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Abstract 

        Uncertainty depends on different types and sources of uncertainties in thermo-hydraulics and severe accident calculations 

for nuclear power plants (NPPs). Methodologies for the treatment of these uncertainties are categorized as “input based” and 

“output based” approaches. A hybrid approach is introduced here where an input based method is augmented with Bayesian 

correction of the output. The proposed methodology takes output uncertainties obtained from the input phase to be corrected 

upon the availability of separate information about the figure of merit. Concretely, as part of a broader objective to develop a 

comprehensive severe accident uncertainty analysis methodology, a Bayesian framework is developed using MCMC (Monte 

Carlo Markov Chain) for incorporating different types of new evidences to update the output distributions.  The methodology 

will be applied to LP-FP-2 severe accident experiment of LOFT test facility. 

 

 

I. INTRODUCTION 

 

Severe accident phenomena are very complex and our knowledge is still limited in some areas especially for the late phases 

of the accident. Application of conservative approach is proved to be unacceptable for management of severe accident 

uncertainties therefore the use of best estimate method is recommended. A best estimate approach indeed requires a framework 

for dealing with the related uncertainties. Three major sources of uncertainty in accident analyses have been identified and are 

discussed for the accident analysis in detail in Reference [1], as follows: 

(1) Code or model uncertainty, which is associated with models and correlations, the solution scheme, model options, not 

modeled processes (completeness uncertainties), data libraries and deficiencies in the codes; 

(2) Simulation or Representation uncertainty, associated with the inability to model the real plant exactly due to 

simplification of the complex geometry, three dimensional effects, scaling effects, simplification of systems, etc.; 

(3) Plant uncertainty, associated with errors in measuring and monitoring the real plant behavior, such as reference plant 

parameters, instrument errors, system component set points, etc. 

In 1988, USNRC revised the ECCS licensing rules to allow the use of “best estimate” computer codes [2]. This requires 

explicit quantitative assessment of the uncertainties of the thermal-hydraulics (TH) calculations in the licensing and regulatory 

processes. To support this licensing revision, USNRC developed the code scaling, applicability, and uncertainty (CSAU) 

methodology to demonstrate the feasibility of a best-estimate plus uncertainty approach. Thereafter, a number of research 

efforts over the past 20 years were focused on methods and procedures to address thermo-hydraulics code uncertainties. Among 

these methodologies, several have proposed uncertainty quantification at input level while others are concentrated on the output 

uncertainty quantification. Recently developed IMTHUA approach however is an integrated method for thermo-hydraulics 

uncertainty evaluation that utilizes all available sources of data and information at both input and output level in an effective 

way.  

Characterizing uncertainty in severe accident progression is first studied by Khatib-Rahbar [3] where an ensemble of 

computer codes known as the Source Term Code Package (STCP) was used. The methodology named QUASAR and its basic 

approach of this methodology is to: 

1) Identify the code input parameters, sensitivity coefficients, and modeling options that describe or influence the predicted 

quantity of interest, 

2) Prescribe likelihood descriptions of the potential range of these parameters, and  

3) Evaluate the code predictions using a number of random combinations of parameter inputs sampled from the likelihood 

distributions.  

They applied this methodology to some severe accident problems namely core melt progression, containment challenges 

and fission product release. This method only assesses the parameter uncertainty and is limited to the input based uncertainty 

analysis.  

Sandia National Laboratory (Developer of MELCOR code) introduced an uncertainty analyses tool in 2004 that is coupled 

with MELCOR for the quantification of uncertainty but this tool only considers input uncertainty assessment. Model 
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uncertainty, output uncertainty and integrated treatment of the uncertainty are not in the scope of this engine and more work is 

needed in this area.  

In the following Hybrid of Input-Based and Output-Based Uncertainty Assessment will be presented for the severe accident 

calculations.  The research will assess code output uncertainties associated with identified structural and parametric 

uncertainties at input and sub-model levels. The research will evaluate the available data in sub-models and overall plant 

performance for the figure of merit. The second stage updates the obtained input level uncertainty distribution with any 

available integrated experimental data and validation information. This “output uncertainty correction” phase is intended to at 

least partially account for code user choices (user effects), numerical approximations, and other unknown sources of 

uncertainties (model and parameter) not considered in the first phase.  

 

II. Overview of the Integrated Methodology for Severe Accident Uncertainty Analysis 

 

This research develops a comprehensive methodology to assess the uncertainties in calculation of severe accidents for 

nuclear power plants. Flowchart of the proposed methodology is illustrated in Figure 1. Details of input phase are elaborated 

in the previous papers of the authors [4], [5], [6].  

 

 
Figure 1: Flowchart of the proposed methodology 

 

Table 1 summarizes the 2 phases of the proposed methodology and its practical steps. This is elaborated in more details in 

the following sections. Here, we will concentrate on output phase of the methodology and refer the interested readers to the 

previous works of the authors. Section III describes the output phase of the methodology in detail. 
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Table I: Phases of Integrated approach and its practical steps 

Phases of Methodology Practical Steps 

INPUT PHASE: 
Input parameter and Model 

uncertainty of severe 

accident 

1.Identification of uncertainty sources through 
modified PIRT 

2. Input parameter uncertainty quantification 

3. Structural treatment of model uncertainty in 
the code internal 

4. Uncertainty importance analysis and ranking 

of uncertainty sources 
 

OUTPUT PHASE: 

Output updating using 
experimental data and new 

evidences 

1. Prior distribution assignment to code 

calculations and experimental data 
2. Output updating using available data and new 

evidences through MCMC approach 

 

 

III. OUTPUT PHASE: Bayesian updating of code output using experimental data 

 

This phase of the methodology which is the main area covered in this paper enables output uncertainties obtained in the 

previous steps, by sole reliance on the input contributors of uncertainty, to be modified when a new piece of evidence arrives 

at an integral level (same level as the model prediction). The driving tool for this updating is a set of Bayesian methods for 

incorporating different types of new evidence into the output distributions.  

 
Figure 3: Schematic demonstration of output updating 

 

Fig. 3 illustrates the output updating concept in a schematic way. Y1 is the uncertain figure of merit, obtained by the 

propagation of various input and sub-model uncertainty contributors to TH code predictions. The distribution of Y at a specific 

time (e.g. t=t0) is updated utilizing measured values (for the same time) from relevant experiments for Y1. The parametric 

distribution fitted to the data for t0 (prior) and updated distribution (posterior) is also shown in Fig. 3. 

The format of information available and the nature of the variable of interest (Y) are determining factors in the choice of 

specific Bayesian method to be used. Before moving forward, we describe the types of data considered and then present the 

mathematical formalism and examples. In the case of severe computer codes for nuclear power plant accident analysis, 

applicable experimental data come from scaled-down facilities, such as SET or ITF. SET facilities are designed for the 

assessment of specific models or correlations corresponding to various phenomena or system components. ITF are designed 

for the assessment of the behaviour of a reactor system. Depending on the way the data are collected and the nature of the 

underlying experiments, the relation between the ITF data points and the severe accident code-calculated results can be 

characterized in two ways: ‘‘paired’’ and ‘‘non-paired.’’ Each category could additionally be characterized by the level of 

applicability of the information to the case being considered.  

In an ideal platform (paired data), each experimental data where n=m and TiM is a prediction of TiD . 

When such paring of experimental and predicted data points is not possible, then the two data sets are called ‘‘non-paired’’. 

The work presented in reference [7] represents application of output updating on the basis of model (code) uncertainty for 

non-nuclear applications. In this work a methodology capable of opening up a fire simulation code following a “white-box” 

uncertainty analysis is presented. Similarly, the black-box used to differentiate the level of analysis performed. The simulation 

},...,,{ 21 n
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code output results from the white-box approach for both sub-models will be updated using experimental results following a 

similar method presented in the previous black-box research. 

 

      III.1 Paired data output updating 

 

This would be simplest case to manage the uncertainties. Reference [8] offer a Bayesian methodology for model 

uncertainty based on paired data. This approach can be used to directly obtain the uncertainty associated with a given figure of 

merit (e.g. temperature, T) given the code-calculated figure of merit. In order to apply the methodology, the model is executed 

for each experimental data set to produce a single model prediction that can be paired with the corresponding test data. In the 

next step, Bayesian approach produces an uncertainty distribution of the figure of merit of interest given a code prediction, 

utilizing such paired data on model performance. In case of continuous output parameters, the method requires the pairing of 

experimental data and code calculation results. Additive or multiplicative error models can be applied to develop the likelihood 

function. 

 

      III.2 Non-paired data output updating 

 

The nonpaired data situation, requires special treatment. The data used should be different from those used in the input 

assessment phase and should be in the form of integral experimental data about the code output. The procedure is as follows 

[2]: 

1. Specify parametric distribution forms for model predictions and for distribution of the test data. 

2. Apply all previous subjective knowledge to build prior distribution for output. This is done by estimating prior 

distribution for parameters associated with the output variable. 

 

    III.3 Partial Relevant Data 

 

A Bayesian weighting process has been developed [8] for considering partially relevant information. Criteria for assigning 

the weights for the case of severe accident experiments are based on an assessment of the degree of similarity between the test 

conditions under which the data are collected and the conditions simulated by the code. Some attributes of scenario and 

experimental facilities for applicability assessment include distortion resulting from scaling, location and size of break, rate of 

power, scaling ratio of the facility, involved safety systems, nuclear core configuration, and so on. These attributes should be 

compared pairwise for applicability and relevance assessment. The value of φ factor ranges from 0, for ‘‘absolutely not 

applicable,” to 1, for ‘‘absolutely applicable.” This factor is utilized in modifying the likelihood function of the data ‘D’ 

according to the Bayesian process proposed by. 

            (1) 

IM is information about the model, and D is the data. The degree to which the data influences the strength of the data used 

to modify the uncertainty distribution of the code (or model) output from π(T) to π (T|IM, D) can be controlled by using different 

values of φ. When φ is in range (0, 1), it will defuse the likelihood, resulting in the partial effect of the data on the posterior.  

Although the proposed approach is subjective, it paves a systematic methodology for consideration of imperfect data, 

which is the premise in effective uncertainty assessment, to utilize all data and information. Likelihood adjustment method is 

another alternative to using the u factor for updating of the output distribution. The ϕ factor comes from source data, as discussed 

above. A shape was assumed for Likelihood (e.g. normal), and objective adjusts the distribution parameters (e.g. µ, σ) for data 

and information implementation as 

 

       (2) 

 

or by substitution of a statistics of µ, σ such as mean or mode, we arrive at a simple relation for output distribution. 

 

Assume that and  are parameters of the normal distribution of an output variable YM calculated by the code. We 

can also use and as the parameters of the normal distribution of test data YD. Other forms of distributions may be 

assessed for the data, but analytical formulation may not be possible. In those situations, a numerical solution (e.g., MCMC-
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type approaches) may be used. We recall from applied statistics that if YD and YM are represented by a bivariate normal 

distribution, then the conditional distribution of will be normal: 

 
The conditional mean and variance of YM, given YD, are 

   ( 3 ) 

 

The development of a Bayesian solution requires that we first select parametric forms for the distributions of code 

predictions and test data, then select a parametric form for their joint distribution, and assume values for inestimable parameters 

associated with this joint distribution and a joint prior distribution for the estimable parameters. Finally, the simulated posterior 

distribution calculates an adjusted model prediction  based on a new model prediction generated by the SA code. 

IV. APPLICATION OF THE PROPOSED METHODOLOGY ON LOFT-LP-FP-2 EXPERIMENT 
 

The LOFT experimental facility was designed to simulate the major components and system response of a current-

generation PWR during a LOCA. The experimental subsystems include the reactor vessel, the intact loop, the broken loop, the 

blow-down suppression tank (BST) system, and the ECC systems. The arrangement of the major LOFT components for test 

LP-FP-2 is shown in Figure 5. LOFT is a PWR model with a rated power of 50 MW(th), including all systems and components 

needed to simulate the accident under study. 

The LOFT FP-2 test was a relatively large scale experiment to determine fission product transport and the effect of steam 

supply and reflood for a severely damaged core assembly. The LOFT-FP project, completed in 1985, was conducted by the 

Idaho National Laboratory (INL/INEL, USA) on an assembly of 121 UO2 rods with nuclear heating (in-pile) core. It consisted 

of tests on rod degradation and fission product release, and involved temperatures up to 2400 K (locally). Steam cooling was 

used, followed by water reflooding. 

 
Figure 4: Schematic Diagram of the LOFT Test Facility for Experiment LP-FP-2 [9] 

IV.1 Input Phase Uncertainty 

Considering the LOFT-FP-2 experiment, its significance is clear especially for fission product release. For the application 

of interest to this article, FP release data were selected for further assessment. Therefore MELCOR code performance is 

examined for the prediction of the mentioned phenomena. The code merges the radio-nuclides into the so called classes based 

on their chemical properties (16 classes by default). The selected figures of merit are three classes as follows: 

 Class 1: Xenon 

 Class 2: Cesium 

 Class 4: Iodine 
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The reason for their selection is their significant importance from safety point of view since these are the most volatile 

fission products. The other decisive factor is availability of data about the release of RN classes. 

There are four alternative models for release of fission products from fuel component (CORSOR options) in MELCOR 

SA code which are: 

 CORSOR  

 CORSOR-M  

 CORSOR-Booth 

 Revised CORSOR-Booth 

These include the CORSOR and CORSOR-M models, each with and without a surface/volume correction term, and the 

CORSOR-Booth and revised CORSOR-Booth model with low- and high-burn-up coefficient sets, for a total of eight possible 

variations. 

As indicated before, the CORSOR models are dependent on temperature. Three categories of parameters dominate the 

problem. These categories relate to different phenomena which are: 

 TH phenomena 

 Core damage phenomena 

 Source term phenomena 

The next step is the propagation of the samples through the code structure. The uncertainty propagation which maps the 

input parameters to analysis results is often the most computationally demanding part of the sampling-based uncertainty 

analysis. Then 100 code runs are made with the MELCOR code, each run using the generated input decks of sampling process 

from 1 to 100.  

These 100 runs produce a sampling of the FP release fraction for each model, from which the statistical properties of the 

distribution of FOM is estimated. 

 
Figure 5: release fraction distribution for CORSOR with S/V Correction for Cs 

 

 

In summary, given 8 CORSOR models, total of 800 calculations (100 for each model) were performed to obtain the 

uncertainty of output values of interest for each CORSOR model. The code calculated results are plotted for each modeling 

option in Figure 7 for 1 out of 8 available models. Once the calculations are carried out, the results are available for the 

characterization of output uncertainty. The goodness of fit tests (e.g., Kolmogorov-Smirnov test) could be used to select the 

distribution which best describes the obtained results. These tests show how well the selected distribution fits to the statistical 

data. For the case of LOFT application here normal distribution is the best fit to the output values. Easy fit software was used 

in this step and the best fits to the code data were selected. The final distribution of the output is plotted 1 out of 3 modeling 

options in Figure 7. 

There are a number of references, which performed severe accident calculations for prediction of fission product release 

in different experiments or nuclear power plant scenarios. To overcome this deficiency, model averaging predicts unknown 

responses more reliably than each model by incorporating model-form uncertainty. This would not be captured if only a single 

model is considered. The proposed framework on model averaging is now implemented on the LOFT experiment since the 
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probabilities of the model set and the code output statistics are known from the previous section. The outcome of BMA is 

summarized in Table II. 

 
Table II: Results of BMA for release fraction of each class 

 Xe Cs I 

E (y|D) 1.911 2.120 2.751 

VAR (y|D) 7.312 6.160 2.441 

STD 2.704 2.481 4.938 

 

IV.2 Output Updating Phase 

Uncertainty quantification in input phase includes uncertainty of the code structure but screens out those sources which 

are identified as less important in the modified PIRT approach. As we discussed earlier output phase of the proposed approach 

tries to cover the uncertainty contribution from unidentified sources using Bayesian updating when a new piece of information 

arrives. The Bayesian solution for this problem needs to first know parametric forms for the distributions of code predictions 

and test data, then select a parametric form for their joint distribution, and assume values for inestimable parameters associated 

with this joint distribution and a joint prior distribution for the estimable parameters. As a result, the posterior distribution of 

the simulation will be of the following form: 

                       (4) 

In practice, sufficient data are rarely available for pairing of the code predictions with their associated real values. For 

LOFT-LP-FP-2 experiment, two measured values are reported for the Xe release fraction at the end of the experiment (i.e. 

2.5% and 2.8%); therefore the output updating problem here turns out to be of unpaired data type. 

The WINBUGS14 [25] code was utilized to implement the Bayesian solution proposed. Bayesian inference using Gibbs 

sampling (BUGS), a basis and programming language for WINBUGS, is a program that carries out Bayesian inference on 

statistical problems using the MCMC method. WINBUGS assumes a Bayesian probability model in which all unknown 

parameters are treated as random variables. The model consists of a defined joint distribution over all unobserved (parameters 

and missing data) and observed quantities (data) it is necessary to place a condition on the data to obtain a posterior distribution 

for the parameters and unobserved data. Empirical summary statistics can be obtained from samples of the posterior and are 

used to draw inferences about the quantities of interest. Updated predictions of the model assuming bivariate normal distribution 

are obtained by maximizing the correlation between the code prediction and the corrected value as representative of the test 

data. 

Figure 9 and table 7 below show result from fitting parametric normal distributions to code and experimental data. The 

statistics for the “Xe release fraction” as well as its mean and standard deviation parameters are shown in the tables beneath 

each distribution.  
Table III: Summary of MCMC results 

Parameter Mean SD MC_error Val5pc median Val95pc 

expr 2.651 0.1094 0.001287 2.43 2.651   2.868 

meand 2.651 0.04016 4.193E-4 2.572 2.65   2.73 

meanp 2.653 0.437 0.004996 1.786 2.66   3.496 

predu 2.58 4.48 0.04408 -6.252 2.569   11.23 

 

The obtained results from MCMC calculations are substituted in the following formula to obtain the code updated output 

uncertainty: 

       (5) 
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Figure 6: MCMC results for model parameters & experimental data 

Figure 10 shows the prior and posterior distribution of the code results for “Xe release fraction”. Variance reduction is 

clearly observable here. 

 
Figure 7: Output Updating for Xe release fraction 

V. CONCLUDING REMARKS 
A systematic approach for severe accident uncertainty assessment is presented and its application demonstrated on LOFT 

LP-FP-2 experiment. The proposed methodology is an integrated probabilistic approach where an input-driven white-box 

approach is augmented with output correction based on experimental results relevant to code output. It quantifies the observable 

sources of uncertainty in the severe accident modeling in input phase. Moreover it tries to explicitly take into account in output 

phase the uncertainty of unobservable sources through a Bayesian updating scheme when new evidence arrives. The unique 
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feature of the proposed methodology is ranking of uncertain severe accident parameters with limited number of code 

simulations through a Bayesian ensemble of sensitivity measures. The whole features of the proposed methodology are fully 

implemented on the MELCOR modeling of LP-FP-2 severe accident experiment of LOFT test facility. 

 

NOMENCLATURE 
BMA Bayesian Model Averaging 

DCH Direct Containment Heating 

DSA Deterministic Safety Assessment 

ECCS Emergency Core Cooling System 

FMM Finite Mixture Model 

FOM Figure of Merit 

FP Fission Products 

HB High Burn-up 

IMTHUA Integrated Methodology on Thermal-Hydraulics 

Uncertainty Analysis 
INL Idaho National Laboratory 

ITF Integral Effect Test 

LB-LOCA Large Break LOCA 

LOCA Loss of Coolant Accident 

LOFT Loss of Flow Test 

LPIS Low Pressure Injection System 

MCMC Markov Chain Monte Carlo 

MLE Maximum 

Likelihood 

Estimation 

NPP Nuclear Power Plant 

PIE Post-irradiation examination 

PIRT Phenomena Identification and ranking Table 

PWR Pressurized Water Reactor 

QUASAR 

quantification and uncertainty analysis of 

source terms for severe accidents in light water 

reactors 

RF Release fraction 

RN Radio Nuclide 

SA Severe Accident 

SET Separate Effect Test 

SNL Sandia National Laboratories 

TH Thermal Hydraulics 
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