RISK-INFORMED REGULATION: MOVE TOWARD REALISM

Ashok C. Thadani Director, International R&D Projects U.S. Nuclear Regulatory Commission

International Conference on Probabilistic Safety Assessment and Management June 18, 2004

OUTLINE

 Implementation of Risk-Informed Regulation

The Move to Realism

Summary and Conclusions

IMPLEMENTATION OF RISK-INFORMED REGULATION

- Risk-informed approach applied in several areas in parallel
 - Day-to-day regulatory issues, e.g., license amendments, technical specifications, QA, ISI/IST
 - New Reactor Oversight Program (ROP), using objective performance indicators and risk-informed significance determination process (SDP) for inspection findings
 - Modification of existing rules, to allow risk-informed approach, e.g., Combustible Gas rule, PTS, ECCS acceptance criteria

IMPLEMENTATION OF RISK-INFORMED REGULATION (con't)

- Risk-informed approach applied in several areas in parallel
 - Risk-informed treatment of systems, structures and components (SSCs) according to safety significance
 - Development of integrated, technology-neutral framework for advanced reactors
 - Development of consensus standards for PRA quality

THE MOVE TO REALISM

- "Realistic conservatism" first defined in 2002:
 - Realism: Regulatory decisions are informed by "real world" science, technology, experience
 - Conservatism: Preserve appropriate and prudent safety margins
 - Regulate in a manner that corresponds to real risk and not "worst-case" assumptions

THE MOVE TO REALISM (Con't)

- "Realistic conservatism" first defined in 2002:
 - Maintain properly balanced approach that provides protection of public health and safety while ensuring that licensee resources are focused on safety-significant issues
 - Gain better understanding of <u>real</u> safety margins that exist in nuclear facilities

ADDING NEW DIMENSIONS TO REALISM

Applying Traditional Safety Margins to PRA success paths and failure paths; weigh with path frequency	Applying safety-indices (detailed Safety Margins) to PRA success paths and failure paths; weigh with path frequency
Traditional Safety Margins (e.g., DBAs using Appendix K or 10 CFR 50.46)	Applying safety-indices (detailed Safety Margins) to Traditional Safety Margins

Additional margins

Risk-Informed

EVOLUTION OF REALISTICALLY CONSERVATIVE APPROACH

- Severe Accident Research Program
 established after TMI accident
 - Recognized need to support PRA techniques with improved phenomenological models for severe accidents
- NUREG-1150 "update" of WASH-1400 study
 - Significant improvement in PRA application, but substantial conservatisms still incorporated, e.g., "alpha-mode" containment failure, later shown not to be credible

EVOLUTION OF REALISTICALLY CONSERVATIVE APPROACH (Con't)

 Spent fuel pool safety analyses also initially characterized by conservative and/or bounding assumptions, producing overly pessimistic results

SPENT FUEL POOL SAFETY

- Previous NRC Studies based on more conservative assumptions and analytical models than current analysis
 - Limited to "early phase" heat-up calculations
 - Bounding pool configurations
 - No integrated severe accident analysis
 - Potential For Zircaloy fire using "ignition temperature" criterion
 - Up to 100% of Cesium released to atmosphere
 - No credit for likely intervention by operators to prevent uncovering fuel, although very long time for operator action is available for loss-ofcooling event

SPENT FUEL POOL SAFETY (Con't)

 These assumptions are neither realistic nor appropriate for assessment of security issues where realism is needed

SPENT FUEL POOL SAFETY (Con't)

- Current analyses use more sophisticated models and techniques (MELCOR Severe Accident Code + Detailed Computational Fluid Dynamics--Thermal Hydraulic Calculation)
- MELCOR has mechanistic melt progression models
 - Damage propagation
 - Oxidant depletion
 - Fission product release and transport
 - Heat transfer
 - Flow mixing

SPENT FUEL POOL SAFETY (Con't)

- Builds on more than 20 years of research and experience
 - Thermal-hydraulics, severe accidents, and PRAs

FUTURE PLANS

- Continuing severe accident research to improve models, e.g., fission product release, transport, deposition
- Continued development/improvement of PRA methodology
- Better understanding/characterization of uncertainties
- Learn from experience and apply to new problems

SUMMARY AND CONCLUSIONS

- NRC has made substantial progress in improving PRA technology and phenomenological understanding of reactor accidents
- Better understanding of expected plant responses and real safety margins
- Further research will build on previous achievements and support realistically conservative approach to regulation