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In situations where it is impracticable to calculate a quantity analytically, estimation via elicitation of subject matter experts, 

SMEs, may be used.  Since such SME subjective judgments may have life and death, economic, or political impacts, their 

assessment in terms of reliability needs to be scrutinized.  This assessment was examined via a set of research questions, 

applied to a set of meta-data containing elicited predictions and realized values.  Two of the research questions are: 

1)  Does the type of quantity estimated, "physical"—variables having units of mass, time, etc.—or "probabilistic"—variables 

representing likelihood of an event, or a frequency of occurrence—matter?  Percentiles, standard deviations or ratios of 

physical quantities were considered to be physical.  An example of a physical variable in the meta-database is maximum 

pumice clast dimension in mm; a probabilistic variable is the likelihood that an attack on a computer information system will 

be successful.  If we disaggregate the meta-data into physical and probabilistic-related subsets, does the range of 

multiplicative factor bounding the estimate change? 2) Given a point estimate elicited from an expert, what upper and lower 

bound multiplicative factors should be applied to that estimate, in order to bound it in an interval—with a corresponding level 

of probability?   

 

The Figure of Merit (FOM) was the multiplicative error e/e', between prediction, e' and realized value, e.  The meta-data was 

grouped into sets of related variables called themes.  Weights were applied to each (e,e') “observation” in order to equalize 

the total weight applied to each theme, to each variable in a theme, and to each observation within a variable.  Comparison of 

the empirical CDFs incorporating these weights, and corresponding to the two data types, showed that the type of quantity 

estimated does make a difference, with the probabilistic predictions showing greater multiplicative error.   

Additionally, quantile regression incorporating the weights was applied to fit a polynomial predicting e' given each e, to the 

meta-data.  This facilitated exploration of the impact of level of e, on the extent of multiplicative error.  For physical data, 

over values of e representing the 75th to the 5th percentile, the likelihood of a factor-of-two error ranged from approximately 

30% to 50%, split approximately equally between over- and under-estimation.  At the 90th percentile value of e, under- rather 

than overestimation was fifty percent more likely to occur (15% versus 10% probability of occurrence, respectively); the total 

likelihood of a factor-of-two error was 25% for this case.  For probabilistic data, at the 5th percentile value of e (0.00001), e' 

was at least twice as likely to over-estimate rather than underestimate e by a factor of two (total probability of occurrence 

approximately 90%; there was nearly a 60% chance of a factor of ten error).  The likelihood of occurrence decreases to 

approximately 80% (60%) at the 10th percentile (median) value of e, 0.001 (0.1); while the likelihoods of factor-of-two error 

are balanced for e=0.1, e' is eighty percent more likely to underestimate rather than overestimate e by a factor of five (16% 

versus 9%). 

 

I. INTRODUCTION 
Policy makers have used expert judgment opinions elicited from experts, in the form of probability distributions, 

quantiles or point estimates, as inputs to decisions.  These decisions can have significant economic or even life and death 

consequences.   The 1978 report to the U.S. Nuclear Regulatory Commission1 stated that “faced with the problem of 

estimating the probability of occurrence of an extremely rare event - core melt – in a system of great complexity, a nuclear 

power reactor”, where the event had “never occurred in a commercial reactor”,  and system complexity rendered “a complete 

and precise theoretical calculation impossibly difficult”, it was “necessary to invoke simplified models, estimates, 

engineering opinion, and in the last resort, subjective judgments.”  Such subjective judgments include point estimates and 

probability distributions.  Formal elicitation of such estimates from Subject-Matter Experts (SMEs) are denoted as expert 

judgments.  When these point estimates or probability distributions from multiple SMEs are combined, an aggregated expert 

judgment is formed. 

A “set of experts can provide more information than a single expert”2.  Such input needs to be aggregated or 

combined into single distribution to be used “as the basis of decision making”3.  How best to combine these predictions into a 

single probability distribution, which can be used as an input for policy decisions, is an area of active research. 

Notwithstanding the potential significant ramifications of an erroneous expert prediction, actual and predicted values can 

diverge by orders of magnitude.  Similar discrepancies have been observed between predictions made by different experts.  
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Although point estimates are less useful than interval estimates, the former continue to be observed in U.S. Government 

(USG) expert judgment elicitation studies4, 5.  

In general, expert judgment is used chiefly “where there is uncertainty due to insufficient data, when such data is 

unattainable because of physical constraints or lack of resources”6 or to develop probabilistic assessments given cost and 

feasibility constraints in obtaining hard data.   

One of the fundamental issues in reliability analysis is “the uncertainty in the failure occurrences and 

consequences”7 The author noted that the dominant contributors to risk are not necessarily the “design basis accidents” but 

rather looking at all feasible scenarios … with the probability of occurrence of such scenarios becoming an additional key 

aspect in order to rationally and quantitatively handle uncertainty” This key aspect, in part, motivated the research questions 

addressed in this paper in that expert judgment may be used to provide input into reliability analysis. 

 As part of ongoing research into the accuracy of expert judgment predictions, we examined observed values and 

predictions from an expert judgment meta-database.  We investigated whether the type of quantity estimated, "physical"—

variables having units of mass, time, etc.—or "probabilistic"—variables representing likelihood of an event, or a frequency of 

occurrence—mattered.  Percentiles, standard deviations or ratios of physical quantities were considered to be physical.  An 

example of a physical variable in the meta-database is maximum pumice clast dimension in mm; a probabilistic variable is 

the likelihood that an attack on a computer information system will be successful.  If we disaggregate the meta-data into 

physical and probabilistic-related subsets, does the range of multiplicative error around the estimate change?  We attempted 

to determine, given a point estimate elicited from an expert, what upper and lower bound multiplicative factors should be 

applied to that estimate, in order to bound it in an interval—with a corresponding level of probability.  We also explored 

whether multiplicative error varied with the level of the true value of the variable predicted. 

 
II. DATA SOURCES 

The data records used for this research include data from the Delft University of Technology (TUD.) and University 

of Maryland Center for Reliability and Risk Analysis (referenced hereafter as UMD). These data sources are collectively 

known as the Expert Judgement Extracts EJE. The EJE source consists of 606 TUD records and 1,182 UMD records for a 

total of 1,788 records.  The data analysis operations applied to EJE to prepare the data for processing are documented in a 

work-in-progress UMD dissertation (A Meta-Data Informed Expert Judgment Aggregation and Calibration Technique). 

The TUD data source8 has been used in studies published in peer-reviewed literature9, 10, 11, 12, 13. These data sources 

cover sectors such as nuclear applications, chemical and gas industry, groundwater transport, water pollution, dike ring, 

barriers, aerospace, occupational safety health, financial activities, volcanoes, and dams.  UMD data sources included 

Department of Mechanical Engineering graduate course work (A. Mosleh, personal communication, October, 2013) and two 

dissertations14, 15.  

TABLE 1: EJE: Summary-level Listing of Record, Prediction and Theme Count provides a summary-level listing of 

the records and predictions and theme count in EJE.  Within the EJE table, the term theme is used to describe a set of records 

that relate to a common topic area, e.g., industrial accidents or information security.  The themes are unique to the TUD and 

the UMD sources.  This term was introduced to prevent confusion with the term case used in the TUD source.  Although the 

number of themes for TUD and UMD totals 52, there are 43 unique themes. Specifically, there are nine themes that have both 

probabilistic and physical data. 

 

TABLE 1: EJE: Summary-level Listing of Record, Prediction and Theme Count 

Records/Predictions/Themes↓EJDS Source→ TUD UMD EJE Total 

Number of records in Physical Category 540 1,181 1,721 

Number of records in Probabilistic Category 66 1 67 

Subtotal Number of Records in Both Categories 606 1,182 1,788 

Number of predictions in Physical Category 4,661 1,445 6,106 

Number of predictions in Probabilistic Category 516 13 529 

Subtotal Number of Predictions in Both Categories 5,177 1,458 6,635 

Number of themes in Physical Category 27 16 43 

Number of themes in Probabilistic Category 8 1 9 

Subtotal Number of Themes in Both Categories 35 17 52 
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III. COMPARISON OF PREDICTION ACCURACY BETWEEN PHYSICAL AND PROBABILISTIC DATA 

 The measure of prediction accuracy used was the ratio r≡e/e' of realized value to predicted median value.  This 

metric is scale invariant and accommodates the wide range of EJE data. 

 
III.A. Comparison of Prediction Accuracy between Physical Data Subset and Probabilistic Dataset 

The CDF of the ratios r≡e/e' for the subset of physical predictions for which e<1 (hereinafter, physical subset) was 

compared to the CDF of the r values for probabilistic predictions.  Approximately 20% of the physical data records (by 

weight) have realized values e<1, and comprise the subset.  To compute the CDF, each prediction in each data category was 

assigned a weight.  Let nthemese<1 denote the number of themes in this category (19; each theme has weight ≈ 5%).  Consider 

a single theme within this category.  Let nvare<1 denote the number of variables in this theme having e values < 1.  Consider a 

single such variable.  Let nobs be the number of predictions associated with this variable.  Then the inverse product 

[nthemese<1 ∙ nvare<1 ∙ nobs]−1 is the weight associated with the prediction.  This weighting scheme ensures that all e' 

associated with a given variable receive equal weight; all variables within a given theme receive equal weight; and all themes 

are weighted equally within the physical subset category.    

An analogous process was used for the probabilistic category; note that since e<1 for all variables in this category, 

nthemese<1=nthemes and nvare<1=nvar.  For each prediction e' in a given category, the ratio r was computed.  The r values and 

their associated weights (the weights assigned to the e') were sorted by increasing value of r; weights were consolidated for r 

values which differed by less than 10−5.  An exception was made for values of r<<1 such as 6.5−6.  After consolidation, 

n1=822 and n2=261 unique (r, weight) pairs remained for the two data categories, respectively.  Cumulating the weights 

yielded the CDFs for each category; the CDFs are shown in Figure 1: CDFs for Physical Subset and Probabilistic Data. 
 

 
Figure 1: CDFs for Physical Subset and Probabilistic Data 
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Given the CDFs, the probability that an elicited e' value over- or underestimates the realized value, e by a given 

factor is known.  For example, the physical subset CDF at r=0.1 is 0.0627.  This means there is a probability of 

approximately six percent that the prediction overestimates the realized value by a factor of ten or more.  The corresponding 

value for the probabilistic CDF at this same value of r is 11.1 percent.  This means that for probabilistic data, there is roughly 

twice the likelihood of overestimating the realized value by a factor of ten or more.  Similarly, the physical subset CDF at 

r=10 is 0.9517.  This means there is a probability of approximately 4.8 percent that the realized value is underestimated by a 

factor of at least ten.  The probabilistic CDF at r=10 is 0.9193.  This means there is a probability of approximately 8.1 percent 

that the realized value is underestimated by a factor of at least ten; again, roughly twice the likelihood compared to physical 

data. 

Figure 2: Physical Data Subset and Probabilistic Data – Overestimation Probability by Factor gives the probability 

of overestimating e by a given factor for the two data categories, for selected factors.  Figure 3:  Physical Data Subset and 

Probabilistic Data – Underestimation Probability by Factor gives the analogous underestimation probabilities. 
 

 
Figure 2: Physical Data Subset and Probabilistic Data – Overestimation Probability by Factor 
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Figure 3:  Physical Data Subset and Probabilistic Data – Underestimation Probability by Factor 

The figures show that while rare, overestimation errors of a factor of 100 or more are far more likely to occur for 

probabilistic data (2% chance) than for physical data (0.1% chance).  For underestimation errors, the disparity is much less—

about a factor of two for the two data types (3.5% versus 1.6% for probabilistic and physical subset data, respectively).  For 

smaller factors ranging from 10 down to 2, the disparity is much less:  approximately 1.5 for underestimation errors.  For 

overestimation errors, at the factor of two level, physical subset data is more likely to be overestimated than probabilistic data 

(30% versus 23%, respectively).   Probabilistic data is 1.2 and 1.8 times more likely to be overestimated than physical data at 

the factor of five and factor of ten levels, respectively.  

Although the two CDFs were computed analytically, it may be noted that if they are treated as empirical CDFs, and 

the Kolmogorov-Smirnov (K-S) two-sided non-parametric test for equality of distributions applied, the null hypothesis H0 

that there is no difference between the distributions of the ratios e/e' for the two data categories, would be rejected.  (The 

largest absolute difference, D between the two CDFs is approximately 0.113, occurring at r≈0.95.  The numbers of pairs are 

sufficiently large to justify using the large-sample approximation for the K-S two-sided test.  The critical value Dcrit 

=Cα[(n1+n2)/(n1∙n2)]−0.5, (per 

https://www.webdepot.umontreal.ca/Usagers/angers/MonDepotPublic/STT3500H10/Critical_KS.pdf).  For a level of 

significance α=0.05, Cα=1.36, n1=822 and n2=261, Dcrit ≈0.097.  Since D>Dcrit, H0 is rejected.) 

It may also be noted if the K-S test were to be applied with all weights discarded, i.e. physical subset and 

probabilistic CDFs constructed giving all ratios e/e' equal weights, regardless of the theme or variable to which they belong, 

the difference D increases to 0.13 (at r=0.1), which would be significant at the α=0.01 level of significance. 

 
III.B. Comparison of Prediction Accuracy between Full Physical and Probabilistic Datasets 

 Having established a difference exists between physical subset and probabilistic data, the CDF of the ratio e/e' for 

the entire physical data set was computed, and compared to the CDF of the probabilistic data set.  The procedure was 

analogous to that used for the physical data subset.  All 43 physical themes, and all variables within each theme were 

included.  After consolidation of ratios differing by less than 10−5, there were n1=3403 unique (r, weight) pairs for physical 

data.  For probabilistic data, there was no change, as all e<1:  there were n2=261 unique (r, weight) pairs.  The resulting CDFs 

are shown in Figure 4: CDFs for Physical and Probabilistic Data. 
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Figure 4: CDFs for Physical and Probabilistic Data 

As before, given the CDFs, the probability that an elicited e' value over- or underestimates the realized value, e by a 

given factor is known.  Figure 5: Physical Data and Probabilistic Data – Overestimation Probability by Factor gives the 

probability of overestimating e by a given factor for the two data categories, for selected factors.  Figure 6: Physical Data and 

Probabilistic Data – Underestimation Probability by Factor gives the probabilities of underestimating e by those same factors.   
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Figure 5: Physical Data and Probabilistic Data – Overestimation Probability by Factor 

 

 

  
Figure 6: Physical Data and Probabilistic Data – Underestimation Probability by Factor 
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over the full physical data set.  The probability of underestimation ranges from 1.5 to 2.5 times more likely for probabilistic 

data as for physical data over these factors. 

 
III.C. Maximum Multiplicative Error, MME 

We can consolidate over- and underestimation probabilities of e by using maximum multiplicative error, 

MME≡max(e'/e, e/e'), which is the Figure of Merit (FOM). For each (e,e') pair along with a corresponding weight (for a 

given data type), the MME was computed.  The MMEs were sorted, and those differing by less than 10−5 had their weights 

consolidated.  This left n1=3146 and n2=244 unique (MME, weight) pairs for physical and probabilistic data, respectively.  

The resulting CDFs are shown in below in Figure 7: CDF of Maximum Multiplicative Error, MME for Physical and 

Probabilistic Data. 

 
Figure 7: CDF of Maximum Multiplicative Error, MME for Physical and Probabilistic Data 
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Figure 8: Physical Data and Probabilistic Data – MME Exceedance Probability by Factor 

It can be seen from the figure that at each factor, the probability of exceedance is greater for probabilistic than for 
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The figure also shows the number of points in each bin:  note that the leftmost two bins contain represent less than two 

percent of the data points. 

 

  
Figure 9: Percentiles of e'−e | e for Probabilistic Data 

Figure 9 suggests that there is greater divergence between the prediction, e' and the true value, e at small values of e, 

and that the spread generally decreases as e approaches one.  (The behavior of quantiles for bins centered on –17 and –15 can 

be ignored, as they reflect four and five e' values, respectively, out of more than 500 e' values).   Quantile regression was 

applied to fit a second-order polynomial predicting e' given each e, to the meta-data.  The quadratic fit permitted curvature in 

the quantiles, without over-parameterizing the problem space.  This facilitated exploration of the impact of level of e, on the 

extent of multiplicative error.   

Quantile regression is based on minimizing the tilted absolute value function 

Tilted_Abs(ρ,x)=x∙(ρ–1x), where 1x=1 if x<0, 0 otherwise; and ρ is the quantile, e.g., 0.9.   

 

The tilted absolute value function “asymmetrically [weights] absolute residuals residuals—simply giving differing 

weights to positive and negative residuals”16 between observed and predicted.  In order to incorporate record weights into the 

estimated quantiles, the tilted absolute value function was multiplied by the weight, we associated with the record containing 

the (e, e') pair.  The python function fmin was used to solve for the second-order polynomial coefficients minimizing 

 

 ∑Tilted_Abs(ρ, e' – polyval(coef,e)) ∙ we  (1) 

 

over all pairs of log-transformed (e, e'), where polyval(coef,x) = a0+a1x+a2x2.  The resulting quantile curves (5th, 10th, 20th, 

30th, ..., 90th, and 95th) are plotted for probabilistic data below, in Figure 10: Quantiles of e' versus e for Probabilistic Data. 
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Figure 10: Quantiles of e' versus e for Probabilistic Data 
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Figure 11: Quantiles of e' versus e for Physical Data 
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Figure 11: Probability that e' under- or overestimates e by various factors, s, for probabilistic data 

An analogous process yielded the results in Figure 12: Probability that e' under- or overestimates e by various 

factors, for physical data. 
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Figure 12: Probability that e' under- or overestimates e by various factors, for physical data 

The figures show that for physical data, over values of e representing the 75th to the 5th percentile, the likelihood of a 

factor-of-two error ranged from approximately 30% to 50%, split approximately equally between over- and under-estimation.  

At the 90th percentile value of e, under- rather than overestimation was fifty percent more likely to occur (15% versus 10% 

probability of occurrence, respectively); the total likelihood of a factor-of-two error was 25% for this case.  For probabilistic 

data, at the 5th percentile value of e (0.00001), e' was at least twice as likely to over-estimate rather than underestimate e by a 
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while the likelihoods of factor-of-two error are balanced for e=0.1, e' is eighty percent more likely to under- rather than 

overestimate e by a factor of five (16% versus 9%).   

Note:  The curves obtained by quantile regression are less accurate in the sparse tails of Ln(e).  Additionally, the 

quadratic model is itself an approximation, and is intended to give a rough sense of the variation in multiplicative error with 

level of e, given the softness of the expert judgment data. 
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data, the corresponding probabilities of overestimation are less than half of their counterparts for probabilistic data, 

at Ln(e)=−16; and they decline more gradually, not reaching five percent until Ln(e) is at least 200.    

4. The level of e has a weaker impact on underestimation error.  For both data types, the probability of underestimating 

by a factor of s, where s=2, 5, or 10, does not vary monotonically with Ln(e).  Underestimation probabilities are 

generally confined to a region between 10 to 30 percent for probabilistic data.  For physical data, with s=2, they can 

exceed 40 percent for Ln(e)<−16, decline gradually to a minimum in a broad region around Ln(e)=−2, then increase 

gradually to a level roughly half their starting level as Ln(e) approaches its upper limit of +22. 
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