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        The lacking of human performance data in human reliability analysis (HRA) is lamented since the born of HRA. It is 

even worse for conducting HRA in digital main control rooms (MCRs) in nuclear power plants (NPPs). In order to make 

HRA being more objective and realistic, several sources, such as simulator observation, human factors experiments, 

operating events, are used to collect and extract human performance data. We focused on full-scope simulator observation. 

This case study showed how we collected human performance data from two full-scope simulators in China. Three types of 

human performance data, operator errors, operation time, and mental workload, were recorded. Operator errors were 

classified according to the cognitive framework of macrocognitive function failures in NUREG-2114. Operation time was 

analyzed using the time-line analysis. Mental workload was measured by the NASA-Task Load Index measure. Failure of 

understanding and sensemaking and failure of teamwork were found to be the two predominant macrocognition failures in 

our case. These initial efforts help us build the preliminary operator performance database for HRA specific to digital main 

control rooms. Collecting and accumulating more data is our ongoing work. 

 

 

I. INTRODUCTION 

 

The safety and integrity of complex, large-scale systems, for example, nuclear power plants (NPPs), aircraft, and process 

plants, is highly dependent on human performance. In the human performance literature, it is widely accepted that poor 

human performance is a major cause of incidents and accidents (Reason, 1990, IAEA, 2013b). Convergent evidence shows 

that the contribution of human error to incidents and accidents in safety-critical systems is approximately 30%-90% (Griffith 

and Mahadevan, 2011). More than  50% of operating events  were implicated  with  operator  errors from 1991 to 2011 in 

Chinese nuclear power plants (NPPs) (Wang and Li, 2012). One lesson learned from the Fukushima accident is that it is a 

man-made disaster and that human and organizational factors are critically important to nuclear safety (IAEA, 2013a). 

In probabilistic risk assessment (PRA) or probabilistic safety analysis (PSA), we should consider the contribution of 

human and organizational elements to system reliability. Human reliability analysis is a structured approach used to identify 

potential human failure events and to systematically estimate the probability of those events using data, models, or expert 

judgment (ASME, 2013). Following the first well-documented HRA method, the Technique for Human Error Rate Prediction 

(THERP) (Swain and Guttmann, 1983), more than 50 HRA techniques and tools have been developed (Bell and Holroyd, 

2009). 

However, the lacking of human performance data in HRA is lamented since the born of HRA (Liu and Li, 2014, Hallbert 

and Kolaczkowski, 2007, Boring et al., 2012, Preischl and Hellmich, 2013). Collecting and accumulating operator 

performance data for HRA, operator error prevention program, and human factor review program are paid close attention 

during these years. Several reports (Hallbert et al., 2014, KAERI, 2013, Chang et al., 2014) have been published to provide 

guidelines to collect data in simulators for HRA. However, the current work cannot effectively support and improve HRA. 

Digitalization is a trend in main control rooms (MCRs) of NPPs (Liu and Li, 2016a, Liu and Li, 2016b). Digital MCRs 

extensively use digital human-system interfaces, integrated information systems, soft controls, computer-based procedures, 

etc. However, most of HRA methods commonly used today do not properly account for the effects of digital techniques on 
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operator performance (Porthin et al., 2015) and no current HRA method provides guidance on how to treat human reliability 

considerations for digital techniques (Boring, 2014). That is, the current HRA methods may be not appropriate for digital 

MCRs. If so, the explanation of HRA outcomes from digital MCRs should be cautioned. 

One solution is to collect and update human performance models and data for digital MCRs (Liu et al., 2016a). This 

paper will demonstrate our initial efforts in collecting operator performance data from digital full-scope simulator training 

activities for HRA. The next is broken down as follows. Section II introduces the methodological issues, including 

participants and human performance metrics (operator error, operation time, and mental workload). Section III presents and 

discusses our results. Section IV concludes our study. 

 

II. METHODOLOGY 

 

II.A. Participants 

 

Operators as participants came from two digital full-scope simulators (named Simulators A and B). In these simulators, 

the crews were trained to follow emergency operating procedures (EOPs) and mitigate the simulated accident emergencies. 

We observed the crews actions during their training and EOP validation and verification for 6 times. 

 

II.B. Human Performance Metrics 

 

Human performance data recorded and observed in our case were classified into three types, human error, operation 

time, and mental workload. These human performance data are not only required in HRA, but also required in human factors 

engineering review programs. As NUREG-0711 (O'Hara et al., 2012) stresses that, a hierarchal set of performance measures 

including measures of plant performance, personnel task performance, situation awareness, cognitive workload, and 

anthropometric/physiological factors, should be considered in integrated system validation activities. 

 

II.B.1. Human Error 

 

It is difficult to observe and collect operator errors in full-scope simulators or real plants. Thus, there are limited 

databases of operator errors. Several existing databases, for example, CORE-DATA (Kirwan et al., 1997) and NUCLARR 

(Gertman et al., 1988), are not updated. Their data may be not appropriate for HRA in digital MCR. 

We used the model of macrocognition failures in NUREG-2114 (Whaley et al., 2016) to classify and organize the 

observed operator errors in digital simulators. The NUREG-2114 model describes five macrocognitive functions: (1) 

detecting and noticing, (2) understanding and sensemaking, (3) decision making, (4) action implementation, and (5) team 

coordination. The NUREG-2114 model suggests a generic cognitive framework of macrocognitive functions failures to 

describe its proximate causes (i.e., error type), failure mechanisms leading to proximate causes, and performance influencing 

factors (PIFs), as shown in Fig. 1. 
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Fig. 1. NUREG-2114 Cognitive Framework of Macrocognitive Function Failures (Whaley et al., 2016) 
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A macrocognitive function can fail in many ways due to failure of its various cognitive mechanisms. Proximate causes 

are the outcomes of failure of cognitive mechanisms. Cognitive mechanisms are the processes by which macrocognitive 

functions work. PIFs are the individual, organizational, and environmental factors that contribute to human performance in a 

work environment. Take the failure of detecting and noticing as example. It has three proximate causes, i.e., cue/information 

not perceived, cue/information not attended to, and cue/information misperceived; for the proximate cause of cue/information 

not perceived, it has five failure mechanisms, i.e., cue content - cue salience is low and not detected, vigilance in monitoring - 

unable to maintain vigilance, attention - inattentional blindness, expectation - mismatch between expected and actual cue, and 

working memory capacity overload. For these failure mechanisms, there have dozens of PIFs to trigger them. This model of 

macrocognitive functions is expected to describe the logic relationship between failures of macrocognitive functions, 

proximate causes, failure mechanisms, and PIFs (Whaley et al., 2016). This model is supposed to firm the cognitive basis of 

HRA. 

In our observation, it was challenging to identify the cognitive mechanisms and PIFs. We focused on which 

macrocognitive function failed and its proximate cause when an operator error occurred. TABLE I summarizes the five 

macrocognition failures and their proximate causes from NUREG-2114. The Scenario Authoring, Characterization, and 

Debriefing Application (SACADA) database (Chang et al., 2014) also collects crew performance results in terms of 

macrocognitive functions and specific performance problems (i.e., proximate causes; for example, ‘not detecting a key alarm’ 

and ‘late in detecting a key alarm’ are two specific performance problems of the detecting macrocognitive function). The 

framework of macrocognitive failures in NUREG-2114 has been used to identify human errors in petrochemical plants (Liu 

et al., 2016b). 

 

TABLE I. Macrocognition Failures and Their Proximate Causes (summarized from Whaley et al., 2016) 

Macrocognition 

Failure 

Proximate Cause Description 

Failure of detecting 

and noticing 

Cue/information not 

perceived 

The cue or information may simply be missed, not seen, or not heard, 

in which case it is not perceived 

Cue/information not 

attended to 

The cues or information may be sensed and perceived but not 

attended to 

Cue/information 

misperceived 

The cues or information may be sensed but misperceived. The sensed 

information is tagged with the incorrect meaning. 

Failure of 

understanding and 

sensemaking 

Incorrect data The data the person is comparing with a frame is incomplete, 

incorrect, or otherwise insufficient to understand the situation 

Incorrect integration of data, 

frames, or data with a frame 

Not properly integrate pieces of information together, does not 

correctly match data with a frame, or does not appropriately integrate 

multiple frames, such as when a person does not properly merge a 

frame for a system (i.e., a system model) with the frame for the 

ongoing event (i.e., a situation model). 

Incorrect frame The frame used to understand the situation is incorrect, incomplete, or 

otherwise insufficient to properly interpret the data. 

Failure of decision 

making 

Incorrect goals or priorities 

set 

The operator is working toward an inappropriate goal, or has goals 

improperly prioritized.   

Incorrect internal pattern 

matching 

The operator has mapped the situation to an inappropriate mental 

model. 

Incorrect mental simulation 

or evaluation of options 

The operator has engaged in incorrect projection of a possible course 

of action, or has unrealistically evaluated the options 

Failure of action 

implementation 

Error of omission The operator neglects to implement the chosen action 

Error of commission The operator executes the chosen action incorrectly 

Failure of teamwork Failure of team 

communication 

Key information is not properly shared or distributed among the crew 

members, and as a result, the entire team does not share a mental 

model 

Error in 

leadership/supervision 

Supervisory or team management problems, such as the leader not 

facilitating group discussion, or failing to identify and correct an 

operator error 

 

II.B.2. Operation Time 
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Except operator errors, it is worthy to record other performance indicators (e.g., operation time, mental workload, 

situation awareness). For example, the OPERA database (Park and Jung, 2007) mainly stores operators’ operation time data 

in emergency operating procedures (EOPs). In total of 112 simulation records have been collected from six accident 

scenarios, loss of coolant accident (LOCA), steam generator tube rupture (SGTR), loss of all feed water (LOAF), excessive 

steam demand event (ESDE), loss of off-site power (LOOP), and station blackout (SBO) (Jung et al., 2007). Available time 

or time pressure is an important PIF in HRA. Operators’ operation time is necessary to determine available time. Developing 

the database of operation time can be used to update and modify the existing PSA/HRA outcomes. Actually, the major 

significance of the OPERA database is that it provides essential inputs to an HRA and improve the technical adequacy of 

HRA (Jung et al., 2007). 

The operators followed EOPs in a step-by-step manner. We recorded operators’ respondent time in each procedural step. 

Before the observation, we prepared a standard sheet containing the procedural steps. Experimenters needed to record 

operators’ operation time (start time or end time) and error type for each step. If allowed, we can use a video-recording 

technique to record operator behavior and crew activities, and the computerized displays they used. It would be beneficial to 

post-interview and accurate recordings. Operation time also can be extracted from simulator log file (Chang et al., 2014). At 

present, two independent experimenters with the background of human reliability analysis and human factors recorded time 

information of EOP steps and operator errors. 

Time-line analysis (Jung et al., 2007) can be conducted if time data of EOP steps are recorded. It is a graphic technique 

and helps us capture the operation time distribution of EOP steps in accident simulations. 

 

II.B.3. Mental Workload 

 

Mental workload is an important PIF contributing to operator errors. It is also an important performance measure 

(O'Hara et al., 2012, Reinerman-Jones et al., 2015). For workload measurements, NUREG/CR-7190 summarizes subjective, 

performance, and physiological metrics that may be used in the context of main control rooms of NPPs (Reinerman-Jones et 

al., 2015). Subjective metrics include self-report questionnaires, interviews and third-party observation and report. 

Performance metrics uses primary and secondary task performance to indicate mental workload. Decrements of task 

performance indicate a change in workload (Wickens et al., 2013). Physiological metrics monitor bodily responses (e.g., 

heart and brain activities). 

In our case, we considered operators’ mental workload in following EOPs. We adopted the NASA-Task Load Index 

(NASA-TLX) (Hart and Staveland, 1988). It is a self-report metric of subjective mental workload that has been validated in 

numerous studies and applied in various performance settings. It measures six dimensions of perceived workload, mental 

demand, physical demand, temporal demand, performance, frustration, and effort. In our application, 1 denotes low demand 

and 10 denotes high demand. After accident scenarios, operators were invited to fill the NASA-TLX questionnaire. 

 

III. RESULTS AND DISCUSSION 

 

III.A. Human Error 

 

TABLE II and TABLE III illustrate several operator errors in Simulator A and Simulator B. Their macrocognition 

failures and corresponding proximate causes were identified.  

 

TABLE II. Selected Operator Errors in Simulator A 

Error Description Macrocognition Failure Proximate Cause 

1 During SGTR event with SG#2 tube rupture, the crew failed to 

identify the condition of SG#1 and assumed that SG#1 also 

ruptured. 

Failure of understanding 

and sensemaking 

Uncertain 

2 Failure of control room supervisor (CRS) to arrange operators to 

monitor one continuous step 

Failure of teamwork Failure of team 

coordination 

3 Operator failed to monitor the actuation signals of the fourth 

stage ADS valves during execution of ES-1.3 (ADS Stage 1-3 

Actuation Response) procedure 

Failure of action 

implementation 

Error of omission 
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TABLE III. Selected Operator Errors in Simulator B 

Error Description Macrocognition Failure Proximate Cause 

1 Following loss of main feedwater with ATWS (anticipated 

transient without scram) occurred afterwards, operator followed 

Step 19 (Check for reactivity insertion from uncontrolled RCS 

cooldown) in FR-S.1 and failed to perform the RNO (response 

not obtained) steps due to his wrong judgment of relevant 

parameters (RCS temperature or SG pressure) 

Failure of understanding 

and sensemaking 

Uncertain 

2 Following loss of main feedwater and startup feedwater, 

operator failed to follow the RNO (response not obtained) 

column of Step 8.a in ES-0.1 (Reactor Trip Response) and 

continued to perform Step 8.b. 

Failure of action 

implementation 

Errors of commission 

3 Following a station blackout, when the RNO column of Step 4 

in E-0 (reactor trip or safeguards actuation) was performed, 

operator failed to follow RNO 4c “go to ES-0.1” and continued 

to perform Step 5. 

Failure of understanding 

and sensemaking 

Uncertain 

 

A total of 23 operator error events were observed in our observation. Fig. 1 depicts their macrocognitive function failures. 

Failure of understanding and sensemaking in the observed operator error events was predominant that 52% of (12 out of 23) 

operator error events were related to this macrocognition failure. Failure of teamwork was also a significant macrocognitive 

failure and it was associated with 30% of (7 out of 23) operator error events. 

It was difficult to identify the proximate causes related to failure of understanding and sensemaking. This 

macrocognition failure has three proximate causes, (1) incorrect data, (2) incorrect integration of data, frames, or data with a 

frame, (3) incorrect frame. Without immediate interviewing the involved operators, it is impossible to determine its 

proximate causes. The main reasons are that the proximate causes (i.e., outcomes of failed cognitive mechanisms) are not 

observable and the difficulty in understanding and distinguishing the differences of the three proximate causes (Liu et al., 

2016b). The cognitive framework of macrocognitive function failures in NUREG-2114 (Whaley et al., 2016) lay foundation 

for the latest NRC-sponsed HRA method, Integrated Decision-Tree Human Event Analysis System (IDHEAS) (Xing et al., in 

press). One interesting fact, however, is that the IDHEAS method considers proximate causes of other macrocognition 

failures in the name of crew failure modes (e.g., ‘critical data dismissed/discounted’ and ‘miscommunication’), and ignores 

the internal crew failures modes in the macrocognitive function of understand and sensemaking. The developers of the 

IDHEAS method may realize the difficulty for identifying and determining the proximate causes (or crew failure modes) 

related to the macrocognitive function of understand and sensemaking. 

For the seven failures of teamwork, the proximate cause for all of them was failure of team coordination. In addition, 

four of them was because of ‘source error of omission’ (e.g., reactor operator forget to report to control room supervisor) and 

three of them was because of ‘source error of commission’ (e.g., control room supervisor gave wrong command). 

The proximate cause for the failure of detecting and noticing was ‘cues and information not perceived’. The involved 

operators ignored critical alarms. 

The proximate causes for the three failures of action implementation were ‘error of omission’ (n = 2) and ‘error of 

commission’ (n = 1). One involved operator ignored to perform required steps, failed to monitor critical signals, and 

performed unexpected actions. 
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Fig. 1. Distribution of Macrocognitive Function Failures 

 

III.B. Operation time 

 

The operation time data for the EOP steps were averaged and stored in our database. The time data may be used to 

update time-related PIF information or time-reliability curve based HRA. Time-line analysis in our case was illustrated in 

Fig. 2. 
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Fig. 2. Demonstration of Time-Line Analysis 

 

III.C. Mental Workload 

 

Mental workload was measured through the NASA-TLX questionnaire (Hart and Staveland, 1988). At present, seven 

operators self-reported their mental workload, as shown in TABLE IV. Because of the limited number of operators 

participating in reporting their workload, we could not make quantitative comparisons between different types of operators 

and between different accident scenarios. We only made qualitative arguments at present. TABLE IV indicates that the 

surveyed operators reported relatively high workload on the dimensions of performance (Mean = 7.1) and effort (Mean = 

7.7). Two CRS operators reported relatively high workload (Overall Workload = 33 and 35, respectively). 
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TABLE IV. Operator Mental Workload 

Num Operator Type 
Mental 

Demand 

Physical 

Demand 

Temporal 

Demand 
Performance Effort Frustration 

Overall 

Workload 

1 CRS 4 3 4 7 8 7 33 

2 RO 4 2 3 9 8 2 28 

3 STA 5 1 4 4 7 2 23 

4 PO 5 4 4 9 8 8 38 

5 BOP 5 3 7 8 6 3 32 

6 CRS 9 1 7 8 8 2 35 

7 Unclear 4 4 6 5 9 1 29 

Mean 5.1 2.6 5.0 7.1 7.7 3.6 31.1 

Note: CRS, control room supervisor; RO, reactor operator; BOP, balance of plant; STA, shift technical assistant; PO, peer 

operator. 

 

IV. CONCLUSIONS 

 

Collecting and accumulating operator performance data for HRA, operator error prevention program, and human factor 

review program are paid close attention during these years. We visited and observed two full-scope digital simulators, 

collected human performance data in terms of operator error, operation time, and workload. The initial effort helps us build 

human performance database for HRA. 

 

ACKNOWLEDGMENTS 

 

This study was supported by the National Natural Science Foundation of China (Project no. 71371104 and 71601139) 

and Advanced Pressurized Water Reactor NPP Key Project (Project no. 2011ZX06002). 

 
REFERENCES 

 

ASME. (2013). Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk 

Assessment for Nuclear Power Plant Applications. ASME/ANS RA-Sb-2013. New York, NY: American Society of 

Mechanical Engineers. 

Bell, J. & Holroyd, J. (2009). Review of Human Reliability Assessment Methods. Derbyshire: Health and Safety Laboratory. 

Boring, R. L. (2014). Human reliability analysis for digital human-machine interfaces: a wish list for future research. In: 

Proceedings of the 12th Probabilistic Safety Assessment and Analysis (PSAM12), June 22-27, 2014, Honolulu, 

Hawaii. 

Boring, R. L., Kelly, D., Smidts, C., Mosleh, A. & Dyre, B. (2012). Microworlds, simulators, and simulation: Framework for 

a benchmark of human reliability data sources. In: Proceedings of the 11th International Probabilistic Safety 

Assessment and Management Conference (PSAM11) and the Annual European Safety and Reliability Conference 

(ESREL 2012), 25-29 June, 2012, Helsinki, Finland. 

Chang, Y. J., Bley, D., Criscione, L., Kirwan, B., Mosleh, A., Madary, T., Nowell, R., Richards, R., Roth, E. M., Sieben, S. 

& Zoulis, A. (2014). The SACADA database for human reliability and human performance. Reliability Engineering 

and System Safety, 125, 117-133. 

Gertman, D. I., Gilmore, W. E. & Ryan, T. G. (1988). NUCLARR and human reliability: Data sources and data profile. In: 

Proceedings of 1988 IEEE Fourth Conference on Human Factors and Power Plants, 5-9 June, 1988, Monterey, CA. 

Griffith, C. D. & Mahadevan, S. (2011). Inclusion of fatigue effects in human reliability analysis. Reliability Engineering and 

System Safety, 96, 1437-1447. 

Hallbert, B. & Kolaczkowski, A. (2007). The Employment of Empirical Data and Bayesian Methods in Human Reliability 

Analysis: A Feasibility Study. NUREG/CR-6949. Washington, D.C.: U.S. Nuclear Regulatory Commission. 

Hallbert, B., Morgan, T., Hugo, J., Oxstrand, J. & Persensky, J. J. (2014). A Formalized Approach for the Collection of HRA 

Data from Nuclear Power Plant Simulators. NUREG/CR-7163. Washington, DC: U.S. Nuclear Regulatory 

Commission. 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

8 

Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical 

research. In: Hancock, P. A. & Meshkati, N. (eds.) Human mental workload. Amsterdam, Netherlands: North 

Holland Press. 

IAEA. (2013a). Human and Organizational Factors in Nuclear Safety in the Light of the Accident at the Fukushima Daiichi 

Nuclear Power Plant. Vienna, Austria: International Atomic Energy Agency. 

IAEA. (2013b). Managing Human Performance to Improve Nuclear Facility Operation. No. NG-T-2.7. Vienna, Austria: 

International Atomic Eenergy Agency. 

Jung, W., Park, J. & Kim, J. (2007). A simulator study and its application to an HRA in NPPs. In: Joint 8th IEEE HFPP / 

13th HPRCT, 26-31 Aug., 2007, Monterey, CA, USA. 

KAERI. (2013). A guideline to collect HRA data in the simulator of nuclear power plants. KAERI/TR-5206. Daejeon, Korea: 

Korea Atomic Energy Research Institute. 

Kirwan, B., Basra, G. & Taylor-Adams, S. E. (1997). CORE-DATA: a computerised human error database for human 

reliability suppport. In: IEEE Sixth Annual Human Factors Meeting, 1997, Orlando, FL. 

Liu, P. & Li, Z. (2014). Human error data collection and comparison with predictions by SPAR-H. Risk Analysis, 34, 1706-

1719. 

Liu, P. & Li, Z. (2016a). Comparison between conventional and digital nuclear power plant main control rooms: A task 

complexity perspective, Part I: Overall results and analysis. International Journal of Industrial Ergonomics, 51, 2-9. 

Liu, P. & Li, Z. (2016b). Comparison between conventional and digital nuclear power plant main control rooms: A task 

complexity perspective, Part II: Detailed results and analysis. International Journal of Industrial Ergonomics, 51, 

10-20. 

Liu, P., Lv, X., Li, Z., Qiu, Y., Hu, J. & He, J. (2016a). Conceptualizing performance shaping factors in main control rooms 

of nuclear power plants: a preliminary study. In: The 18th International Conference on Human-Computer 

Interaction, 17-22 July, 2016a, Toronto, Canada. 

Liu, P., Lyu, X., Qiu, Y., Hu, J., Tong, J. & Li, Z. (2016b). Identifying macrocognitive function failures from accident 

reports: a case study. In: Proceedings of the AHFE 2016 International Conference on Human Factors in Energy: 

Oil, Gas, Nuclear and Electric Power Industries, 27-31 July, 2016b, Orlando, FL. 

O'Hara, J. M., Higgins, J. C., Fleger, S. A. & Pieringer, P. A. (2012). Human Factors Engineering Program Review Model. 

NUREG-0711, Rev. 3. Washington, DC: U.S. Nuclear Regulatory Commission. 

Park, J. & Jung, W. (2007). OPERA--a human performance database under simulated emergencies of nuclear power plants. 

Reliability Engineering and System Safety, 92, 503-519. 

Porthin, M., Liinasuo, M. & Kling, T. (2015). HRA of Digital Control Rooms - Literature Review. VTT-R-00434-16. 

Finland: VTT. 

Preischl, W. & Hellmich, M. (2013). Human error probabilities from operational experience of German nuclear power plants. 

Reliability Engineering and System Safety, 109, 150-159. 

Reason, J. (1990). Human Error. Cambridge: Cambridge University Press. 
Reinerman-Jones, L., Guznov, S., Tyson, J., D'Agostino, A. & Hughes, N. (2015). Workload, Situation Awareness, and 

Teamwork. NUREG/CR-7190. Washington, D.C.: U.S. Nuclear Regulatory Commission. 

Swain, A. D. & Guttmann, H. E. (1983). Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant 

Applications. NUREG/CR-1278. Washington, D.C.: U.S. Nuclear Regulatory Commission. 

Wang, Z. & Li, Z. (2012). Summary Reports of Operating Events in Chinese Nuclear Power Plants. 

Beijing, China: China Environmental Science Press. 
Whaley, A. M., Xing, J., Boring, R. L., Hendrickson, S. M. L., Joe, J. C. & Blanc, K. L. L. (2016). Cognitive Basis for 

Human Reliability Analysis. NUREG-2114. Washington D.C.: U.S. Nuclear Regulatory Commission. 

Wickens, C. D., Hollands, J. G., Banbury, S. & Parasuraman, R. (2013). Engineering Psychology and 

Human Performance. Boston, MA: Pearson Education. 
Xing, J., Presley, M., Parry, G., Forester, J., Hendrickson, S. & Dang, V. (in press). An Integrated Decision-Tree Human 

Event Analysis System (IDHEAS) Method for NPP Internal At-Power Operation. Draft Report. Washington, D.C.: 

U.S. Nuclear Regulatory Commission. 

 


