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        Because of its complexity, reliability analysis of lifeline-network usually employs a sampling-based approach. Monte-
Carlo simulation (MCS) provides a straightforward method to deal with interdependence between structural components and 
their cascading failures in the lifeline network system, but its computational cost might be expensive if the probability of the 
event of interest is too low. To overcome this issue, an adaptive importance sampling (AIS) method was recently developed to 
identify a near-optimal sampling density by minimizing Kullback–Leibler cross entropy (CE) measuring the difference 
between the best importance sampling (IS) density and the sampling density model in use. This cross-entropy-based adaptive 
importance sampling (CE-AIS) drastically improves efficiency of MCS by using the near-optimal sampling density. To 
facilitate its applications to probabilistic seismic risk assessment (PSRA) for lifeline-network, we propose a sophisticated 
sampling technique which is suitable to evaluate the probabilities of multiple network performance states caused by 
earthquake. The proposed method does not rely on any heuristic intuition to perform importance sampling, and concurrently 
obtains the probabilities of multiple post-disaster consequences of the lifeline network in a way that they converge in a 
speedy manner. The results of the numerical example demonstrate that our approach, termed as CE-based “concurrent” AIS 
(CE-CAIS) make the probabilities of multiple system events converge to the exact values evenly well in terms of the level of 
coefficients of variation of the estimates. The proposed method is expected to be useful for a variety of hazard risk assessment 
for complex systems and provide new insights into the simulation-based PSRA. 
 

 
I. INTRODUCTION 

 
Probabilistic evaluation of the seismic risk regarding critical infrastructure such as lifeline networks is crucial to prepare 

a proper post-hazard resilience plan for potential earthquake disasters. In particular, such evaluations help facilitate risk-
informed decision-making regarding recovery plan and resource preparation at the community level. However, carrying out 
probabilistic seismic risk assessment (PSRA) regarding post-disaster performance of networks often encounters several 
technical challenges. As observed from many previous disasters, the damage of structural components may undermine the 
performance of the lifeline network. Therefore, the individual structural failures and their joint-occurrence need to be 
incorporated into system-level analysis. Since seismological properties at the sites and their spatially correlated ground-
motion intensities induce a significant degree of uncertainties and complexity, the fragility calculations of structural 
components need to employ a probabilistic model of seismic hazard and consider the statistical dependence of the component 
failures. These complexities make PSRA of lifeline networks challenging or time-consuming. 

Monte-Carlo Simulation (MCS) is a straightforward simulation-based approach often used for reliability analysis of 
complex systems. Although MCS is widely used for PSRA of lifeline networks, this methodology is not desirable if the 
probability of the event of interest is too low but still catastrophic to the urban community; in this case, a large number of 
simulations will be required to obtain a reliable estimation by MCS. As one of the research efforts to overcome this issue, the 
post-hazard analysis of traffic flow capacity was recently performed using a non-simulation-based method called, the matrix 
based system reliability (MSR) method1. As another non-simulation-based approach, a selective recursive decomposition 
algorithm was also developed to obtain narrow bounds on the reliabilities of disconnection between sources and sinks of 
water/gas distribution network2. A multi-scale analysis scheme using network clustering algorithm3 was also developed to 
apply the approach in (Ref. 2) to larger-size networks. On the other hand, a technique was developed to use importance 
sampling (IS) and data reduction by shifting sampling densities and employing k-means clustering for traffic flow analysis4. 
Recently, an optimization-based approach was proposed to select scenario-maps which reduce the number of simulations and 
computational cost by introducing a proxy measure to depict the features of damaged network5. Although these research 
efforts significantly improved the efficacy of PSRA for lifeline networks, non-simulation-based approaches have intrinsic 
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limitations in terms of the complexity of the lifeline network topology, size and inherent uncertainties while simulation-based 
approaches may be time-consuming or have uncertain level of confidence in the estimated results. 

To address this critical research need, this paper proposes an alternative simulation-based approach for lifeline networks 
which may have multiple states after the earthquake event, e.g. traffic flow capacity under seismic hazard. For this purpose, 
the authors extend and modify the cross-entropy-based adaptive IS (CE-AIS)6-8. This adaptive IS based method provides a 
near-optimal IS density not relying on any heuristic judgement while drastically reducing the number of samples required to 
obtain reliable estimates on the probabilities. In particular, the proposed method can obtain reliabilities of multiple network 
state scenarios at once, therefore, termed as CE-based “concurrent” AIS (CE-CAIS). A numerical example will demonstrate 
robustness and applicability of the proposed approach. 

 
II. NETWORK SYSTEM ANALYSES 

 
Under seismic hazard, the fragility of a road component, e.g. bridge or tunnel, is defined as the conditional probability of 

exceedance over the damage state DSi given the value of ground motion intensity. For an example network illustrated in Fig. 
1(a), suppose bridges are the only road components that can affect the post-disaster performance of the network. For example, 
a typical fragility model used for bridge is expressed as9 
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where Sa is a ground-motion intensity called, spectral acceleration at the location of the structure, ,ds iSa  is the median value 
of spectral acceleration at which the bridge reaches the threshold of the damage state DSi, βDS,i is the standard deviation of the 
natural logarithm of the spectral acceleration of damage state DSi, and Φ(∙) denotes the cumulative distribution function of 
the standard normal distribution. 

Then, the conditional probability of being in the i-th damage state DSi is computed as 
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where DSi+1 denotes the (i+1)th damage state. For instance, in the fragility function example shown in Fig. 1(b), the 
conditional probability that the structure is in the “moderate” damage state (DS3) is the difference between the probabilities 
exceeding the “moderate” damage state (DS3) and the “extensive” damage state (DS4). 

From the total probability theorem, the marginal probability of being in the ith damage state of the network component is 
expressed as 

 
( ) ( | ) ( )i i SaP damage DS P damage DS Sa f Sa dSa= = =∫   (3) 

 
where fSa(∙) denotes the probabilistic density function of Sa at the site. Extending the component-level fragilities to the 
network performance, the probability that the system shows a performance level SS is  
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where damage and Sa are vectors of the possible damage states of the geographically distributed network-components and 
ground-motion intensities at the sites, respectively. In Eq. (4), G(∙) represents a function that yields the system state that 
corresponds to the given component damage state. Fig. 1(a) illustrates a hypothetical traffic network revised from those in 
Ref. 1,10,11 while Fig. 1(b) shows the fragility curves of Bridge 1 as an example; the combinations of these component-level 
conditional probabilities are used to evaluate a seismic risk of lifeline network. 

In this example, Sa in Eq. (4) can be considered as common source random variables (CSRV)1,12-14 representing the 
sources of ‘environmental dependence’ or ‘common source effects’. Thus, one can achieve conditional independence 
between component-level damage events through given outcomes of random variables Sa. The matrix-based system 
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reliability (MSR) analysis approach1,12-14 provides an efficient way to construct the vector of conditional probabilities for 
systemic event in Eq. (4) with simple vector operations. 

 

 
 

Fig. 1. (a) A hypothetical traffic network used in the numerical example; and (b) the fragility curves of Bridge 1. 
 
III. STOCHASTIC MODELING OF GROUND-MOTION INTENSITIES IN UNCORRELATED STANDARD 
NORMAL SPACE 
 

For a probabilistic seismic hazard analysis, the ground-motion intensities at the sites are often predicted using so-called 
ground motion prediction equations (GMPE). A general form of GMPE is given as 
 

ln ( , , )kl l l k kl kl l lY f M R σ ε τ η= + +λ   (5) 
 
where Ykl is the chosen ground-motion intensity at site k for the earthquake event l, and f (Ml, Rkl, λl ) is the estimated mean 
value of Ykl by GMPE given as a function of the magnitude Ml of event l, a seismological distance Rkl to site k in earthquake l, 
and other explanatory variables λk  assigned at site k. In the same equation, εkl is the intra-event residual to represent site-to-
site uncertainty within the same event l, ηl is the inter-event residual to represent event-to-event uncertainty shared by all sites, 
and σkl and τl are deterministic values to represent the standard deviations of the intra-event and inter-event residuals, 
respectively. While ηl is constant for all sites, εkl varies from site to site, and shows statistical dependence for pairs of nearby 
sites. A correlation coefficient matrix is composed with a selected auto-correlation model that represents the so-called spatial 
correlation, often described as a function of distance between sites15,16. To facilitate the application of CE-AIS to PSRA, the 
random variables in (5) are transformed to the uncorrelated standard normal space, called “u-space”17. As a result, the 
probability of being in a certain system state (SS) is described as 
 

( ) ( | ) ( ) ( | ) ( )P SS P SS f d P SS f d= =∫ ∫Sa uSa Sa Sa u u u   (6) 
 
where fu(u) denotes the joint probability density function of uncorrelated standard normal random variables. 

Fig. 2(a) shows 9 hypothetical active faults threatening the example network in Fig. 1(a). The geometric and seismic 
properties are adopted from (Ref. 18). In Fig. 2(b), 500 earthquake events are generated using the u-space, and their moment 
magnitudes and locations of hypocenters are shown; this illustration is to visually check whether our sampling in u-space is 
valid. 
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Fig. 2. (a) 9 active faults threatening the hypothetical traffic network; and (b) 500 artificial earthquake events generated using 
the hazard model in the uncorrelated standard normal space. 
 
IV. CONCURRENT ADAPTIVE IMPORTANCE SAMPLING 

 
For the risk assessment of the network system which has multiple post-hazard states, a vector of the probabilities needs 

to be evaluated instead of a scalar shown in (6). Using Monte Carlo simulation (MCS) approach, the vector of the 
probabilities can be estimated as 
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where O is the number of the system states, and N is the number of the generated samples.  

Importance sampling (IS) aims to improve the efficiency of MCS by employing an alternative sampling density h(u;v) 
with the distribution parameters v, i.e. 
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To evaluate the integral in (8) with a simulation-based approach, it is desired that the multiple probabilities of post-hazard 
events are obtained concurrently so as to guarantee convergence evenly well for all possible states. A disadvantage of using 
MCS in this case is that a large number of samples are required to secure the reliable estimate of rare but still destructive 
scenarios while probable but less harmful one converges quickly. Implementation of conventional IS is also problematic in 
such a situation because the optimal sampling densities may be significantly different depending on scenarios. This study 
proposes a concurrent adaptive importance sampling (CAIS) method to overcome these limitations especially inherent in 
PSRA of lifeline networks. This technique helps identify a near-optimal IS density for the entire set of post-disaster utilities 
of the system. 

In the proposed approach, the optimal IS density function for (8) is defined as to minimize the sum of the squares of the 
coefficient of variations (c.o.v) of the estimates in P. Because each element in P can have a different level of the likelihood, 
the c.o.v is hereby used instead of the variance, which is a proper measure for a single value integral19. Based on this 
definition, the optimal density for concurrent IS, h*(u) is now derived as 
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where wo is the o-th element of the unit vector proportional to the vector including the inverses of the estimated P(SSo) for 
o=1, 2, …, O. Although the exact evaluation of wo is not possible, reasonable estimates on those weights are obtainable from 
a small number of pre-samples; a generated ground-motion scenario provides conditional probabilities of systemic events in 
this case. 
 
V. CROSS-ENTRPOY BASED CONCURRENT ADATIVE SAMPING (CE-CAIS) 
 

The theoretically optimal IS density function h*(u) is derived as (9), but this form is still impractical because it is required 
to evaluate the exact value of P. However, it is possible to obtain a near-optimal IS density by using an adaptive IS method, 
i.e. by minimizing the Kullback-Leibler cross-entropy (CE) – a measure of the difference between the optimal density h*(u) 
and the IS density model h(u; v). Through a few rounds of pre-sampling, the density model parameters estimated from the 
previous round, denoted by t, are updated to v such that the estimated CE between h*(u) and the sampling density h(u; v) is 
minimized. 

By applying CE-AIS to the optimal density derivation in (9), a near-optimal IS density is found such that the following 
condition is satisfied: 
 

1
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where W(u;t) is the so-called likelihood ratio, and ∇vh(u; v) denotes partial derivatives of IS density model h(∙) with respect 
to distribution parameter v.  

This study uses the closed-form updating rules recently derived for a CE-AIS approach7 that employs a nonparametrc 
multimodal distribution model called the Gaussian mixture (GM). The results of numerical tests confirmed that CE-AIS-GM 
is not sensitive to the level of probability or nonlinearity of limit-state surfaces while drastrically improving the efficiency of 
the simulation. Such a nonparameteric model based CE-AIS approach was recently extended to high dimensional reliability 
problems by employing the von Mises–Fisher mixture density model instead of a Gaussian mixture8. 

 
VI. NUMERICAL EXAMPLE: A HYPOTHETICAL NETWORK 
 

As a numerical example, let us consider a hypothetical traffic network surrounded by 9 active faults (Fig. 1(a) and 2(a)). 
For the sake of simplicity, it is assumed that the damage of bridges is the only factor that may reduce the traffic capacity of 
associated links after an earthquake event; this eventually decreases the entire traffic flow capacity between the source and 
terminal nodes. The bridge fragility models in (Ref. 9) are used, and the bridge types were randomly selected. Each link 
capacity is assumed to be decreased as 100%, 75% and 50% of the full capacity for “none or slight”, “moderate or extensive”, 
and “collapse” damage states, respectively, except for bridge 6, 10 for which the reduced capacity is 100%, 75% , 50%, 25%, 
and 0% for each of the five separate states. The spectral accelerations at the natural period 1.0 sec are used to compute the 
conditional probability of damage as in (Ref. 9); Magnitude-scaling relationship in (Ref. 20) with parameters used in 
appendix E of (Ref. 17), and GMPE in (Ref. 21) are adopted in this example. The post-disaster reduction of the flow capacity 
between nodes {13, 23, 24} to nodes {2, 6, 7} after an earthquake event is of concern. Two sets of subjunctive nodes and 
links (dashed lines) are introduced to handle this multi-sources/sinks problem; node 100 is assigned as a master source to 
nodes {13, 23, 24}, and node 200 as a mater sink from {2, 6, 7} in this example.  

 
The whole procedure of PSRA of this network is summarized as below. 

• Step 1: Perform deterministic maximum flow analyses to identify possible network utility scenarios and their 
corresponding component damage combinations 

• Step 2: Perform the initial pre-sampling to estimate the weights wo in (9) 
• Step 3: Update IS density model using CE-AIS-GM with respect to (9) (CE-CAIS-GM) 
• Step 4: Repeat Step 3 until converged 
• Step 5: Final sampling using the near-optimal IS density found in Step 4 
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Table I. Number of samples required to achieve target c.o.v 0.01 

 Brute-force MCS CE-AIS-GM CE-CAIS-GM  

Pre-sampling - 61,000 7,000 
Final-sampling 5,781,842 136,780 40,896 
Total 5,781,842 197,780 47,896 

 
In Step 1, a total of 38×52=164,025 combinations of damage states of 10 bridges result in only 11 possible network flow 

capacity values, i.e. O = 11 in (7). In Steps 2-4, a total of 7,000 pre-samples were enough to find a near-optimal IS density for 
overall convergence of the probabilities of 11 states – 1,000 samples in Step 2, and 1,000 samples for each of 5 updates in 
Step 3 and 4. Setting our target c.o.v as 0.01, Table I shows that convergence was achieved using only 47,896 samples while 
brute-force MCS demanded 5,781,842 samples. As one can check in Table II, this superb improvement in efficiency does not 
hamper the accuracy of the simulation. Since the original CE-AIS approach does not provide any rule of concurrent sampling, 
each 11 state was investigated separately to test its efficiency (See Table III). 

 
TABLE II. Estimated probabilities of reduced network traffic capacity  

Max flow (veh/hr) 12,600 12,300 12,150 12,000 11,850 11,700 11,400 11,100 
Brute-force MCS 0.148 2.668×10-5 2.465×10-4 1.132×10-5 0.615×10-5 1.819×10-4 0.659×10-5 1.630×10-5 
CE-AIS-GM 0.151 2.717×10-5 2.508×10-4 1.141×10-5 0.612×10-5 1.845×10-4 0.665×10-5 1.647×10-5 
CE-CAIS-GM 0.148 2.647×10-5 2.403×10-4 1.130×10-5 0.612×10-5 1.802×10-4 0.658×10-5 1.628×10-5 
Max flow (veh/hr) 10,800 10,500 10,200      
Brute-force MCS 5.717×10-5 0.284×10-5 1.734×10-5      
CE-AIS-GM 5.872×10-5 0.289×10-5 1.732×10-5      
CE-CAIS-GM 5.717×10-5 0.284×10-5 1.727×10-5      

 
Table III. Number of samples to implement the original CE-AIS for each systemic event with the same target c.o.v 0.01 

Max flow 
(veh/hr)  12,600 12,300 12,150 12,000 11,850 11,700 11,400 11,100 10,800 10,500 10,200 Total 

Pre-sampling 1,000 6,000 5,000 8,000 5,000 5,000 6,000 7,000 6,000 7,000 6,000 61,000 
Final-sampling - 12,355 5,463 10,299 19,134 7,036 10,680 13,374 8,335 16,063 34,041 136,780 
Total 1,000 18,355 10,463 18,299 24,134 12,036 16,680 20,374 14,335 23,063 40,041 197,780 

 

 
Fig. 3. (a) Coefficient of variation (c.o.v) with the number of samples when using brute-force MCS; and (b) c.o.v with the 
number of samples during the final sampling in CE-based concurrent AIS (CE-CAIS); when using CE-CAIS, the number of 
samples required to achieve the same target c.o.v 0.01 is much less than that of MCS (47,896 vs the 5,781,842). In addition, 
c.o.v values by CE-CAIS descend concurrently when compared with those with MCS. 
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As shown in the Table I, CE-CAIS achieves the same target c.o.v. with only 0.8% of the simulations by brute-force MCS 
and 24% of CE-AIS. Table II also confirms that the estimates converge to the same probabilities. Fig. 3(a) shows the 
convergence histories of the brute-force MCS while Fig. 3(b) provides those of the proposed CE-CAIS. The plots confirm 
that CE-CAIS enables rapid and collective convergence among the multiple states although the levels of probabilities show 
great variability. This example demonstrates that the CE-CAIS approach provide powerful means for PSRA of lifeline 
network, and in particular, facilitates application of IS methodology to network problems having multiple post-disaster 
scenarios. 
 
VII. CONCLUSIONS 

 
 A new simulation-based approach is proposed for probabilistic seismic risk assessment (PSRA) of post-hazard flow 

capacity of traffic network. The new approach, termed as cross-entropy-based concurrent adaptive importance sampling (CE-
CAIS), improves the efficiency of the sampling method when the reliability of multiple states of the system has to be 
investigated. Originated from CE-AIS, the proposed approach does not require any subjective judgement, assumption or 
additional reliability analysis to identify a near-optimal density to perform efficient sampling. The great advantage of using 
CE-CAIS is that this method provides a near optimal sampling density which would give fast convergence for all possible 
states in the system while the original CE-AIS needs pre-sampling to identify a near-optimal sampling density for each 
network state. This feature makes the proposed approach superior to the original CE-AIS approach for network-level PSRA 
because numerous outcomes of the network performance often exist under seismic hazards. Numerical examples showed 
superb efficiency of CE-CAIS compared to brute-force MCS and CE-AIS. Using only a small number of pre-samples, CE-
CAIS found a near-optimal IS density which gives superb performance for PSRA of lifeline network while not relying on any 
subjective knowledge to identify IS density model. It is expected that the proposed approach will provide a scalable PSRA 
framework especially for complex infrastructure systems which may exhibit many possible post-disaster states. 
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