass [9], the fatigue growth rate [10], and tensile strength of optical fibers [11]. It is also noted 

that the two-parameter Weibull distribution can be reduced to the Rayleigh distribution when 2 , and to the exponential 

distribution when 1 .  

 

2.3 Pareto (power law) distribution function 

When dealing with crises and extremes, power law tails are the “normal” case [3]. The unique property of power law is 

that they are scale-invariant/self-similar/fractal. This property implies that all events, both large and small, are generated by 

the same mechanism. A continuous variable with a power-law distribution has a probability  dxxf  of taking a value in the 

interval from x  to dxx  , where    Hxxf  with  0  [3]. There must be some lowest value minx  at which the 

power law is obeyed, and for practical reasons, only the statistics of x  above this value is considered. The constant in the 

power-law is given by the normalization requirement that   1
min




x
dxxf . Then,   1

min1   xH  must be held. Finally, the 

Pareto PDF and CDF can be expressed in Eq.(5). 
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It should be noted that there is no cut-off as an upper bound in Eq.(5). Fortunately, in most cases the cutoff effects can be 

ignored for large sample sizes, in which the PDF value at
maxx  is extremely small. 

The fit parameters of the Pareto distribution can be derived by applying the least squares method or the maximum 

likelihood method. However, results show that the maximum likelihood method provides a better data correlation than the 

least squares method [3]. The natural log likelihood function is shown in Eq.(6).  

 






















 




n

i x

x

x
LnL

1 minmin

1



      `     (6) 

The maximum likelihood is found by differentiating  L  in Eq.(6) with respect to parameter  , setting the result 

equal to zero. Upon rearrangement, this yields the estimator equation 
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Where  nixi ,...,1  are the n  data points for 
minxxi  . In practical situations 

minx  usually corresponds not to the 

smallest value of x  measured but to the smallest for which the power-law behavior holds [3].  

Identifying power-law behavior is important but the process can be tricky [3]. The standard strategy makes use of a 

histogram of a quantity with a power-law distribution appears as straight line when plotted on logarithmic scales. However, 

bin size selection is always an issue for this treatment and noise can be generated that hinders the data interpretation. Another, 

and in many ways a superior, method of plotting the data is to calculate a CDF [3]. Instead of plotting a histogram of the data, 

a plot of the CDF, called complementary CDF (C-CDF) here, has a value greater than or equal to x :   '')( dxxfxCP
x


 . 

If the distribution follows a power law, then  

 1

1
)( 


 


x

H
xCP       (8) 

Thus, the C-CDF also follows a power law, but with an exponent of 1 , indicating a straight line on logarithmic 

scales, but with a shallower slope if the power law distribution is held [3]. This can be used as a check if a distribution follows 
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the power law distribution. But notice that there is no need to bin the data at all to calculate )(xCP . By its definition, 

)(xCP
 
is well-defined for every value of x  and so can be plotted as a perfectly normal function without binning. This 

avoids all questions about what sizes the bins should be [3].  

Finally, it should be noted that the 2P-Weibull, Eq.(4), and the Pareto, Eq.(5), are related. For example if x  is Pareto-

distributed with minimum 
minx  and exponent  , then  minln xxy   is exponential distributed with rate parameter  . 

Equivalently, if y  is exponentially distributed with rate  , then  yx expmin
 is Pareto-distribution with minimum 

minx  

and index  . Once again, an exponential distribution is a special case of 2P-Weibull when 1 . 

 

2.4 Characterization of extreme/rare events 

It is often desired to model extreme/rare events with a continuous distribution function. Generally, there are three ways of 

identifying extremes in a set of data, which could either be a time history or quasi-steady data: (1) peaks or valleys, Fig.2(a), 

(2) block maxima, where the maxima (or minima) in successive periods are selected, Fig.2 (b), and (3) peaks-over threshold, 

where the observations that exceed a given threshold are considered, Fig.2(c).  

 
(a)      (b)     (c) 

Fig.2 Schematic of extreme events (a) peaks, (b) block maxima, and (c) peak-over-threshold. 

 

It has been found that the distribution of peaks follows the Rayleigh distribution when the random data follows Gaussian 

distribution. The block maxima follows the generalized extreme value distribution, and the peak-over-threshold follows the 

Pareto power law distribution, Eq.(5)[12]. It is also found that the extreme value theory provides a statistical justification for 

the emergence of power laws as limiting behavior for extreme fluctuations [13]. It should be noted that some events may be 

very common, such as low amplitude fatigue vibration as experienced by a vehicle, but their impact might not be remarkable, 

whereas some events might not be very common, but their consequence might be significant, such as a mega-earthquake. 

Based on the combination of the commonality/rarity and the impact/effect an event can be roughly categorized into one of  

the four events as shown in the events quadrant shown in Fig.3.  

      
(a)                                                       (b) 

Fig.3 Schematic of (a) a PDF function in exponential or power law form and the corresponding damage per event (D/E), and 

(b) the events quadrant based on the combination of commonality/rarity and impact/effect. 
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Fig.3(a) shows a monotone decreasing probabilistic distribution function, which could be either Pareto type or 

exponential type. Therefore, common events occur on the left side and the rare events occur on the right side. Corresponding 

to it the curve of the damage per event (D/E) curve is also shown in Fig.3(a). Assume that the damage is a monotone 

increasing function of the magnitude of the variable, which is often the case such as the load for fatigue and the earthquake 

magnitude. Clearly, the event that happens on the right side shows higher impact than that on the left side. Fig.3 (b) shows 

four typical combinations of the events in terms of total damage (D): Quadrant-I: Rare-High Impact, Quadrant-II: Rare-Low 

Impact, Quadrant-III: Common-Low Impact, and Quadrant-IV: Common-High Impact.    

For fatigue failure, the event can be characterized by quantitatively evaluating a damage density function 

     SDSpSg  [1].  Sp  is the probabilistic distribution function of stress range and  SD  is the linearly accumulated 

damage per cycle 
fND 1 . The expected total accumulated damage within time T is 

         

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0

0

1
dSSpSTRE

C
dSSgTREDE m

m

m
 for a fatigue S-N curve 

m

fCNS 1 . 
fN  is cycle to failure and 

 RE  is rainflow counted cycle number in a unit time.  For the Pareto power-law distribution shown in Eq.(5)1, the damage 

density as a function of stress range can be expressed as 



 




 m

m
S

SC
Sg

1

min

1
)( [1]. Clearly, there are simply three scenarios 

for the Pareto power-law probability distribution: (1) increasing damage density with stress range S  when m , (2) 

decreasing damage density with stress range S  when m , and (3) a constant damage density with stress range S  when 

m . The implications of these observations are: for m , the load data at the right rail dominates the accumulated 

damage, whereas for m , the load data from the left tail are more damaging. These two cases represent the extreme/rare 

events at the tails. For m , the damage contributions from all constituent loads are comparable, so that it belongs to the 

spectrum loads category.  

 

3. CASE STUDIES AND THE RESULTS 

3.1 Case-I: Vehicle road test score 

The road test scores of more than 270 vehicles are collected and reported in the Consumer Reports’ comprehensive test 

program [14]. The scores are presented on a 100-point scale. The tests were based on the results from more than 50 individual 

tests and evaluations, including performance, comfort and convenience, fuel economy, and more [14]. In performance 

assessment, the vehicles are divided by category and ranked according to their overall test scores. The test vehicles in terms of 

categories are: electric cars/plug-in hybrids, subcompact cars, small 2-door cars, compact cars, midsized cars, large cars, 

luxury compact cars, luxury convertibles, luxury midsized cars, ultra-luxury cars, sports cars, wagons (all-wheel drive), small 

SUVs, midsized SUVs, large SUV, luxury compact SUVs, pickup trucks etc. [14]. Some models are included in multiple 

categories, as appropriate. Fig.4 shows the histogram of the road test scores of all of the vehicles. A histogram divides sample 

values into many intervals called bins. Bars represent the number of observations falling with each bin (its frequency).  
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Fig.4 The counted number at each vehicle test score in a bar chart form 
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From Fig.4 it is seen that more vehicles are located in the score range [60, 85], resembling the normal distribution but the 

distribution is bounded at both right and left sides. It should be noted that each subcategory may show different patterns. 

However, this paper does not attempt to investigate the subcategories because of very limited vehicle number in each 

subcategory. Overall, Fig.4 provides the general features and patterns of the distribution of the vehicles as well as provides 

the bounds of the scores in the tested vehicles. The measurement system is bounded at 100 at the right side, while the rest data 

are tailing off to the left. The best vehicle according to the scores is Tesla Model S P85D (100) in both the categories of 

electric cars/plug-in hybrids as well as ultra-luxury cars, followed by BMW 750i xDrive (99), BMW M235i (98). The vehicle 

with the lowest score is Jeep Wrangler Limited (20), which is followed by Mitsubishi Mirage ES (29). Even though 20 is the 

lowest value in the ranking, it does not mean it is the lower bound in the distribution. First, the test score could be worse. 

Second, for a vehicle, it must satisfy some basic functions and therefore, it could not get a 0 in the score. This primarily 

depends on how the score system is pre-determined. Furthermore, no quantitative probabilistic fit is attempted for this set of 

data because the scores contain subjective measures, such as comfortableness, which is tester dependent. 

 

3.2 Case-2: Fatigue data of 2024-T4 

A set of high-cycle fatigue data at room temperature [1] with sample size of 30 for 2024-T4 is selected for fitting the 

Weibull distributions. The probability plots estimated using Minitab [15] for the two- and three- parameter Weibull functions 

are shown in Fig.5 (a) and (b). The values of fit parameters for the set of test data are listed in Fig.5.  
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(a)                                                 (b) 

 

 
                         (c) 

 Fig.5 Probability plots of (a) two-parameter Weibull distribution, (b) 

three-parameter Weibull distribution, and (c) four- and five-parameter 

Weibull distributions for a set of 2024-T4 data. 

Distribution 

functions 

Parameters  

2P-Weibull 

  1.74758 

  2092213 

AD statistic 1.246 

3P-Weibull 

  0.908975 

  1510218 

  452578 

AD statistic   0.526 

4P-Weibull 

a  463000 

b  9760000 

  0.77 

  0.21 

5P-Weibull 

a  460000 

b  10000000 

1  0.80 

2  0.62 

  5.2 

Table 1 The fit of 2P-, 3P-, 4P-, and 5P Weibull distribution 

functions for the high-cycle fatigue data of 2024-T4. 
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The data of cycles to failure show a large scatter. The three-parameter Weibull distribution has a much better fit in terms 

of visual examination and the AD statistic value. The AD values for the two- and the three-parameter Weibull distribution 

functions are, respectively, 1.246 and 0.526. The improved fit quality is particularly prominent at the left tail indicating the 

need of introducing the threshold parameter as the lower bound. From Fig.5 (b) it can be seen that even with 3-P Weibull 

distribution, the right side does not fit well and the predicted curve is below the data. For this data pattern, a more parameter 

controlling the local behavior of the data at the right side may be required. The probability plots calculated from the four- and 

five- parameter Weibull distributions are plotted in Fig.5(c). It is clear that the introduction of the fourth and the fifth 

parameters into the empirical Weibull distributions significantly increase the quality of fit. All the fitting parameters are listed 

in Table 1. 

 

3.3 Case-III: City population 

The population distribution of cities in 3 countries: China, the USA, and the UK, is analyzed here. The data are taken from 

the website www.citypopulation.de, which has compiled a large amount of data from various sources. The histograms of the 

city population of the 3 countries are shown in Fig. 6(a), (b), and (c), respectively. Clearly, the small cities are much more 

than larger cities. The city population in China was reported in November 1, 2010 and the largest city is Shanghai 

(20,217,748), followed by Beijing (16,446,857). The city population in the USA was reported in July 1, 2015, and the largest 

city is New York (8,009,185), followed by Los Angeles (3,485,398). The city population in the UK was reported in June 30, 

2011, and the largest city is London (8,618,552), followed by Birmingham (1,115,791). In order to test if the Pareto power 

law distribution fits the data well, the complementary cumulative distribution function (C-CDF), Eq.(8), as a function of city 

population are shown in Fig.7 in a log-log plot. It is found that the data of the USA shows a decent linear behavior. By 

contrast, the city population of China and the UK in particular show a good linearity at small city population but deviate from 

the linearity at large city population. Overall, the Pareto law can be used to fit the data and the plots are shown in Fig.8. The 

median rank results obtained using Benard’s approximation, Eq.(1), and the predicted results match very well. The values of 

the fit parameter   and the related information are listed on Table 2. 
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Fig.6 The histograms of the city population in (a) China, 

(b) the USA, and (c) the UK. 

Fig.7 The complementary CDF as a function of 

city population in the three countries: China, the 

USA, and the UK. 
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Table 2 The population in the major cities in China, the USA, and the UK with power law fit. 

Country The number of cities, n  
minx    

China 128 750000 2.2595 

USA 315 100000 2.4359 

UK 198 50000 2.3690 

 

     
(a)                                              (b) 

 
(c) 

Fig.8 The CDF as a function of city population in the three countries: China, the USA, and the UK. 

 

4.4 Case-IV: Earthquakes 

Worldwide earthquake with magnitude of 6.5 or above and the conterminous USA with magnitude of 4 or above are 

analyzed here. The conterminous U.S refers to a rectangular region including the lower 48 states and surrounding areas which 

are outside the U.S. The data are taken from the website http://earthquake.usgs.gov/earthquakes/. The worldwide earthquakes 

collected occurred between January 1, 1900 and July 17, 2016. The conterminous USA earthquake occurred between January 

1, 1980 and July 17, 2016. The largest recorded earthquakes worldwide during this time period is the one that occurred in 

Chile in 1960 with magnitude of 9.6. The histograms of the two earthquakes are shown in Fig.9 (a), and (c), respectively. 

Fig.9 (b) is the same as Fig.9(c) but it starts from magnitude of 8.0, so that the events that are too small to be shown in Fig.9 

(a) can be revealed. Similar to the city population, the small earthquakes occur much more than larger earthquakes. In order to 

test if the Pareto power law distribution fits the data well, the complementary cumulative distribution functions (C-CDF) as a 

function of earthquake magnitude are shown in Fig.10 in a log-log plot. It is found that the data of the worldwide earthquake 

shows a good linear behavior, but the conterminous USA shows a clear “bending down” phenomena. The Pareto law is used 

to fit the data and the plots are shown in Fig.11. The values of the fitting parameter   and related information are listed on 

Table 3.  

http://earthquake.usgs.gov/earthquakes/
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Fig.9 The histograms of the earthquakes occurred (a) 

Worldwide with 5.6M , (b) Worldwide with 0.8M , 

and (c) the conterminous USA with 0.84  . 

 
(a)                                                  (b) 

Fig.11 The CDF as a function of earthquake magnitude of (a) Worldwide with 5.6M , (b) the conterminous USA with 

0.4M . 

 

Fig.10 The complementary CDF as a function of 

earthquake. 
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Table 3 The fit values of parameter   for the earthquakes 

Earthquake region The number of earthquakes n  
minx    

Worldwide 3919 6.5 18.4903 

Conterminous USA 3906 4.0 11.3662 

 

4. DISCUSSION 

The earthquake in conterminous USA and the city population in the UK and China show the “Dragon King” phenomena. 

Definitely, uncertainty is higher for extreme events such as mega cities and earthquakes. However, the uncertainty in the 

extreme large events cannot not completely conceal the general trends as shown in Fig,7 and Fig.10. In order to empirically 

describe the “Dragon King” phenomena the power law distribution should be improved by introducing more parameters, 

which could provide better fit to the observed data. The size of the mega city is much dependent on the location, climate, 

geopolitical condition, and policy. Global occurrence of magnitude 9 earthquakes is 1-3 per century [16, 17], so longer time is 

required to collect more reliable data, which limits the capability in prediction and forecasting of the extreme/rare events. 

Finally, the cumulative distribution function is not visually sensitive of the “Dragon King” events. This point can be clearly be 

reflected from the fact that the CDF generally provides satisfactory visual data fits for all of the data studied even though the 

C-CDF plots show clear “Dragon Kings” phenomena. Therefore, other measures such as the probabilistic density distribution 

should be used as a complementary tool.  

 

5. CONCLUSIONS 

1. A probabilistic event can be categorized as extreme/rare or spectrum events. Extreme/rare events are often located at 

the right tail of a probabilistic distribution.  

2. The mean behavior of a spectrum event can be described using the conventional two-parameter distributions such as 

Weibul distribution; the four- and five-parameter Weibull functions provide the capabilities to accurately model the 

probabilistic distribution from the left tail to the right tail; the peak-over-threshold events can often be modeled with 

Pareto distribution. 

3. Based on the combination of commonality/rarity and impact/effect, probabilistic events can be categorized into four 

events quadrants: (a) Quadrant-I: Rare-High Impact, (b) Quadrant-II: Rare-Low Impact, (c) Quadrant-III: Common-

Low Impact, and (d) Quadrant-IV: Common-High Impact. The damage density parameter can be effectively used to 

differentiate the spectrum events and extreme/rare events.  

4. Four case studies, i.e. vehicle road test score, fatigue life data, city population in three countries, and the earthquake 

worldwide and in conterminous USA are provided to demonstrate the concepts and procedures developed in this 

paper. 
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Appendices: Two underlying mechanisms for the Pareto power law distribution 

Appendix-I: Equilibrium based distribution 

Many attempts have been made to find the underlying physical bases of some specific probabilistic distribution functions. 

For example, the "bean machine" or "Galton board" is believed to be the first physical model that can generate the normal 

distribution [18]. Many efforts have been made to reveal the underlying mechanisms of normal, lognormal, and Weibull 

distribution functions [18-21]. The ubiquity of power-law behavior in the natural world has led many scientists to wonder 

whether there is a single, simple, underlying mechanism linking all these different systems together. Several candidates for 

such mechanisms have been proposed, going by names like “self-organized criticality” and “highly optimized tolerance” [3]. 

However, it should be emphasized that all of the models described above are based on a specific distribution function with a 

specific physical process such as crack initiation and growth or fragmentation.  

Recently, a new approach [22] has been developed and all of the available probability density and distribution functions 

can be conceptually considered as a result of the equilibrium process from two competing driving forces: a short-range 

repulsive force and a long-range attractive force with proper boundary conditions and other constraints imposed. With this 

concept, a particular driving force model has been developed below: an elastic spring (inverse spring) model is selected as the 

short-range force, which can be applied only to the neighboring masses; a body force, exerted on a mass point with x  as the 

coordinate, is selected as the long-range force with the attractor located in 
0x  of the field. Fig.A1-1 schematically illustrates 

the model and the equilibrium mechanism. In real applications  xp  represents a probability density function and x  

represents a variable of interest such as cycle to failure in fatigue tests. The equilibrium state can therefore be uniquely 

obtained by solving the following system of several governing equations: (1) a conservation equation, Eq. (A1-1), (2) a 

constitutive equation, Eq.(A1-2), and (3) an equilibrium equation, Eq.(A1-3). With these three equations the long-range force, 

Eq.(A1-6), can be determined if other conditions are provided or a probability density or distribution function, Eq.(A1-7), can 

be established when the two forces are given. 

 

Conservation equation  

  Ndxxn
b

a
           (A1-1)1 
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or 

  1 dxxp
b

a
          (A1-1) 2 

Where  bxa  and     Nxnxp  ,  xn  can be considered as the number of mass points per unit length 

and N is the total points.  

 

 
 

Fig.A1-1 Equilibrium analogy of distribution functions 

 

 

Constitutive equation 

   xLxF 1            (A1-2) 

where  xL  is the distance between the two adjoining masses and K  is the stiffness of the spring and can be considered as 

a constant. The important characteristics of the spring model is 0F  as   xL  and F  as   0xL . 

Therefore, this elastic model can be called the reverse spring model, which is different from the conventional spring model, 

i.e.    xKLxF  . 

 

Equilibrium equation 

With the force analysis of a segment length dx , Fig.A1-1, we have the following force equilibrium equation  

 
 

      0





 dxxnxfxFdx

dx

xdF
xF       (A1-3) 1 

or 

 
    0 xnxf

dx

xdF
         (A1-3) 2 

where  xf  is the body force caused by the long-range force exerted on each small mass. 

With the constitutive equation, Eq.(3), and the fact that  

 
 xn

xL


1
 or 

 
 xMn

xL


1
            (A1-4) 

and then substituting Eq. (A1-4) into Eq. (A1-3) 2, we have 

 
    0 xpxf

dx

xdp
D               (A1-5) 

Where M  and KMD   are constants.  

Therefore, from Eq. (A1-5) the long-range body force can be expressed as Eq.(A1-6). 

 
 

  0 xp
dx

xdp
Dxf             (A1-6) 

the minus sign here represents the force direction. 

If both short-range and long-range forces are given, the probability density functions can be derived from Eq. (A1-6) as 

    





  Cdxxf

D
xp

x

a
''

1
exp                    (A1-7) 
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where C  is a constant, which should be determined by applied constraints such as given boundary conditions and 

conservation requirement. As a specific example, the long-range forces derived from Eq. (A1-6) for Pareto power law 

distribution, Eq.(6), is   1 xDxf  .  

Appendix-II: Evolution based probabilistic distribution 

A specific distribution function of an event such as the city population and cycles to failure can be treated as a result of 

evolution from a previous state by following a given evolution law. Mathematically, the problem is equivalent to seeking a 

target distribution function  yPY
 for a given initial distribution function  xPX

 and a transformation function  xy  . 

The procedure [23] is well developed and has been applied to several applications [24, 25] and is briefly described below.  

The target distribution function  yPY
 can be expressed as 

    yXPyPY         (A2-1) 

No matter,  xy   is a strictly monotone increasing or decreasing function,  yx   is a unique inverse function 

and  

 
 

  
 

dy

yd
yp

dy

ydP
yp X

Y
Y


      (A2-2) 

Fig. A2-1 schematically illustrates the process of function evolution. With the variable transformation technique shown in 

Eq.(A2-2), the distribution function   1Txp  at dimensionless time 1T  is the result evolved from a distribution 

function   1Txp  at a previous dimensionless time 1T  under a given evolution law. The process is reversible. 

 
 

Fig.A2-1 Evolution of an exponential/power law type distribution function 

 

An example is given here to illustrate the process. Assume a linear evolution law exists, and the relationship between the 

value of the independent variable at a historical point (
Hx ) and that at current point x  is   TxTxH   or 

  TxNx H . Then we have   Tdxxd HH 1 . Finally, according to Eq. (A2-2) the distribution function at a 

historical point 
Hx  can be derived as Eq.(A2-3). 

 















minmin

1

Tx

x

Tx
xf H

H
                     (A2-3)1 

 
1

min1















H

H
x

Tx
xF      `(A2-3) 2 

When the dimensionless parameter 1T , Eq.(A2-3) is recovered to Eq.(6) in the main text. Eq.(A2-3) indicates that for 

the linear evolution law, the distribution function is still a Pareto power law function with a lower bound parameter of 
minTx .  


