

*Contact Author: Lixuan.Lu@uoit.ca

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

A quantitative software testing method for hardware and software
integrated systems in safety critical applications

Hai Tanga, Lixuan Lu*a

a University of Ontario Institute of Technology, Oshawa, ON, Canada

Abstract: Most of today’s Safety Instrumented Systems (SIS) are hardware and software integrated
systems. In these systems, failures can occur in both hardware and software. Hardware failures and
their effects have been studied extensively in the literature. However, the methods and results dealing
with hardware failure are not directly applicable for software reliability modeling, due to the
difference of nature between hardware and software. This is especially of concern when the SIS is
used for safety critical applications. In this paper, a hardware and software integrated reliability model
is proposed to model the reliability of the integrated system. The requirement on software reliability is
then determined based on the hardware reliability and the requirement on the Safety Integrity Level
(SIL) of the integrated system. Following this, a Bayesian stopping rule is used to determine the
minimal number of successful software runs, in order to provide a certain level of confidence that the
reliability requirement on the software is achieved.

Keywords: Probabilistic risk assessment (PRA)/probabilistic safety assessment (PSA), Safety
instrumented systems (SIS), Hardware and software integrated reliability model, Bayesian stopping
rule, Software reliability demonstration test (SRDT).

1. INTRODUCTION

Most of today’s Safety Instrumented Systems (SIS) are hardware and software integrated systems,
used in safety critical applications, such as in nuclear power plant control, chemical processes and
machine guarding. They are used to detect hazardous events and perform safety-related functions to
reduce the risk of human injury and fatality. Although there have been many methods proposed in
literature for probabilistic risk assessment (PRA)/probabilistic safety assessment (PSA) of
instrumentation and control systems, most of the analyses are geared towards hardware failures and
their effects. Quantitative reliability modeling and analysis of hardware and software integrated
systems still pose great challenges, especially in the situation when the a quantitative software
reliability assessment is taken into consideration.

Software and hardware fail differently. This is caused by many fundamental aspects. Hardware is the
physically connected components that perform or support a function within the system. It normally has
a time-related failure rate because of the hardware wear out process. Hardware failure occurs when
some form of stress exceeds the associated strength of the product. On the other hand, software is a
collection of instructions which enables a controller to perform a specific task on the hardware
platform, and software cannot work alone without hardware. Software failure mechanisms are
different from hardware failures in that all software failures are inadvertently designed into the system
[1]. Software does not wear out as hardware, thus software failure is time-independent.

When building reliability models for hardware and software integrated systems, there are many factors
to consider. First of all, due to the fundamental difference between hardware and software failure
mechanisms, it is obvious that the methods developed to model the hardware reliability are not
suitable for software reliability modeling, and vice versa. Software failures are the design defects
highly related to design process management and developers’ skills and experience. It is not easy to
quantitatively incorporate all these factors with existing reliability models, although many software

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

reliability models have been developed for reliability assessment of different phases of the software
lifecycle [2, 3]. All of these models have their own weakness, and none of them can cover the whole
software lifecycle. Moreover, general purpose software reliability models always require failure data
during the development, testing and operating phase of software lifecycle, which can be difficult to
obtain for safety critical software. Software used in SIS requires an extremely high reliability, whose
failure is very rare or may be never found from the software testing.

An integrated reliability model is developed in this paper to analyze the Safety Integrity Level (SIL) of
an integrated SIS, in which the time-independent software reliability model is coupled with the time-
related hardware model to calculate the average probability of failure on demand (PFDavg). A
reliability demonstration test is designed with Bayesian stooping rules, which gives a proof with
certain level of confidence that the software is able to respond successfully when a SIS is required to
perform a safety function on demand.

2. SAFETY INTEGRETY LEVEL

2.1. Average Probability of Failure on Demand

IEC 61508 [4] is an international standard for functional safety of systems. It specifies the requirement
on the entire safety lifecycle management of a SIS, including system design, development and
certification stages. According to the standard, the safety analysis procedure requires a quantitative
determination of the risk reduction by using the safety system as a protection layer to the Equipment
Under Control (EUC).

Safety Integrity level (SIL) is used as a measure of the risk reduction achieved by the safety system
when a hazardous event occurs in the EUC. The probability of a SIS failing dangerously is the
Probability of Failure on Demand (PFD). This represents the risk that the safety system fails to
perform safety functions as designed when a demand for the safety function occurred. Assuming a
single channel safety system has a dangerous failure rate D , the PFD is the probability of a dangerous
failure and is shown in Eq. (1):

tDetPFD 1)((1)

Safety systems usually have an extremely low failure rate, which allows the PFD to be calculated by
the approximated Eq. (2) in real applications.

ttPFD D)((2)

PFD average (PFDavg) is the average of probability of failure on demand, which is defined in Eq. (3):

dttPFD
T

PFDavg)(
1

 (3)

2.2. Safety Integrity Level (SIL)

The PFDavg quantitatively represents the probability that a safety system fails performing the
designed safety function when a demand occurs. The SIL is an index number uesed in real
applications to indicate system risk reduction levels according to system PFDavg values. As shown in
Table 1, four SILs, ranking form SIL 1 to SIL 4, are specified to show different ranges of system
PFDavg. Systems with a higher SIL have a better risk reduction to the EUC. A lower PFDavg
corresponds to a higher SIL, which means the system has a higher probability to perform a safety

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

function correctly when a hazardous event occurs. Safety systems usually use redundancy on the
component level or system level to achieve a certain SIL.

Table 1: Safety Integrity Level

3. SOFTWARE RELIABILITY

3.1. Input Domain Based Model

Software plays a more and more important role in modern control systems, due to the fact that most
control functions generated by the programmable logic controllers are software based functions.
Safety functions performed by SIS require an interaction between hardware and software, in which the
software processes the reading of the sensors and provides an output as the control signal to the EUC.
SIS will fail into a dangerous condition if the software has an incorrect response to the hazardous
event when the SIS is expected to perform a safety function.

Software reliability is a quantitative measurement of how well the software system work according to
the design specifications. Unlike hardware, software does not wear out over time. There are many
software reliability models in the literature to model software reliability in different stages of the
software lifecycle. Reliability growth models are widely used in industrial applications. They provide
a rudimentary estimation on system reliability and can be used to support project management.
However, the assumptions made to use these models are still questionable and the characteristics of
the software under evaluation are insufficiently accounted for. In addition, the techniques used to
estimate the software reliability require a failure history. This can be difficult to obtain for safety
critical systems. Because software in these systems normally ha a much higher reliability level than
general purpose software and it rarely or never fails during testing [5].Input domain based models are
more advantageous over the reliability growth models when modeling the reliability of safety critical
software, because the method does not rely on empirical assumptions and the result is acquired
through a direct statistical approach according to the probability of successful execution in software
testing processes.

In an input domain based model [6], n inputs are randomly selected from the input data set E=(Ei: i=1,
2, … , N), where Ei is the subset of software input domain. The inputs are sampled with the input
distribution of operational profile P=(Pi: i=1, 2, … , N); where Pi is the probability of choosing Ei as
the input. If f failures are found by the execution of n inputs, then the software reliability can be
estimated as:

nfR /1 (4)

When using the input domain based model, a prior knowledge of the system operational profile is
required for testing purposes. The operational profile is a quantitative characterization of how the
software is used in the real applications. A step by step approach to develop the operation profile for
software testing can be found in [7]. For safety critical software test, the operational profile could be
developed according to the operational history of a plant or by expert knowledge. If the input
distribution of the software is unknown, then the operational profile can be developed by assuming a
uniform input distribution over the software input domain.

Safety Integrity Level Probability of failure
on demand (PFDavg)

Risk Reduction factor (RRF)

1 10-1 to10-2 10 to 100
2 10-2 to10-3 100 to 1000
3 10-3 to10-4 1000 to 10000
4 10-4 to10-5 10000 to 100000

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

3.2. Application of Input Domain Based Model for Safety Critical Software

Numerically, if no fault is detected from a software test, then the reliability of software can be
estimated as 1. However, a realistic software product will never achieve 100% reliability unless all
combinations of all possible inputs are tested and they all give the correct results as expected. To
achieve this goal, an infinite number of tests are required. This is obviously impossible to use in real
applications due to the time and cost for testing. There must be a stopping rule for software test to
determine the minimal number of successful runs to provide a certain level of confidence that the
software achieves its reliability goal.

In this paper, a hardware and software integrated reliability model is developed to calculate the
requirement of software reliability when the software and software are integrated as a system to meet a
probability of failure on demand for a certain SIL. Afterwards, a Bayesian stopping rule for safety
critical software testing is applied to calculate the minimal executions before the termination of the
test.

4. HARDWARE AND SOFTWARE INTEGRATED RELIABILITY MODEL

4.1. Hardware and Software Integrated System

An integrated reliability model is developed to model the system reliability of hardware and software
integrated systems. The hardware subsystem is the physically interconnected devices including
sensors, controllers and actuators. The software subsystem is the programs running on the hardware
platform which enable the system to perform a specific task. The difficulties of reliability modeling of
hardware and software integrated systems are caused by the natures of how hardware and software
fail. Hardware fails over time. The reliability of hardware usually follows time-related distributions,
such as exponential distribution or Weibull distribution. On the other hand, software failures are time-
independent. Software does not wear out. The failures of software are the errors designed into the
systems. When doing quantitative reliability assessment of hardware and software integrated systems,
a model is needed to couple the time-related hardware reliability model and time-independent software
reliability model together.

4.2. Integrated Reliability Modeling

To have the SIS respond successfully when a safety function is on demand, the hardware should work
in a failure-free condition and the software should process the output properly as designed and give a
correct control command to the hardware. Failures in either hardware or software could cause a failure
on demand for the SIS.

With a dangerous failure rate hwD, , the probability of failure on demand of hardware (PFDhw(t)) can

be calculated by Eq. (5) below:

tetPFD hwD
t

hw
hwD

,
,1)(

 (5)

Software reliability Rsw is a time-independent value and it can be calculated by Eq. (6):

swsw FR 1 (6)

where Fsw is the probability of failure of the software. The reliability target of the software (Rsw) needs
to be calculated from the integrated system reliability model as the reliability goal for software testing.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Use PFDsys to represent the probability of failure on demand of the integrated system when the
hardware and software are working together to respond to a safety function on demand. The system
will fail when “hardware fails” OR “software fails”. Therefore, the probability of failure on demand of
the integrated system is calculated as shown in Eq. (7):

swhwswhwswhwsys FtPFDFtPFDFtPFDtPFD)()()()((7)

The average probability of fail on demand of the hardware and software integrated system (PFDavgsys)
can be calculated as Eq. (8):

 dttPFD
T

PFDavg syssys)(
1

 (8)

Substituting Eq. (7) into Eq. (8), Eq. (9) is obtained:

 dtFtPFDFtPFD
T

PFDavg swhwswhwsys))()((
1

 (9)

where T is usually referred to as the interval of proof test, which brings the system back to its original
state after operating continuously for a period of time. Since the software reliability is time-
independent, Fsw can be treated as a constant value when doing the integration, thus Eq. (9) is
rearranged as:

 dttPFD
T

FFdttPFD
T

PFDavg hwwsswhwsys)(
1

)(
1

 (10)

Substituting Eqs. (6) and (8) into Eq. (10) gives:

hwswswhwsys PFDavgRRPFDavgPFDavg)1()1((11)

4.3. Software Reliability Requirement

The reliability of the software can be calculated by solving Eq. (11), which yields:

hw

sys
sw PFDavg

PFDavg
R

1

1
 (12)

To meet a given requirement on SIL n (n=1, 2, 3, 4), the PFDavg of the hardware and software
integrated system must be lower than the maximal allowed average probability of failure on demand
(PFDavgsys,max,n) for that SIL. Thus, the software reliability must be higher than the critical software
reliability (Rsw,critical,n), which is the software reliability value that makes the PFDavgsys equals to
PFDavgsys,max,n. According to Eq. (12), the software reliability requirement of a SIL n hardware and
software integrated system is:

hw

nsys
ncriticalsw PFDavg

PFDavg
R

1

1 max,,
,, (13)

5. BAYESIAN STOPPING RULE FOR SOFTWARE TESTING

5.1. Bayesian theory for software testing

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

After the software reliability requirement for the system is determined, the Software Reliability
Demonstration Test (SRDT) is performed to verify that the software meets the reliability requirement
with an acceptable degree of confidence. A stopping rule for the software reliability testing is required
to make a decision of whether the test should be continued or terminated. When testing a safety critical
system, the stopping decision could be made based on Bayesian analysis of the testing results [8].

There are two possible results for each test: fail or pass. If the SIS performs correctly when a safety
function is on demand, the test is passed. If the system fails to response properly for a safety function
demand, the test is failed. Assuming the value of probability of failure for software is p, the number of
failures f from n tests follows a Binomial distribution:

fnfn
f ppCfFP)1()((14)

A prior conjugate is used to represent the changes of the parameter of interest p with extra information
gathered from the test. The conjugate distribution follows a Beta(a,b) distribution:

),(

)1(
)(

11

baB

pp
pf

ba
 (15)

Where B(a,b) is the Beta function, and a and b are parameters chosen by the assessor to represent the
prior knowledge of the parameter p. casein the case where, there is no information available for
selecting a and b, a uniform prior can be used with a=b=1.

If f failures are found from n tests, the posterior distribution of p is Beta(a+f,b+n-f):

),(

)1(
),,,|(

11

fnbfaB

pp
banfpf

fnbfa

 (16)

For uniform prior, Eq. (16) becomes:

)1,1(

)1(
)1,1,,|(

fnfB

pp
nfpf

fnf

 (17)

5.2. Stopping rule based on Bayesian decision theory

If Fsw is used to represent the maximum probability of failure for software, and C is used to represent
the confidence level of the test result, the reliability requirement for a software test could be expressed
as:

CFpP sw)((18)

To meet the requirement on reliability and confidence, the smallest value of successful execution
without failure n1 is the smallest value of n which satisfies Eq. (19):

Cdp
nB

pswF n

0)1,1(

)1(
 (19)

If one failure occurs after s1 (s1<n) executions, the posterior distribution for p becomes:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

),2(

)1(
)1,1,,1|(

1

1

1

1

sB

pp
spf

s
 (20)

This is the new prior distribution of p for the following testing stage. The posterior distribution after n2
failure free tests are observed is:

),2(

)1(
)1,1,,1|(

21

1

21

21

nsB

pp
nspf

ns

 (21)

For a given requirement on Fsw and C, the smallest value n2 for failure free execution in the following
stage of test after the fault is fixed can be solved from Eq. (22):

Cdp
nsB

ppswF ns

0 21

1

),2(
)1(21

 (22)

To continue this process, if the jth failure occurs on the sjth test executions, the number of failure free
execution for the next test stage (nj+1) can be computed by solving the general Eq. (23):

Cdp
jnsjB

ppsw

j

i
jiF

j

i
ji

jns
j

0

1
1)1,1(

)1(1
1

 (23)

In real applications, a simplified stopping rule developed below can be used to reduce the calculation
for the process as described above. If j failures occurred, let the total number of executions until nj+1
failure free tests observed in the j+1th stage of test be N.

121 j+j+n+s++sN=s (24)

N is the minimum number of executions required to successfully demonstrate the required level of
reliability with predetermined acceptable confidence level. Regardless of when these failures are
happened during the test, this test process can be treated equivalently as a single test process in which j
failures are observed out of N executions. To meet the requirement of software reliability, the total
executions N that contains j failures should be the minimum value of N which satisfies Eq. (25):

Cdp
jNjB

ppswF jNj

0)1,1(

)1(
 (25)

According to the analysis above, the stopping rule for the software testing only depends on the total
number of executions and the total number of failures out of these executions. Given a reliability
requirement Fsw and C, the stopping rule for reliability test can be calculated before the test is carried
out.

6. NUMERICAL EXAMPLE

This part of paper will give a numerical example to demonstrate the application of the methodology
developed above.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Assuming a hardware and software integrated system is used as an emergency shutdown system for a
chemical plant to stop the process in EUC when a hazardous event occurs. The dangerous failure rate

D for the hardware system is evaluated as 7106.1 /h and proof testing will perform every year
(8760 hours), which brings the safety instrumented system back to its original state. According to the
hazard analysis of the chemical plant, a SIL 3 is required for the emergency shutdown system.

The software reliability requirement for the given SIL can be calculated from the SIL requirement and
hardware failure rate. From Eq. (5), the probability of failure on demand of the hardware subsystem is:

ttPFDhw
7106.1)((26)

The PFDavghw of hardware is the integral average of hardware PFD over the time of proof testing
interval T, and is calculated as below:

4
7

0

107
2

8760106.1

2

1
)(

1

T

D
Dhwhw

T
tdt

T
dttPFD

T
PFDavg

 (27)

For a SIL 3 application, the maximal allowed PFDavgsys for the system is 10-3, thus the software
reliability requirement for the system is calculated from equation (13) as:

9997.0
1071

101

1

1
4

3
3max,,

3,,

hw

sys
criticalsw PFDavg

PFDavg
R (28)

The probability of failure for software is therefore:

4
3,, 1039997.011 criticalswsw RF (29)

A uniform prior distribution is used for the Bayesian analysis, where a=b=1. If a 99% confidence on
the software reliability is required by the software test, the minimal number of executions with j
failures is calculated by solving Eq. (30) below based on Eq. (25).

99.0
)1,1(

)1(
4103

0

dp
jNjB

pp jNj

 (30)

This equation is solved by using numerical method. Based on different numbers of system failures, the
solution of Eq. (30) gives the stopping rule for the system safety test. The results are shown in Table 2.
As can be seen, when the number of failures during test increases, the total number of required
executions increase as well, in order to be 99% confident that the required software reliability level is
achieved.

7. CONCLUSION

In this paper, a quantitative method is developed to determine the minimum number of testing required
on software in hardware and software integrated systems, given the required Safety Integrity Level
(SIL) on the overall system and hardware failure data. Due to the fundamental differences between
hardware and software failure mechanisms, hardware and software are usually analyzed separately in
practice by using distinct methodologies. Hardware failures are typically time-related with a certain
failure rate , while the software failures are time-independent, since errors are inevitably designed
into the final software product. To better model hardware and software integrated systems for

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Table 2: Stopping rule for software testing
Numbers of failures, j Total number of executions, N

0 15347
1 22124
2 28016
3 33479
4 38677
5 43690
6 48563
7 53328
8 58003
9 62604
10 67143
11 71627
12 76063

reliability analysis and to provide a practical method for reliability assessment, a reliability model for
hardware and software integrated systems is developed in this paper to model the effect of both
hardware and software on system safety and to produce a quantitative assessment result. Using this
model, the requirement for software reliability is first determined based on hardware reliability and
system SIL. A Software Reliability Demonstration Test (SRDT) based on a Bayesian stopping rule is
then used to calculate the minimum number of executions that is required to prove the reliability
requirement is achieved. One advantage of the method proposed in this paper compared with existing
methods is that it couples both hardware and software reliability within the system. In addition, unlike
the software reliability growth models based on empirical assumptions, the method proposed here
measures the software reliability via the input domain based model, with which the result of the
assessment could come directly from the observation of the testing. Finally, as shown in the numerical
example, this method is practical and easy to use in real life applications.

References

[1] William M. Goble, “Control systems safety evaluation and reliability”, International Society of
Automation, 2010.
[2] C.V. Ramamoorthy and F.B. Bastani, “Software Reliability—Status and Perspectives”, IEEE
Transactions on Software Engineering, vol.SE-8, pp.354-371, (1982).
[3] A.L. Goel, “Software Reliability Models: Assumptions, Limitations, and applicability”, IEEE
Transactions on Software Engineering, vol.SE-11, pp. 1411-1423, (1985).
[4] International Electrotechnical Commission, “IEC 61508 Second Edition: Functional Safety of
Electrical/Electronic/Programmable Electronic Systems”, (2010).
[5] A. Pasquini, E. De Agostino and G.D. Di Marco, “An input-domain based method to estimate
software reliability”, IEEE Transactions on Reliability, vol. 45 , no. 1, pp. 95-105, (1996).
[6] E. Nelson, “Estimating software reliability from test data”, Microelectronics Reliability, vol. 17,
pp. 67-73, (1978).
[7] J.D. Musa, “Operational profile in software-reliability engineering”, IEEE Software, vol. 10, pp.
14-32, (1993).
[8] B. Littlewood and D. Wright, “Some conservative stopping rules for the operational testing of
safety critical software”, IEEE Transactions on Software Engineering, vol. 23, pp. 673-683, (1997).

