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A computation-based human reliability analysis framework called the Human Unimodel for Nuclear Technology to 
Enhance Reliability (HUNTER) has been developed as part of the Risk Informed Safety Margin Characterization (RISMC) 
pathway within the U.S. Department of Energy’s Light Water Reactor Sustainability Program that aims to extend the life of 
the currently operating fleet of U.S. commercial nuclear power plants. HUNTER is a flexible hybrid approach that functions 
as a framework for dynamic modeling, including a simplified model of human cognition—a virtual operator—that produces 
relevant outputs such as the human error probability (HEP), time spent on task, or task decisions based on relevant plant 
evolutions. HUNTER is the human reliability analysis counterpart to the Risk Analysis in a Virtual ENvironment (RAVEN) 
framework used for dynamic probabilistic risk assessment. Although both RAVEN and HUNTER are under various stages of 
development, this paper presents a successfully integrated and implemented RAVEN-HUNTER initial demonstration. The 
demonstration centers on a station blackout scenario, using complexity as the sole virtual operator performance-shaping 
factor (PSF). The implementation of RAVEN-HUNTER can be readily scaled to other nuclear power plant scenarios of 
interest and will include additional PSFs in the future. 

 
I.  INTRODUCTION 

 
This paper presents an application of a computation-based human reliability analysis (CBHRA) framework called the 

Human Unimodel for Nuclear Technology to Enhance Reliability.1 A unimodel—the U in HUNTER—is a simplified 
cognitive model. Thus, HUNTER represents a simplified cognitive model or a collection of simplified cognitive models to 
support dynamic risk analysis. HUNTER is a hybrid approach built on past work from cognitive psychology, human 
performance modeling, and human reliability analysis (HRA). Using these research fields as background, HUNTER 
functions as a simplified model of human cognition—a virtual operator—that, when combined with a computation engine 
such as a thermal-hydraulics based nuclear power plant simulation model, can produce outputs such as the human error 
probability (HEP), time spent on task, or task decisions based on relevant plant evolutions. 

 
HUNTER is flexible in terms of which inputs and cognitive evaluations are used and what it produces. HUNTER has 

been developed not as a standalone HRA method but rather as a framework that ties many HRA methods together.  
HUNTER then in turn applies a dynamic risk assessment of human activities and serves as an interface between HRA and 
other aspects of the dynamic modeling, such as thermal-hydraulic code, as part of overall probabilistic risk assessment 
(PRA).  

 
HUNTER is the HRA counterpart to the Risk Analysis in a Virtual ENvironment (RAVEN) framework in PRA,2 as 

depicted in Fig 1. Although both RAVEN and HUNTER are under various stages of development, a successfully integrated 
and implemented RAVEN-HUNTER demonstration is presented in this paper. The demonstration centers on a station 
blackout scenario, but the implementation of RAVEN-HUNTER is scalable to other nuclear power plant scenarios. 

 
HUNTER was created with the goal of including HRA in areas where it has not been represented thus far and to reduce 

uncertainty by accounting for human performance more accurately than many current HRA approaches. While we have 
adopted particular methods to build an initial model, the HUNTER framework is intrinsically flexible to new modules that 
achieve particular modeling goals. Computation-based HRA in HUNTER does not consist of a single HRA model or method; 
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rather, it can encompass a number of different HRA approaches that account for different aspects of human performance. A 
goal of HUNTER is, in fact, to “dynamicize” legacy HRA approaches wherever feasible. 

 

 
Fig 1. Framework for computation-based HRA (from Ref. 1) 
 
The HUNTER project is part of the Risk Informed Safety Margin Characterization (RISMC) research pathway within the 

U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program, which aims to extend the life of the 
currently operating fleet of U.S. commercial nuclear power plants. HUNTER has the potential to model risk more accurately 
across a greater range of scenarios than has been possible with conventional HRA approaches. Additionally, HUNTER 
provides a crucial connection between RAVEN and human performance, which extends the utility of that modeling code. As 
such, HUNTER ultimately aims to ensure the continued safety and reliability of currently operating nuclear power plants. 

 
II.  COMPUTATION-BASED HUMAN RELIABILITY ANALYSIS 

 
In a traditional (or static) HRA, the human reliability analyst determines the quantification by choosing the most suited 

task type and/or appropriate PSFs, which is then used in an equation to estimate the HE. This somewhat simplified 
description of HRA may falsely provide the impression that performing an HRA is a quick and easy task in which the analyst 
simply makes a few choices to produce an HEP value. A properly executed traditional HRA relies on a solid qualitative data 
collection and qualitative data analysis. 

 
Mosleh3 and Coyne and Siu4 have emphasized the importance of computational approaches to PRA. These approaches, 

which use dynamic simulations of events at plants, potentially provide greater accuracy in overall risk modeling. Here we 
explore the human side of dynamic PRA. The key elements of dynamic or computation-based HRA are: 

 
• Use of computational techniques, namely simulation and modeling, to integrate virtual operator models with 

virtual plant models 
• Dynamic modeling of human cognition and actions 
• Incorporation of these respective elements into a PRA framework. 
 
The goal of the present research is to achieve a high fidelity causal representation of the role of the human operator at the 

plant. By better accounting for human actions, the uncertainty surrounding PRA can be reduced. Additionally, by modeling 
human actions dynamically, it is possible to model types of activities and events in which the human role is currently not 
clearly understood or predicted, e.g., unexampled events such as severe accidents. The ability to simulate the role of the 
human operator complements and, indeed, greatly enhances other PRA modeling efforts. 

 
The approach of CBHRA relies on the creation of a virtual operator that is interfaced with a realistic plant model that can 

accurately simulate plant thermal-hydraulic physics behavior.1 Ultimately, the virtual reactor operator should consist of 
comprehensive cognitive models comprised of artificial intelligence, though at this time a much more simplified operator 
model is used to simulate performance of a typical operator. CBHRA is a merger between an area where HRA has previously 
been represented—probabilistic risk models—and an area where it has not—realistically simulated plant models through 
mechanistic thermal-hydraulic multi-physics codes. Through this approach, it is possible to evaluate a much broader 
spectrum of scenarios, both those based on previous experience and those that are unexampled, i.e., that have not been 
assessed with static HRA. 
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This is a promising path to advance the methodology of HRA, but there are numerous challenges that must be overcome 

before a fully functioning plant simulation including a virtual operator model is realized. In CBHRA, a scenario can be 
rapidly simulated thousands of times, which renders individual subjective evaluations by a human reliability analyst during 
each simulation run impractical. Unfortunately, most of the PSFs in current HRA methods are operationalized and described 
in a way that suits subjective evaluations from the analyst, which presents challenges to translate the static optimized 
methods to a coding scheme that can automatically and dynamically set the PSF at the correct level during simulation runs. 

 
While it is tempting simply to script human actions at the nuclear power plant according to operating procedures, there 

remains considerable variability in operator performance despite the most formalized and invariant procedures to guide 
activities. Human decision making and behavior are influenced by a myriad of factors at and beyond the plant. Internal to the 
plant, the operators may be working to prioritize responses to concurrent demands, to maximize safety, and/or to minimize 
operational disruptions. While it is a safe assumption that the operators will act first to maintain safety and, secondly,  
electricity generation, the way he or she accomplishes those goals may not always flow strictly from procedural guidance. 
Operator expertise and experience may govern actions beyond rote recitation of procedures. As a result, human operators 
may not always make decisions and perform actions in a seemingly rational manner. Modeling human performance without 
considering the influences on the operators—the PSFs—will only result in uncertain outcomes. 

 
Boring,5 among others, explains the conceptual shift from static HRA to computation-based HRA. Key aspects of this 

shift are the transition from predictions based on fixed models of accident sequences into predictions based on direct 
simulation of an accident sequence, with explicit consideration of timing of key events. For HRA to fit into this dynamic 
framework, the models must follow a parallel path, shifting away from estimating the probability of a static event, and into 
simulating the multitude of possible human actions relevant to an event. CBHRA does not rely on a fixed set of event and 
fault trees to model event outcome. Rather, it builds the event progression dynamically, as a result of ongoing actions. The 
dynamic approach in PRA has proved especially useful for modeling beyond design basis accidents, where not all failure 
combinations and not all recovery opportunities can be anticipated or have been included in the static model. Additionally, 
the failure of multiple components or unusual sequences of faults, even within design basis, may challenge the fidelity of the 
static PRA model. While such events are rare, dynamic modeling affords the opportunity to anticipate such permutations and 
address them in a risk-informed manner should they occur. 

 
III.  MOOSE, RAVEN, AND RELAP-7 

 
RAVEN acts as the computational engine behind HUNTER. A real reactor system is very complex and may contain 

thousands of different physical components. Therefore, it is impractical to preserve real geometry for the whole system. 
Instead, simplified thermal-hydraulic models are used to represent the major physical components and describe major 
physical processes. The manipulation of variables is performed by two components of the RAVEN simulation controller: 

 
• RAVEN control logic is the system control logic of the simulation where, based on the status of the system, it 

updates the status/value of the controlled parameters 
• RAVEN/RELAP-7 interface updates and retrieves component variables according to the control logic 
• Auxiliary variables are user to defined simulation specifications that may be needed to limit the simulation.  
 

From a mathematical point of view, auxiliary variables are the ones that guarantee the system to be Markovian.  The set of 
auxiliary variables also includes those that monitor the status of specific control logic set of components and simplify the 
construction of the overall control logic scheme of RAVEN. 
 

RELAP-7 thermal-hydraulics code is designed to be the main reactor system simulation toolkit for the RISMC Pathway 
of the LWRS Program. RELAP-7 code development takes advantage of the progress made in the past several decades to 
achieve simultaneous advancement of physical models, numerical methods, and software design. RELAP-7 uses the Multi-
Physics Object-Oriented Simulation Environment (MOOSE) framework for solving computational engineering problems in a 
well-planned, managed, and coordinated way (see Fig. 2). This allows RELAP-7 development to focus strictly on system 
analysis-type physical modeling and gives priority to retention and extension of RELAP5’s multidimensional system 
capabilities. 

 
RAVEN is a software framework that acts as the control logic driver for the thermal-hydraulic code RELAP- 7. RAVEN 

is also a multi-purpose PRA code that allows for probabilistic analysis of complex systems. It is designed to derive and 
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actuate the control logic required to simulate both plant control system and operator actions and to perform both Monte-Carlo 
sampling of random distributed events and dynamic branching-type analyses. The RAVEN statistical framework is a recent 
add-on to the overall RAVEN package that allows the user to perform generic statistical analysis.  

 

 
Fig. 2. The MOOSE, RAVEN, & RELAP-7 simulation approach 
 

 
IV.  HUMAN RELIABILITY SUBTASK PRIMITIVES: GOMS-HRA 

 
One of the challenges in CBHRA is the fact that most HRA methods quantify at the overall task level, while subtask 

quantification will often be required for the CBHRA to best follow the scenario as it develops. In an attempt to overcome this 
challenge, we developed a new HRA approach through categorizing subtasks and linking them to human error probabilities.6 
The purpose of developing this new approach was to allow us to anchor our analyses on subtasks as required by CBHRA, 
because existing HRA methods did not—in the authors’ views—adequately address subtask analysis. 

 
The Goals, Operators, Methods, and Selection rules (GOMS) method was first developed by Card, Moran, and Newell.7 

Goals represent the high level tasks the human seeks to complete, Operators are the available actions the human can take, 
Methods are the steps or subgoals the human takes toward completing Goals, and Selection rules are the decisions the 
humans make. GOMS has been used extensively in human factors as a way to model proceduralized activities. It shares 
underpinnings with task analysis in that it breaks human actions into a series of subtasks. By cataloging particular types of 
actions, it is possible to predict human actions or task durations. GOMS has also been used in the human factors community 
to model user interactions with human-computer interfaces. The predictive abilities of GOMS provide an alternative to user 
studies, but GOMS has been criticized for being time consuming and labor intensive to model. 

 
GOMS-HRA features a selection of task level primitives, representing the most basic action types by operators: 
 
• Actions (A)—Performing required physical actions on the control boards (AC) or in the field (AF) 
• Checking (C)—Looking for required information on the control boards (CC) or in the field (CF) 
• Retrieval (R)—Obtaining required information on the control boards (RC) or in the field (RF) 
• Instruction Communication (I)—Producing verbal or written instructions (IP) or receiving verbal or written 

instructions (IR) 
• Selection (S)—Selecting or setting a value on the control boards (SC) or in the field (SF) 
• Decisions (D)—Making a decision based on procedures (DP) or without available procedures (DW) 
 
Procedure steps may be decomposed into GOMS task level primitives. The procedure level primitive used within each 

procedure step represents a cluster of actions that must occur in the proper sequence in order for the operator to successfully 
complete the step. These procedure level primitives can be decomposed into sequences of task primitives. The sequence of 
task level primitives repeats iteratively until the desired value or state is achieved and the step is concluded. The task level 
primitives from GOMS-HRA were mapped for each procedure step in order to support the estimation of both completion 
times and HEP values for each step (see Table I). 
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Table I. Generic procedure level primitive mapping to task level primitives 
 

Procedure 
Level 
Primitive 

Definition Task Level Primitive Mapping Notes 

Determine Calculate, find out, decide, or evaluate. CC or RC Information type 
dependent 

Ensure Perform a comparison with stated requirements and 
take action as necessary to satisfy the requirements. 

CC or RC and/or AC 
and/or SC 

Information and control 
action type dependent 

Initiate Begin activity function or process. AC - 
Isolate Separate, set apart, seal off, or close boundary. AC - 
Minimize Make as small as possible. SC - 

Open 
Change the physical position of a mechanical device 
to allow flow through a valve or prevents passage of 
electrical current. 

AC - 

Verify Observe an expected condition exist - no actions to 
correct CC, RC Information type 

dependent 
 

Table I depicts the procedure level primitives identified in the simulation log data that were used to decompose the 
procedure level primitives into task level primitives. The procedure level primitives are generically defined in this table since 
the object on which the procedure level primitive operates is not defined.  

 
V.  COMPLEXITY: MODELING PERFORMANCE SHAPING FACTORS 

 
As mentioned, quantification is fundamentally different between traditional static HRA and CBHRA. The largest 

difference will be that the decisions made by a human reliability analyst in traditional static HRA will be modeled by a 
virtual operator in CBHRA. The decisions of the virtual operator will, however, be influenced by many of the same aspects 
as shape the traditional analysis. Before a scenario is simulated, potential tasks will have to be modeled, and this modeling 
will contain categorization elements that are similar to the task type and PSF choices that are made in traditional static HRA. 

 
Complexity is included in most HRA methods as part of the quantification of the HEP. This fits well with our intuitive 

understanding of complexity and the role it can have in the likelihood of successfully conducting a task. Complexity is, 
however, a multifaceted concept and there are challenges in finding or creating a fitting operationalization. In Rasmussen, 
Standal, and Laumann,8 a task complexity model containing six factors (goal-, size-, step-, dynamic-, structure- and 
connection complexity) was presented. The work in Ref. 8 initially examined 13 complexity factors, with seven subsequently 
being excluded (procedure-, temporal-, knowledge-, human-machine interface (HMI)-, interaction- and variation complexity 
and uncertainty). The main reason for the exclusion was overlap with other PSFs. The thirteen-factor model was not clearly 
orthogonal.  

 
As CBHRA allows a scenario to develop instead of following a scripted path, complexity is not included in the HRA 

model in the same way it is in static HRA. Instead, some of the simulations will develop in a way that complexity expands, 
while others will follow paths with reduced complexity. This will allow CBHRA to better model scenarios that could develop 
in many ways, with numerous different correct response option pathways and various acceptable outcomes, or include richer 
pathways including aspects such as recovery actions, in which steps must be redone correctly to achieve the desired outcome. 

 
A primary advantage of dynamically modeling complexity in CBHRA is that a task can have more than one output. 

Instead of only providing a direct contribution to the HEP for a single event tree, it can provide an influence to path choices 
and reshape the event tree, which will also elicit influence on the dynamically changing HEP, as some paths will lead to 
additional non-desired results. Complexity will also elicit influence on the time spent on the task, which will also influence 
the HEP dynamically as most scenarios possess some finite time limit for actions to be effective. CBHRA allows for the 
inclusion of different degrees of variance in time spent on a task. This is relevant to the inclusion of complexity as it is likely 
that complex tasks have more variance in time spent than a non-complex task as depicted in Fig. 3. 
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 Fig. 3. Hypothetical time spent on a non-complex and complex task with minimum required time of two minutes. 

 
Another important advantage of modeling complexity in CBHRA is increased capability to appropriately calibrate the 

method by using empirical data. If operational or simulator data are available for a scenario, it could be used to evaluate the 
values in a CBHRA method. Real life data on both near misses and major accidents are fortunately scarce, but both simulator 
data and databases that include human actions could be used in calibrating the virtual operator. 

 
VI.  QUANTIFYING THE HUMAN ERROR PROBABILITY 

 
Quantification of the human error probability is one of the primary objects of HRA as it is used to assess the 

performance of human actions. Quantifying errors typically includes providing a probabilistic description of the likelihood 
for the errors to occur. The quantification process makes use of nominal HEPs, which are base error likelihoods for a generic 
task type, such as closing a valve. These nominal HEPs are intentionally formulated to describe generic human actions to 
support their application to many different tasks. Generic HEPs serve as the basic toolset of HRA quantification in which the 
context of the task can be layered upon to tailor these generic HEPs to highly specific tasks. Since errors occur within the 
context of the system and operating situation, PSFs capture the nuances of the specific task and modify the nominal HEP by 
integrating these contextual factors that affect performance. The multiplication of the generic nominal HEPs and the task 
specific PSFs yields the overall HEP value. PSFs can both improve or hinder operator performance. The task specific overall 
HEP value provides a comprehensive quantification of the task and can then be used to make risk related decisions. 

 
One primary goal of the HUNTER approach is to support the ability to autocalculate HEPs based on contextual 

information. Autocalculation of the overall HEPs is needed to capture the dynamics of human error while the simulation is 
running. For example, we are currently modeling the effects of complexity as it evolves dynamically. As complexity 
increases, so should the HEP. Importantly, complexity changes as the modeled event progresses and evolves by increasing or 
decreasing the HEP for any subtask or slice of time accordingly. The change occurs relative to the nominal HEP value. 
Indeed, one of the primary reasons for decomposing subtasks into a GOMS structure is to define the Operators as the basis 
for the HEP. These Operators correspond to nominal HEP values, which can be modified by PSFs like complexity. 

 
A reasonable starting point for quantifying the GOMS-HRA Operators is the original HRA method, THERP.9 THERP 

uses template matching in which the analyst matches the current subtask being analyzed to similar subtasks found in the 
method worksheets. THERP, unlike most other HRA methods, is subtask based, and it aligns to the level of analysis required 
for quantifying the GOMS-HRA Operators. 

 
Written or implied procedural steps form the subtasks modeled in dynamic HRA. Although the degree of strict 

procedural adherence by nuclear power plant crews may be a matter for some debate, the procedures serve as mileposts for 
crew actions. Furthermore, for modeling purposes, the procedure steps serve to document the solution path, which is 
advantageous to represent crew actions within the modeling simulation. Thus, in order to model crew behavior dynamically, 
procedure steps are coded into the dynamic model. The value of GOMS-HRA is that by coding each step as an Operator, it is 
possible to imbue the model with additional information that makes HRA possible. Each Operator classifies the type of 
action being performed, In short, Operator coding with GOMS-HRA becomes the skeleton to which other model elements 
are affixed.  

 
VII.  SIMULATION CASE STUDY: STATION BLACKOUT 

 
Typically, commercial nuclear power plants make use of external alternating current (AC) electrical power sources. Even 

if the reactor is not critical, the residual heat removal systems require AC power to disperse heat generated by the nuclear 
core. Loss of offsite power (LOOP) events refer to the situations in which the external AC electrical power source for the 
plant are rendered unavailable. LOOP events are categorized based on their initiating event. Plant centered LOOP events 
occur anywhere within the plant up to the auxiliary or station transformers. 
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The specific station blackout event modeled in this simulation represents a prototypical station blackout event. After the 

initial LOOP event, a reactor trip triggers, which prompts the operators to enter into an emergency operating procedure. 
During the post trip actions procedure, the operators perform a number of plant diagnostic steps to ensure the plant is 
operating within safety envelopes. First they confirm the reactor successfully tripped by verifying a downward trend in 
reactor power. The operators then confirm the turbine has tripped and the main output breakers have opened. At this point 
operators’ efforts turn toward confirming the safety systems are functioning properly, which includes assessing that the 
reactor coolant system inventory is sufficient, ensuring at least one recirculating coolant pump is in operation, and residual 
heat removal is capable of dissipating heat from the recirculated coolant. Lastly, the operators check the integrity of 
containment by verifying no radiation alarms are present and assessing containment pressure and temperatures. An outline 
for the timeline of the scenario follows in  Fig. 4. 

  

 
 
Fig. 4. Sequence of events for the SBO scenario considered 
 
For each of these parameters we found the appropriate probability distribution function in order to evaluate core damage 

probability. Core damage is reached when the maximum clad temperature in the core reaches its failure temperature (2200° 
F). To analyze the risk associated with a station blackout, the GOMS-HRA method was applied. The GOMS-HRA method 
entails decomposing procedure steps into task primitives, which are then used to calculate completion time and HEP values 
for each procedure step. The completion time and HEP values were then input to the RAVEN model to simulate human error 
events and their outcomes in relation to plant thermal-hydraulics. In order to analyze a scenario, such as the station blackout 
event, and calculate the nominal HEP and task timing values, the procedure must be evaluated at the procedure level and then 
at the task level. The procedures included in this simulation are based on the post trip action and station blackout procedures.  

 
 
Table II. SBO Step 5 showing mapping of Ensure procedure level primitive. 

 
 
 
Proprietary procedures cannot be publicly disseminated; however, Table II contains an example procedure step and 

serves to provide an overview of how a step is mapped to the procedure level and task level primitive. To reiterate the 
process, two mappings are involved: 

 
• The plant procedures are classified in terms of procedure level primitives. 
• These procedure level primitives are comprised of task level primitives from GOMS- HRA. 
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Because there is a high degree of nuclear industry consensus on terminology in operating procedures, the procedure level 
primitives represent commonly and consistently deployed types of activities. It is therefore possible to create a universal 
mapping of GOMS-HRA task level primitives to the procedure level primitives. This universal mapping affords the 
opportunity for reuse of the building blocks in HUNTER across different analyses. 

 
The procedures are an approximation of the actual series of events that would unfold during the scenario, although this 

reduces some of the realism captured in the simulation. Furthermore, this is the first attempt at performing an integrative 
HRA model with dynamic HEPs and corresponding thermal-hydraulic computations, which was made possible by restricting 
the scope of the simulation. To illustrate this analysis further, station blackout procedure 5a stating “Ensure let down is 
isolated” is in Table II. The procedure level primitive in this step is defined as the verb, Ensure. Ensure could be decomposed 
into different task level primitives, so the context of the procedure step, in this case letdown isolation, must be evaluated to 
determine which of the task level primitives are applicable. In this instance, the valve positions are a status indicator with a 
simple state control as opposed to a continuous numerical value setting. As a result, this procedure level primitive translates 
to the task level primitives of CC and AC, definitions in Table I. 

 
The procedure steps for the SBO procedures were mapped to procedure and task level primitives. Following the analysis 

of the procedures to map procedure level and task level primitives, timing data were estimated for each procedure step as 
derived from GOMS-HRA. Additionally, the procedure steps were aligned with the two primary events in which the LOOP 
occurs and the loss of diesel generators (LODG) and loss of battery (LOB) during the station blackout event. 
 
VIII.  CONCLUSIONS 

 
HRA is but one part of the larger PRA framework. HRA interacts with the PRA model; however, HRA has often been 

performed as a standalone analysis. HUNTER provides the possibility to reduce this disconnect by interfacing HRA and PRA 
into a single RAVEN-HUNTER framework capable of dynamic simulation based modeling. This approach should not be 
seen as simply replacing traditional HRA with a new modeling form of HRA, but rather as a tool to better integrate human 
performance into areas of risk analysis where it has not been included thus far. As the demonstration in this report is a 
simplified test case, the full capabilities of HUNTER are not realized. HUNTER can model many more features when 
additional PSFs are incorporated, detailed aspects of the plant parameters are included, and the scenarios become more 
diverse and contain several paths and possible end states. 

 
This demonstration has also shown how the GOMS-HRA approach can be used to decompose a scenario into 

standardized units of task level primitives. This allows for quantification at a level where autopopulating PSFs is possible and 
provides consistency in how a scenario is decomposed and quantified, which is something that has been previously lacking in 
HRA; however, this aspect is a critical part of a computationally based approach to HRA. This dynamic approach can be used 
to provide a more comprehensive image of risk changes throughout the unfolding of an event as opposed to the snapshot of a 
static event captured with traditional HRA. 

 
This is the initial proof of concept; thus, a number of concessions were necessary to ensure this project achieved 

reasonable results without unduly spreading our efforts across overly ambitions research aims. A fully comprehensive 
simulation of the operator and the entire gamut of performance behaviors was beyond the scope of this research, but future 
efforts are underway to refine the methods. As a result, a number of limitations exist. 

 
First, the level of detail in terms of actions within the procedures was restricted to systems of functionally related 

components as opposed to specific components. Another primary limitation concerns the PSFs used for quantification of 
human error in the model. This work only considered complexity as inputs to calculate the overall HEP within each time step. 
The HUNTER modelling approach should be capable of additional PSFs with little modification.  

 
In this initial demonstration of HUNTER, the model of the operator consisted of a single PSF and spanned only a single 

scenario. Future research in HUNTER aims to move toward improving the HUNTER framework to the level in which a plant 
PRA model can be dynamically simulated. Dynamically modeling a plant PRA entails a large scale effort comprised of 
simulating accident sequence progressions, plant systems and components, and operator actions. To support this 
functionality, future work on HUNTER will incorporate more scenarios and the necessary procedures to support the operator 
models. Additionally, the operator cognitive model will be enhanced by incorporating additional PSFs to capture a more 
accurate portrayal of the operator and human error likelihoods during scenario evolutions. 
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