
13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

1 

 

A SEMI-SUPERVISED SELF ORGANIZING MAP FOR POST-PROCESSING THE SCENARIOS OF AN 

INTEGRATED DETERMINISTIC AND PROBABILISTIC SAFETY ANALYSIS 

 

 

 

 

Francesco Di Maio1, Roberta Rossett1, Enrico Zio1,2 

 
1Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy 

francesco.dimaio@polimi.it; enrico.zio@polimi.it  

Chair System Science and the Energy Challenge, Fondation Electricité de France (EDF), CentraleSupélec, Université Paris 

Saclay, 92290 Paris, France 

enrico.zio@supelec.fr; enrico.zio@edf.fr  

 

 

        In this paper, we propose the use of a Semi-Supervised Self Organizing Map (SSSOM) in a novel learning scheme based 

on the Manhattan distance, for post-processing the multi-valued dynamic scenarios that are collected during an Integrated 

Deterministic and Probabilistic Safety Analysis (IDPSA) of a dynamic system. The combinatorial explosion of the IDPSA 

scenarios makes the post-processing for safety information retrieval computationally very difficult. We, thus, propose SSSOM 

as a suitable approach for visualizing and classifying the IDPSA scenarios in safe, near misses, failed and prime implicants 

scenarios, whose consequences and probabilities of occurrence carry relevant information that are useful when assessing the 

risk of operation of the system.  Results are shown with respect to a SIMULINK model that simulates the IDPSA scenarios of 

a U- Tube Steam Generator (UTSG) of a Nuclear Power Plant (NPP). 

 

Keywords: Integrated Deterministic and Probabilistic Safety Analysis, scenarios post-processing, Semi-Supervised Self 

Organizing Map, Manhattan distance. 

 

 

I. INTRODUCTION 

 

Integrated Deterministic and Probabilistic Safety Analysis (IDPSA) can overcome the challenges of Deterministic Safety 

Analysis (DSA) and Probabilistic Safety Analysis (PSA) for complex dynamic systems, like nuclear and oil and gas plants1, 

viz: 

• Realistic uncertainty estimation; 

• Realistic quantification of safety margins; 

• Identification and characterization of undiscovered plant vulnerabilities; 

• Increasing transparency and robustness of risk-informed decision making; 

• Improvement of plant safety and operation. 

Indeed, by means of a safety analysis one aims at estimating the unknown risk profile of a plant and at defining the safety 

margins for protecting it from known/unknown accidental events2. DSA attempts to do so by verifying the capability of the 

system (e.g. a Nuclear Power Plant (NPP)) to withstand to a limited set of postulated, conservative Design Basis Accidents 

(DBAs)1,3. PSA attempts to consider a wider set of accidental scenarios than DBAs for identifying the risk profile and 

quantifying the associated probabilities2,4. Both DSA and PSA are scenarios-based analyses with expert judgment scenario 

selection, which may lead to missing or underestimating potentially dangerous scenarios5. Indeed, it is recognized that DSA 

and PSA approaches provide information about what is known already to be an “issue”, but they are not capable of revealing 

what is unknown, and to what extent6. 

IDPSA aims at improving the DSA and PSA analyses by coupling deterministic and probabilistic aspects of safety 

analyses, addressing both the stochastic nature of events (i.e., aleatory uncertainties), as well as the lack of knowledge about 

the processes relevant to the system (i.e., epistemic uncertainties), in a consistent manner2,4. In doing so, a key aspect of IDPSA 

is the attempt to reduce the reliance on expert judgment to avoid predetermining the analyzed scenarios in terms of time 

dependencies and sequences of events. In IDPSA, the scenarios emerge from the solution of the system stochastic dynamics: a 

comprehensive generation and analysis of the scenarios that may occur in the system due to the combination of components 

failures at all possible failures times is the main benefit of IDPSA.  However, this also turns into being one of the major 

challenges of IDPSA, since the computational complexity of scenario generation and post-processing might become intractable 

mailto:francesco.dimaio@polimi.it
mailto:enrico.zio@polimi.it
mailto:enrico.zio@supelec.fr
mailto:enrico.zio@edf.fr


13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

2 

for very complex systems. Indeed, the number of dynamic scenarios to be taken into account increases with the number of 

failure events, rendering the computational cost enormous and the a posteriori information difficult to interpret2,3,7. 

As timing and sequencing of component failures determine the system final state (faulty or not), the complexity of the 

model increases from the binary variables (Boolean logic), where the modeling is limited only to the occurrence or not of 

certain events, to the Multi-Valued Logic (MVL) variables2–4,8–10. Then, also the post-processing  (i.e., the classification of the 

generated dynamic scenarios in safe, failed, Near Misses (NM) and Prime Implicants (PIs) clusters) becomes challenging due 

to the large number of simulated scenarios. Safe scenarios are those that, even if including several components failures, keep 

the system working in safe conditions. Failed scenarios, instead, result from a combination of failure events that lead the system 

into a failed condition. Among failed scenarios, PIs are those scenarios containing events representing the minimal 

combinations of component failure necessary for system failure11 (i.e., the equivalent of Minimal Cut Sets (MCSs) for dynamic 

systems). Among safe scenarios, NMs are dangerous sequences of events that lead the system to a quasi-faulty state. 

Many methods have been proposed in literature for the classification task. A first screening would entail distinguishing 

failed scenarios from safe scenarios, for example by implementing a Fuzzy-c-Means (FCM) classifier8, Mean-Shift 

Methodology (MSM)12, or a decision tree13. Other methods have been proposed also for the identification of PIs and Near 

Misses, besides failed and safe scenarios. For example, the PIs identification among the whole set of scenarios can be performed 

with a differential evolution-based method14 or a visual interactive method5, where the number of components whose behavior 

is specified in the accident sequence, is selected as most important feature for the PIs identification: the accident sequences 

associated with the lowest literal cost are selected and stored as PIs, being, indeed, the most reduced sequences (i.e., with least 

number of events) that cannot be covered by any other implicant (i.e., PIs by definition). Regarding the identification of the 

Near Misses sequences an unsupervised clustering problem can be addressed and solved by an optimized wrapper algorithm 

around the K-means clustering algorithm3,15. 

With the abovementioned methods, it is possible to process the information and extract the characteristics of homogeneous 

groups (safe, failed, NMs and PIs), individually. However, there is no comprehensive method able to provide the analyst with 

a complete picture of the accidental scenarios characterization. The goal of this work is to propose such an IDPSA scenarios 

post-processing method that is: i) able to comprehensively deal with all the classes at the same time (safe, failed, NMs, PIs), 

ii) independent on the granularity of the MVL approximation iii) and whose interpretation of the provided classification results 

is simpler than in the other methods, thanks to an intuitive visual interface, which could be useful also for dynamic monitoring 

of the system. To this aim, we use Self-Organizing Maps (SOMs)16 which have been widely used in various engineering and 

physical applications, including fault detection and diagnosis in complex systems17,18. SOMs capture non-linear relationships 

of high dimensional data and visualize them on a low dimensional interface, normally a 2-D structure of, so called, neurons. In 

this structure, data are assigned to the most similar neuron (usually by measuring the smallest Euclidean distance) so that the 

available data are divided into regions with common characteristics (i.e., data with high similarity are mapped close to each 

other). Three kinds of SOM exist: the Unsupervised SOM (USOM), the Semi-Supervised SOM (SSSOM) and the Supervised 

SOM (SSOM). We will show that SSSOM is the best for identifying safe, failed, NMs and PIs groups of scenarios. We tailor 

the SSSOM learning scheme to properly treat the MVL approximation as input data: more precisely, we resort to the Manhattan 

distance as similarity measure for assigning the discrete variables (i.e., the failure sequences) to the most similar neurons. The 

feasibility of using the Manhattan distance-based SSSOM method for post-processing IDPSA scenarios for their classification 

into safe, failed, NMs and PIs, is demonstrated with respect to a dynamic U-Tube Steam Generator (UTSG) of a NPP. For 

IDPSA scenarios generation, a dynamic simulation model has been implemented in SIMULINK and, as an approximation of 

the reality, a Multi-Valued Logic (MVL) scheme has been adopted for describing the different component operational states. 

The paper is organized as follows. In Section 2, the UTSG and its SIMULINK model are presented. Section 3 characterizes 

the SOM both for unsupervised and semi-supervised algorithms. In Section 4, the results obtained on the UTSG scenarios post-

processing are reported. In Section 5, some conclusions and final remarks are drawn. 

 

II. CASE STUDY 

 

II.A. The U-Tube Steam Generator (UTSG) model  

  

We consider the UTSG represented in Fig. 119. The reactor coolant enters the UTSG at the bottom, moves upward and then 

downward in the inverted U-tubes, transferring heat to the secondary fluid before exiting at the bottom.  The secondary 

feedwater (𝑄𝑒) enters the UTSG at the top of the downcomer, through the space between the tube bundle wrapper and the SG 

shell. 

 

 

 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

3 

 

Fig. 1. Schematic of the UTSG19. 

 

The feed water 𝑄𝑒  heats up, reaches saturation, starts boiling, turns into a two-phase mixture and then the steam is separated 

from liquid water through the separator/riser section and the dryers, ensuring that the exiting steam (𝑄𝑣) is essentially dry. The 

separated water is re-circulated back to the downcomer. The balance between the exiting 𝑄𝑣  and the incoming 𝑄𝑒  governs the 

change in water levels: the narrow range level 𝑁𝑟𝑙, due to the pressure difference between two points close to the water level 

and indicating the mixture level, and the wide range level 𝑊𝑟𝑙, consisting in the difference between the two extremities of the 

SG and indicating the collapsed liquid level related with mass of water in the SG. 

The goal of the control UTSG block (see Fig. 2) is to maintain the 𝑁𝑟𝑙 at a reference position (𝑁𝑟𝑒𝑓): if the 𝑁𝑟𝑙 goes above 

or below the thresholds 𝑁ℎ𝑖𝑔ℎ  / 𝑁𝑙𝑜𝑤 , a high/low level failure occurs. 

Indeed, if 𝑁𝑟𝑙 > 𝑁ℎ𝑖𝑔ℎ  the steam separator and the dryer lose their functionally and excessive moisture is carried in 𝑄𝑣 , 

degrading the turbine blades profile and the turbine efficiency, whereas if 𝑁𝑟𝑒𝑓 < 𝑁𝑙𝑜𝑤 a sufficient cooling capability of the 

primary fluid cannot be guaranteed.  

For IDPSA scenarios generation, a dynamic simulation model has been implemented in SIMULINK, to represent the 

UTSG behavior at different power level 𝑃𝑜  
3. A PID controller, that provides a flow rate 𝑄𝑝𝑖𝑑  resulting from the residuals 

between 𝑁𝑟𝑙  and 𝑁𝑟𝑒𝑓  , and a feedforward controller, that is a safety relief valve to be opened if (and only if) 𝑁𝑟𝑙 > 𝑁ℎ𝑙  (i.e., a 

pre-alarm level 𝑁ℎ𝑙 < 𝑁ℎ𝑖𝑔ℎ) to trigger a constant flow rate 𝑄𝑠𝑓 removal from the UTSG, are used within the control block. 

 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

4 

 

Fig. 2. SIMULINK model of the control block of the UTSG3. 

 

 

II.B. IDPSA scenarios generation 

 

The set of multiple component failures that can occur in the UTSG are (Fig. 3): the steam valve failure, the safety relief 

valve failure, the interruption of the communication between the sensor that monitors 𝑁𝑟𝑙 and the PID controller, and the PID 

failure.  

The failures assumptions have been arbitrarily made in order to i) favor multiple failures in the sequences, ii) capture the 

dynamic influence of all factors and iii) show a complex (but still manageable) real problem, whose IDPSA scenario generation 

requires post-processing the acquired information for guaranteeing a robust risk quantification of the UTSG operation. A 

mission time (𝑇𝑚𝑖𝑠𝑠) of 4000 (s) has been considered for allowing complete development also of slow dynamic accident 

scenarios occurring at early/medium time. The component failures are considered occurring at any continuous time instant, 

with any order in the sequence and magnitude20. 

For the tractability of the problem, we resort to a Multi Logic Value (MVL) computational framework in which the 

components can fail at discrete times and magnitudes14. The discretization consists in: 

 Time: for each component the mission time (𝑇𝑚𝑖𝑠𝑠) is divided into four intervals, labelled 𝑡 = 1 for failure in [0, 1000] 

(s), 𝑡 = 2 in [1000, 2000] (s), 𝑡 = 3 in [2000, 3000] and 𝑡 = 4 in [3000,4000]. If 𝑡 = 0 the component does not fail 

in 𝑇𝑚𝑖𝑠𝑠. 

 Component failure magnitudes: 

- the steam valve failure magnitude is indicated as 1, 2 or 3 for failure states corresponding to stuck at 0%, 

stuck at 50% and stuck at 150% of the 𝑄𝑒  value that should be provided at power level 𝑃𝑜, respectively; if 

the steam valve magnitude is indicated as 0, the component does not fail in 𝑇𝑚𝑖𝑠𝑠;  

- the safety relief valve failure magnitude is indicated as 1, 2, 3 and 4, if it is stuck between [0.5, 12.6] (kg/s), 

(12.6, 25.27] (kg/s), (25.27, 37.91] (kg/s) and (37.91, 50.5] (kg/s), respectively; if the safety relief valve 

magnitude is indicated as 0, the component does not fail in 𝑇𝑚𝑖𝑠𝑠;   
- the communication between the sensor measuring 𝑁𝑟𝑙  and the PID controller is labeled 0 if the 

communication works, 1 otherwise; 
- the PID controller failure magnitude is discretized into 8 equally spaced magnitude intervals, labeled from 1 

to 8, representative of failure states corresponding to discrete intervals of output value belonging to [-18,18]% 

of the 𝑄𝑒  value that should be provided at 𝑃𝑜; if the PID controller magnitude is labeled as 0, the component 

does not fail in 𝑇𝑚𝑖𝑠𝑠. 
 the steam valve fails stuck at its maximum allowable value at a time in [1001, 2000] (s) and it is the first event 

occurring along the sequence;  

 the safety relief valve fails third in [2001, 3000] (s), with a magnitude belonging to [0.5, 12.6] (kg/s);  

 the communication between the sensor measuring 𝑁𝑟𝑙  and the PID controller is the second failure event in the 

sequence and occurs in [1001, 2000] (s);   
 the PID controller fails stuck in [3001, 4000] (s), with a magnitude belonging to [6, 10] % of the 𝑄𝑒  value that should 

be provided at 𝑃𝑜. 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

5 

 

 

 

Fig. 3. Sketch of the failures that can be injected into the system. 

 

 

 

Fig. 4. Example of a sequence vector of an IDPSA scenario of the UTSG. 

 

 

After scenarios generation, post-processing is needed to distinguish the safe, failed, NMs and PIs scenarios. For example, 

for Prime Implicants identification, a visual interactive method has been used5, whereas for Near Misses identification a k-

means clustering method has been adopted3. In the following, we propose the SOM as a comprehensive method able to provide 

the analyst with a complete picture of the accidental scenarios characterization, dealing with all the classes at the same time, 

independently on the granularity of the MVL approximation and allowing, for an intuitive interpretation of the results.  

 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

6 

III. THE SELF-ORGANIZING MAP 

 

III.A. Overview 

 

Network architectures and signal processes that mimic the nervous system can be categorized in three groups: 

feedforward21, feedback22 and neighboring16. SOM belongs to this last category of neural networks where a map of neighboring 

cells compete in their activities with a mutual interaction in a competitive self-organizing manner16. The conceptualization of 

SOMs is inspired by the cerebral cortex, which is divided into different areas for processing different signals such as sight, 

hearing and tactile sensations. When signals are received, the cortex first classifies and, then, maps them into the corresponding 

cortex area, where neurons with similar functionality are closely related, allowing for a fast and accurate processing of the 

received signal23. This process is called topographic mapping and is one of the fundamental concepts underlying the SOM 

functioning16. Furthermore, the SOM is a powerful visualization tool for high-dimensional data, which are orderly mapped into 

a low-dimensional structure that usually consists of a 2-D regular grid of hexagonal nodes (neurons) that can vary from a few 

dozens up to several thousands24. The SOM concentrates all the information contained in a set of 𝑁 input samples 𝑋̅ belonging 

to a 𝑑-dimensional space, say 𝑋̿=[𝑋̅1 , 𝑋̅2  , . . . 𝑋̅N ], where the 𝑛-th sample is 𝑋̅𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑑], utilizing a set of 𝑀 neurons, 

𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑀]  (where 𝑀 < 𝑁 ), each of which is associated to a weight vector 𝑤̅𝑚 = [𝑤1, 𝑤2, … , 𝑤𝑑]  (also called 

“prototypes” or “codebook” vectors)25,26. The weights of each neuron 𝑤̅𝑚 are usually ramdonly initialized between 0 and 1; 

then, their values are adjusted during a training phase, so as to be able to optimally represent 𝑋̿ and its structure.  

Essentially, three kind of SOM exist that differ in the manner they are trained (i.e., the way the topological structure is 

created): the unsupervised SOM (USOM), the semi supervised SOM (SSSOM), and the supervised SOM (SSOM). 

 

 

III.B. The unsupervised SOM 

 

The unsupervised SOM training mainly consists in three phases: competition, cooperation and adaptation27, whose details 

are given in the following subsections. Briefly the training phase entails a stimulus (i.e., any of the input samples 𝑋̅n from 𝑋̿) 

to be presented to the network and the neurons competition so as to indentify which is the Best Matching Unit (BMU), that is 

the most similar to 𝑋̅n in terms of its weight values. Then, a subset of the neighborhood neurons to the BMU are modified by a 

neighborhood function. Figuratively, the region around the BMU is stretched towards the stimulus (shown in Fig. 5). As a 

result, the neurons on the grid become ordered: neighboring neurons tend to have similar weight vectors.  

 

 

Fig. 5. Best matching unit (BMU) and its neighbors stretching towards the stimulus 𝑋. Solid and dashed lines correspond 

to the grid before and after the update, respectively. 

 

 

 

 

 

 

 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

7 

III.B.1. Competitive process 

 

The SOM is trained iteratively: for each training step 𝑡, one sample vector 𝑋̅n is chosen randomly from the 𝑁 available 

input data set 𝑋̿ and the distance between it and all the weight vectors of the SOM are calculated using some distance measure. 

The neuron ci whose weight vector 𝑤̅𝑖 is closest to the input vector 𝑋̅n is called Best-Matching Unit (BMU):  

 

𝑐𝑖 = 𝑎𝑟𝑔{𝑚𝑖𝑛{‖𝑋̅𝑛 − 𝑤̅𝑚‖}}          𝑤𝑖𝑡ℎ 𝑚 = 1, … 𝑀                                     (1) 

where 𝑐𝑖 is the BMU and ‖·‖ is the distance measure (typically Euclidean, but also Binary28 or, as original in this work, 

Manhattan). 

 

III.B.2. Cooperation process 

 

Once 𝑐𝑖 is found, its weights vector 𝑤̅𝑖 is updated proportionally to the difference between 𝑤̅𝑖 and the values of 𝑋̅n, and 

accounting also for the characteristics of the neighborhing neurons of the BMU (that is, BMU and neighbors tightly cooperate 

to form a specific pattern on the lattice)16,29. 

 

III.B.3. Adaptation process 

 

The tuning function that updates 𝑤̅𝑖 is: 

 

            𝑤̅ i(𝑡 + 1) = 𝑤̅ i(𝑡) + 𝛼(𝑡) (1 −
𝑑𝑚𝑖

𝑑𝑚𝑎𝑥+1
) [𝑋̅𝑛(𝑡) − 𝑤̅ i(𝑡)]             (2)      

where 𝛼 is the learning rate, 𝑑𝑚𝑎𝑥  is the size of the neighborhood radius, that decreases during the training phase, and 

𝑑𝑚𝑖  is the topological distance defined as the number of neurons that separates the considered m-th neuron and the winning 

neuron 𝑐𝑖. The learning rate changes during the training phase, as in Eq. (3)25: 

 

            𝛼(𝑡) = (𝛼𝑠𝑡𝑎𝑟𝑡 − 𝛼𝑓𝑖𝑛𝑎𝑙) (1 −
𝑡

𝑡𝑡𝑜𝑡
) + 𝛼𝑓𝑖𝑛𝑎𝑙                                      (3)  

where 𝑡𝑡𝑜𝑡 is the total number of training epochs, 𝛼𝑠𝑡𝑎𝑟𝑡 and 𝛼𝑓𝑖𝑛𝑎𝑙 are the learning rate at the beginning and end of the 

training, usually in [0.1, 0.9] and in [0, 𝛼𝑠𝑡𝑎𝑟𝑡] respectively25. The training is usually performed in two phases: in the first phase, 

relatively large initial learning rate 𝛼𝑠𝑡𝑎𝑟𝑡 and neighborhood radius 𝑑𝑚𝑎𝑥  are used; in the second phase both learning rate and 

neighborhood radius are small right from the beginning. This procedure corresponds to first tuning the SOM approximately to 

the same space as the input data and, then, fine-tuning the map.  

An additional input parameter to be set is the number of neurons 𝑀 composing the map: this is usually set equal to:  

                                                  𝑀 = 5 ∙ √𝑁                                                       (4) 
    

Since different parameters and initializations give rise to different maps, it is important to know whether the map has 

properly adapted itself to the training data30. Two commonly used quality measures that can be used to determine the quality 

of the map and help choosing suitable learning parameters and map sizes are the Mean Quantization Error (MQE) and the 

Topographic Error (TE).  

MQE is a measure of how good the map can fit the input data, and the best map is expected to yield the smallest average 

quantization error between the BMU 𝑤̅𝑖 and the input vectors 𝑋̅𝑛. MQE is calculated with Eq. (5): 

 

                                𝑀𝑄𝐸 =
1

𝑁
∑ ‖𝑋̅𝑛 − 𝑤̅𝑖‖

𝑁
𝑛=1                                               (5) 

     

where 𝑁 is the number of the input vectors used to train the map. Practically, the lower the MQE, the better the map.  

TE measures how well the topology is preserved by the map. Unlike the MQE, it considers the structure of the map. For 

each input vector, the distance of the BMU and the second BMU (the second weight vector closer to the input vector) on the 

map is considered; if the nodes are not neighbors, then, the topology is not preserved. TE is computed with Eq. (6): 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

8 

 

                            𝑇𝐸 =
1

𝑁
∑ 𝑁 ∙ 𝑢(𝑋̅𝑘)𝑘=1                                                         (6) 

     

In supervised training, the class of input vectors are known a priori and used as input itself. One of the most famous 

learning strategy is the Counterpropagation Neural Networks (CP-ANNs)25, that is very similar to Kononen maps, but an output 

layer is added to the map, in order to handle supervised modeling. In this additional layer, neurons have as many weights as 

the number of classes to be modeled (𝐺). As input for the algorithm also a class vector 𝑌̅ = [𝑦1, 𝑦2, … , 𝑦𝑁] is needed (each n-

th element of the class vector is associated with the corresponding input vector), which represents the supervised part of the 

network model. As a consequence, the map algorithm is fed with a set of data with 𝑑 + 1 variables that also consider the class 

label. During the training, the weights of the 𝑚-th neuron 𝑤̅𝑚 in the output layer are updated in a supervised manner, on the 

basis of the winning neuron selected in the Kohonen layer. 

 

 

III.C. The semi-supervised SOM 

 

Recently, modifications to CP-ANNs led to the introduction of new supervised neural network strategies as the XY-fused 

network (XY-Fs) and the Supervised Kohonen Networks (SKNs)31. The former is particularly interesting for classification 

models, since it exploits the similarities both in the Kohonen layer (X-map) and in the output layer (𝑌-map). We consider again 

a set of 𝑁 input vectors 𝑋̿ = [𝑋̅1, 𝑋̅2, … , 𝑋̅𝑁] , 𝑀  neurons 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑀]  and weight vectors 𝑤̅𝑚 = [𝑤1, 𝑤2, … , 𝑤𝑑] 

associated to them. This time we add in input a vector 𝑌̅ = [𝑦1, 𝑦2 , … , 𝑦𝑁], called class vector and representing the 𝐺 classes of 

each 𝑛-th input vector. The training is still based on the three phases of competition, cooperation and adaptation but in SSSOM 

the algorithm differs from the USOM one, since the fused similarity measure is based on a weighted combination distances 

between an object (vector) 𝑋̅𝑛 and all units in the 𝑋𝑚𝑎𝑝 (𝑆(𝑋̅, 𝑋𝑚𝑎𝑝)), and the distances between the corresponding output 

object 𝑦𝑛 and the units in the 𝑌𝑚𝑎𝑝 (𝑆(𝑌̅, 𝑌𝑚𝑎𝑝)). By 𝑆𝑓𝑢𝑠𝑒𝑑(𝑛, 𝑚) a common winning unit for both maps is determined: 

                                  𝑆𝐹𝑢𝑠𝑒𝑑(𝑛, 𝑚) = 𝜀(𝑡)𝑆(𝑋̅𝑛 , 𝑋𝑚𝑎𝑝𝑚) + (1 − 𝜀(𝑡))𝑆(𝑌̅𝑛, 𝑌𝑚𝑎𝑝𝑚)          (7)  
    

The location of the minimum of the above function is the common winning unit 𝜀𝑖 and 𝜀(𝑡) regulates the relative weight 

between similarities in the 𝑋 and 𝑌 maps, and it is still dependent on the number of training epochs, decreasing linearly during 

the training. 

 

 

III.D. The semi-supervised SOM based on the Manhattan distance 

 

The IDPSA scenarios to be post-processed consists of sequence vectors of MVL variables, as described in Section 2.2 (i.e., 

failure time, magnitude and order of components failures). For classifying the scenarios into the safe, failed, NMs and PIs 

classes with a SSSOM, the MVL formalism has to be accommodated within the similarity assessment between data and 

neurons. For this, we replace the 𝑑-dimensional Euclidean distance between the 𝑛-th input vector 𝑋̅𝑁 and the weight vector 

𝑤̅𝑚, associated to the generic 𝑚-th neuron: 

 

       𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑋̅𝑘 − 𝑤̅𝑘)2𝑑
𝑘=1                                               (8) 

with the Manhattan distance: 

                                  𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑋̅𝑛 , 𝑤̅ m) = ∑ ‖𝑋̅𝑘 − 𝑤̅ k‖  𝑑
𝑘=1                                (9) 

     

 

where ‖·‖ is the absolute value of the difference between the two vectors in each dimension. By so doing, even the small 

differences between sequence vectors can be taken into account, that would be, otherwise, smoothed out with an Euclidean 

distance.  

 

 

 

IV. POST-PROCESSING UTSG SCENARIOS 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

9 

 

IV.A. Training of the SOM 

 

We use the SSSOM described in Section 3.4 to analyze the 𝑁 = 100509 scenarios of 𝑑 = 12 variables and build the best 

2-D representation of the 𝐺 = 4 classes of safe, failed, NMs and PIs scenarios. We set the parameters of the map by trial and 

error: 

 𝑀 = 3025 neurons; 

 𝑡𝑡𝑜𝑡 = 15 epochs; 

 𝜀(𝑡 = 0) = 0.01 (see Eq. (7)). 

 

This latter has been chosen to be small to initially favor the BMU assignment based on the class information rather than 

on the 𝑑 = 12 MVL characteristics. In other words, the class 𝐺 has an important role in the selection of the BMU. The obtained 

SSSOM is shown in Fig. 6.  Different shades of color represent different classes: it is worth noticing the capability of the SOM 

to locate safe, failed, NMs and PIs scenarios in compact domains of neurons.  

The confusion matrix of the classification is given in Table I: for each class, the numbers of correctly and wrongly assigned 

patterns are given. In general, most of the sequence vectors have been assigned to the right class.  For example, the first row of 

the matrix describes how safe scenarios have been classified by the SSSOM: 50008 out of 64049 safe input vectors are correctly 

classified as safe, 5684 are classified as minterms, 5299 as NMs and 3056 as PIs. Looking at PIs, only a small fraction of 

scenarios are misclassified as safe (1), failed (2), and NMs (5) scenarios. 

 

Fig. 6. The SSSOM for post-processing the UTSG accidental scenarios. 

 
TABLE I. Confusion matrix of the SSSOM in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

10 

Assigned class 

Real class 

Real class 

Assigned class 

 Safe  NMs  Failed  PIs 

Safe 50008  5299  5684  3056 

NMs 3  318  4  7 

Failed 2648  3521  27880  1989 

PIs 1  5  2  82 

 
Table II shows the confusion matrix in terms of percentages: the elements of the diagonal of the matrix are the percentages 

of scenarios correctly assigned. Overall 77.9% of the 100509 scenarios are correctly assigned. In Table II, we also highlight 

“false negative” and “false positive” assignments: the former are those vectors that are safe or NMs, but they are misclassified 

as failed or PIs, whereas the latter represent failed or PIs scenarios classified as safe or NMs. “False positive” are the scenarios 

we are concerned about because these have been misclassified. In particular, 17% (7.3% + 9.7%) of failed scenarios are 

classified as safe or NMs and a 6.7% (1.2% + 5.5%) of PIs are wrongly assigned to scenarios where the system does not fail. 

 

 

TABLE II. Confusion matrix of the SSSOM in Fig. 6 (percentages). 

 

 

 
 Safe NMs Failed PIs 

Safe 78.1% 8.3% 8.9% 4.7% 

NMs 0.9% 95.8% 1.2% 2.1% 

Failed 7.3% 9.7% 77.4% 5.6% 

PIs 1.2% 5.5% 2.2% 91.1% 

 

 

The trained SSSOM performance is also evaluated with respect to (see Table III): 

 Precision: the capability of the SSSOM to not include samples of other classes in the considered 𝑔-th class; 

 Sensitivity: the capability of the SSSOM to correctly recognize samples belonging to the 𝑔-th class; 

 Specificity: the capability of each 𝑔-th class of the SSSOM to reject the samples of all the others. 

 

 

 

 

 

 

 

 

 
TABLE III. Performances of the SSSOM in Fig. 6. 

False negative vectors 

False positive vectors 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

11 

Classes 

Parameter

s 

 

 Safe NMs Failed PIs 

Precision 0.949 0.034 0.83 0.016 

Sensibility 0.781 0.958 0.774 0.911 

Specificity 0.927 0.911 0.911 0.949 

 

As we can see, the SSSOM has high values of specificity for all the classes (i.e., it avoids misclassifying scenarios) even 

if precision is very small (at least for NMs and PIs).  

The information provided by Tables I, II and III are useful for assessing the operational risk of the system under analysis. 

For this, we consider the product of the probability of occurrence of the scenario and the consequences that the developing 

scenario can cause to the system3. To compute the occurrence probability, we consider the component failures to occur with a 

small probability 𝑝. Obviously scenarios with more component failures are less probable to occur and we observe that safe 

scenarios have few component failures, whereas failed scenarios usually have a (relatively) large number of failures. In 

particular, considering the probabilities of occurrence of the “false negative” and “false positive” scenarios, we can see that: 

safe scenarios that are misclassified as failed have high probabilities of occurrence, because they are safe, but do not carry a 

large contribution to risk, even if not correctly identified, because of negligible consequences; failed scenarios, instead, may 

have large consequences, but occur with small probabilities. 

 

IV.B. Test of the SSSOM 

 

The Manhattan distance-based SSSOM is intended for post-processing the scenarios of an IDPSA of a dynamic system, 

classifying them in safe, failed, NMs and PIs under different MVL granularity, possibly also treating continuous variables.  

We have created a new set of input data 𝑋̿𝑡𝑒𝑠𝑡 of 2000 sequences, in which components can fail randomly between 0 and 

the mission time of 4000 (s). Then, the trained SSSOM is used to classify 𝑋̿𝑡𝑒𝑠𝑡 . Due to the discretization of the MVL 

framework, some of the safe sequences may be classified as failed and vice versa. Fig 7 shows, for example, the water level of  

a safe scenario (solid line) classified as failed (dashed line). From a continuous to a discretized representation, in fact, the 

failure time is shifted earlier and this is enough to change the end state of the system from safe to failed. 

 

Fig. 7. UTSG water level for a safe scenario (solid line) that is classified as failed (dashed line). 

 

Figure 8 shows a failed scenario (solid line) classified as safe (dashed line). Also in this case the failure time plays a 

fundamental role for the end state of the system: due to the MVL approximation, the failure time is delayed and the system 

does no longer exceeds 𝑁ℎ𝑖𝑔ℎ . 

 

0 500 1000 1500 2000 2500 3000 3500 4000
100

120

140

160

180

200

Time [s]

 L
e
v
e
l 
[c

m
]

 

 

Safe

Failed

N
vh

N
high



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

12 

 

Fig. 8. UTSG water level for a failed scenario (solid line) that is classified as safe (dashed line). 

 

On the other hand, in many cases the MVL approximation does not alter the scenarios characteristics because the time 

shift is not sufficient for a change of the end state of the scenario, as seen in Figures 9 and 10. Obviously, a finer MVL 

discretization would improve the SSSOM classification performances at the expenses of a longer computational burden for the 

MVL discretization, the increased number of scenarios to be post-processed and the complexity of the SSSOM to be built.  

The results of the SSSOM test are shown in Table IV. Overall, it can be seen that 949 of the 2000 test scenarios considered 

(75.8%) are classified as safe or NMs and, among these, 941 out of 1244 are correctly classified as safe (75.64%), and all 8 

NMs are correctly classified. However 542 of the 749 failed scenarios present in the test set are correctly classified as failed 

(563 i.e., 75.3% of failed scenarios) and PIs (9 i.e., 100% of PIs scenarios) classes. 

 

 

Fig. 9. UTSG water level for a safe scenario (solid line) that is classified as safe (dashed line). 

 

0 500 1000 1500 2000 2500 3000 3500 4000
100

110

120

130

140

150

160

170

180

190

Time [s]

 L
e
v
e
l 
[c

m
]

 

 

Failed

Safe

N
vh

N
high

0 500 1000 1500 2000 2500 3000 3500 4000
100

110

120

130

140

150

160

170

180

Time [s]

 L
e
v
e
l 
[c

m
]

 

 

Safe

Approximated

N
vh

N
high



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

13 

 
Fig. 10. UTSG water level for a failed scenario (solid line) that is classified as failed (dashed line). 

 

 
Table IV. Results of the testing phase. 

 

V. CONCLUSIONS 

 

The post-processing of scenarios collected during an IDPSA of a dynamic system can be difficult, due to the combinatorial 

explosion of the scenarios generated. In this paper, we have presented a new methodology for classifying IDPSA scenarios as 

safe, failed, NMs and PIs. The method is based on a Manhattan distance-based SSSOM, in order to treat the multi-valued 

dynamic scenarios. The application to an UTSG case study has shown the capability of grouping the scenarios in four distinct 

regions of the map and retrieving safety-relevant information.  

 

REFERENCES 

 

1.  E. Zio, F. Di Maio, "The needs and dreams for methodologies of IDPSA", in Proceedings of the Integrated 

Deterministic and Probabilistic Safety Analyses Workshop, KTH, Stockholm, Sweden (2012). 

2.  Zio E. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions. Nucl Eng 

Des. 2014;280:413-419. doi:10.1016/j.nucengdes.2014.09.004. 

3.  F. Di Maio, M. Vagnoli, E. Zio, "Risk-Based Clustering for Near Misses Identification in Integrated Deterministic and 

Probabilistic Safety Analysis", Sci Technol Nucl Install., 1-29 (2015), doi:10.1155/2015/693891. 

0 500 1000 1500 2000 2500 3000 3500 4000
150

155

160

165

170

175

180

185

Time [s]

 L
e
v
e
l 
[c

m
]

 

 

Failed

Approximated

N
vh

N
high



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

14 

4.  Aldemir T. A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants. Ann Nucl 

Energy. 2013;52:113-124. doi:10.1016/j.anucene.2012.08.001. 

5.  F. Di Maio, S. Baronchelli, E. Zio, "A visual interactive method for prime implicants identification", IEEE Trans 

Reliab., 64(2):539-549, (2015), doi:10.1109/TR.2014.2371015. 

6.  Vorobyev Y, Kudinov P. Development and application of a genetic algorithm based dynamic pra methodology to plant 

vulnerability search. In: International Topical Meeting on Probabilistic Safety Assessment and Analysis 2011, PSA 

2011. Vol 1. ; 2011:559-573. 

7.  Labeau PE, Smidts C, Swaminathan S. Dynamic reliability: Towards an integrated platform for probabilistic risk 

assessment. Reliab Eng Syst Saf. 2000;68(3):219-254. doi:10.1016/S0951-8320(00)00017-X. 

8.  E. Zio, F. Di Maio, "Processing dynamic scenarios from a reliability analysis of a nuclear power plant digital 

instrumentation and control system", Ann Nucl Energy, 36(9):1386-1399 (2009), doi:10.1016/j.anucene.2009.06.012. 

9.  F. Di Maio, S. Baronchelli, E. Zio, "Hierarchical differential evolution for minimal cut sets identification: Application 

to nuclear safety systems", Eur J Oper Res., 238(2):645-652 (2014), doi:10.1016/j.ejor.2014.04.021. 

10.  F. Di Maio, S. Baronchelli, E. Zio, "A Computational Framework for Prime Implicants Identification in Noncoherent 

Dynamic Systems", Risk Anal., 35(1):142-156 (2015), doi:10.1111/risa.12251. 

11.  Quine W V. The Problem of Simplifying Truth Functions. Am Math Mon. 1952;59(8):521-531. doi:10.2307/2308219. 

12.  Mandelli D, Yilmaz A, Aldemir T, Metzroth K, Denning R. Scenario clustering and dynamic probabilistic risk 

assessment. Reliab Eng Syst Saf. 2013;115:146-160. doi:10.1016/j.ress.2013.02.013. 

13.  Galushin S, Kudinov P. An approach to grouping and classification of scenarios in integrated deterministic-

probabilistic safety analysis. In: PSAM 2014 - Probabilistic Safety Assessment and Management. ; 2014. 

http://www.scopus.com/inward/record.url?eid=2-s2.0-84925067962&partnerID=tZOtx3y1. 

14.  F. Di Maio, S. Baronchelli, E. Zio, "A Computational Framework for Prime Implicants Identification in Noncoherent 

Dynamic Systems", Risk Anal., 35(1):142-156, (2015), doi:10.1111/risa.12251. 

15.  MacQueen J B., "Kmeans Some Methods for classification and Analysis of Multivariate Observations". 5th Berkeley 

Symp Math Stat Probab 1967. 1967;1(233):281-297. doi:citeulike-article-id:6083430. 

16.  Kohonen T. The self-organizing map. Proc IEEE. 1990;78(9):1464-1480. doi:10.1109/5.58325. 

17.  Wu S, Chow TWS. Induction machine fault detection using SOM-based RBF neural networks. Ind Electron IEEE 

Trans. 2004;51(1):183-194. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1265797. 

18.  Yu H, Khan F, Garaniya V. Risk-based fault detection using Self-Organizing Map. Reliab Eng Syst Saf. 2015;139:82-

96. doi:10.1016/j.ress.2015.02.011. 

19.  Aubry J.,F., Babykina G, Barros A, et al. Project APPRODYN: APPROches de La Fiabilité DYNamique Pour 

Modéliser Des Systèmes Critiques.; 2012. 

20.  Devooght J, Smidts C. Probabilistic reactor dynamics - I: Theory of continuous event trees. Nucl Sci Eng. 

1992;111(3):229-240. http://www.scopus.com/inward/record.url?eid=2-s2.0-

0026884986&partnerID=40&md5=cee7d51f4c102a1da1444041fa5f5fc8. 

21.  David E. Rumelhart, McClelland JL. Parallel Distributing Processing; Exploration of the Microstructure of Cognition; 

Volume 1: Foundations. Cambridge, MA, USA: MIT Press; 1986. 

22.  Siegelmann HT, Sontag ED. On the Computational Power of Neural Nets. J Comput Syst Sci. 1995;50(1):132-150. 

doi:10.1006/jcss.1995.1013. 

23.  Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Vol 3.; 2000. doi:10.1036/0838577016. 

24.  Kohonen T. The self-organizing map. Neurocomputing. 1998;21(1-3):1-6. doi:10.1016/S0925-2312(98)00030-7. 

25.  Ballabio D, Vasighi M. A MATLAB toolbox for Self Organizing Maps and supervised neural network learning 

strategies. Chemom Intell Lab Syst. 2012;118:24-32. doi:10.1016/j.chemolab.2012.07.005. 

26.  Astudillo CA, Oommen BJ. Self-organizing maps whose topologies can be learned with adaptive binary search trees 

using conditional rotations. Pattern Recognit. 2014;47(1):96-113. doi:10.1016/j.patcog.2013.04.012. 

27.  Zhong F. Z. F., Shi T.S.T., He T.H.T., "Fault diagnosis of motor bearing using self-organizing maps", 2005 Int Conf 

Electr Mach Syst. 2005;3(50375047):2-5. doi:10.1109/ICEMS.2005.203004. 

28.  Appiah K, Hunter A, Meng H, et al. A binary Self-Organizing Map and its FPGA implementation. In: Proceedings of 

the International Joint Conference on Neural Networks. ; 2009:164-171. doi:10.1109/IJCNN.2009.5179001. 

29.  Vesanto J, Himberg J, Alhoniemi E, Parhankangas J. SOM Toolbox for Matlab 5. Tech Rep A57. 2000;2(0):59. 

doi:http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf. 

30.  Gabrielsson S. The use of Self-Organizing Maps in Recommender Systems; A survey of the Recommender Systems 

field and a presentation of a State of the Art Highly Interactive Visual Movie Recommender System. 2006. 

31.  Melssen W, Wehrens R, Buydens L. Supervised Kohonen networks for classification problems. Chemom Intell Lab 

Syst. 2006;83(2):99-113. doi:10.1016/j.chemolab.2006.02.003. 

 


