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In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the 
current plant configuration. The health information (operating condition) of plant components is not considered. Hence, 
there is a need to develop an enabling approach to solidify risk monitors to provide time and condition-dependent risk by 
integrating traditional probabilistic risk assessment models with prognostics and health management techniques. This lays 
the foundation for online risk monitors. To achieve online risk monitors, one of the crucial steps is system components 
selection. This paper will focus evaluation of system components based on risk- and cost-based importance measures. 
Traditionally, importance measures like Fussell-Vesely, risk reduction worth, risk achievement worth, partial derivative, 
Birnbaum importance, and others are applied to identify the role of components in the risk of a nuclear power plant. Existing 
importance measures have paid little attention to the costs incurred by maintaining a system (including diagnosis, repair, or 
replacement based on prognosis analysis) within a given time period. However, cost-effective analysis is critically important 
in an increasingly competitive energy market. Different types of costs will be considered for evaluating system components in 
this paper. The initial outcome of component ordering based on cost is illustrated on simplified system architecture. And 
model validation via MATLAB® simulation is also presented. This paper provides an aid to systematic identification of 
system components based on cost importance in addition to risk-based importance measures. 
 
I. INTRODUCTION 
 

The application of traditional probabilistic risk assessment (PRA) methodology to evaluate risk associated with 
structures, systems, and components (SSCs) in the nuclear industry and in other industries is well established (Refs. 1, 2, 
and 3). PRA methodology (also known as probabilistic safety assessment) plays a significant role in quantitative 
decision-making by finding design and operational vulnerabilities. In particular, it has been widely used as the core 
methodology for risk-informed applications. Even though traditional PRA seeks realistic results, the assessment is based on 
Boolean logic (i.e., SSCs have only two states: operational and failure), time-independent failure information (i.e., failure 
information is collected in time snapshots and not on a continuous basis), and assumption that system/components are 
non-repairable. As a result, traditional PRA in its present form has some limitations. These are (1) it is not capable of 
handling time evolving scenarios (e.g., fault tree analysis [FTA] and event tree analysis are static in nature); (2) it does not 
include system/component degradation or aging information in risk analysis (i.e., no intermediate state analysis); (3) 
conservative risk estimate; and (4) inability to handle uncertainty due to change in reliability of components/system due to 
operational or external factors. 
 

The limitations of traditional PRA methodology are addressed to a certain level by several extensions of fault trees 
(Ref. 4). Dynamic fault trees are best known, but extended fault trees, repairable fault trees, fuzzy fault trees, state-event fault 
trees are popular as well. Despite several fault tree extensions in the nuclear industry, risk is a point-in-time estimate of a 
system under investigation for a current plant configuration (scenario). The information on plant components health and 
partial failures (also referred as degraded states) is not explicitly considered. 
 

In recent years, researchers have explored the concept of utilizing condition monitoring in PRA (Refs. 5, 6, 7, and 8). 
The progress reported in the literature on this topic of research updates the probability of failure based on time- and 
condition-information of passive structures. However, the reported research is still based on Boolean PRA. The intermediate 
states, referred to as partial failures, are not considered. For example, consider a simple system as shown in Fig. 1. The top 
event for the example in Fig. 1 is no flow of water to reactor, (i.e.,   T = C ∨ ( A∧ B) ). The top event ( T ) is independent of 
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current state of the reactor and current operating health state of components (valve and pumps). The well-known failure 
modes for valve and pumps are used to analyze the top event in traditional PRA. Consider a scenario where the valve 
expected to be fully closed but is NOT; instead, it is partially open due to unknown reasons (referred to as partial failure in 
this paper). The questions now are: How would you account this real-time information that the valve is partially open in 
PRA? How would FTA change? Similarly, there could be evolving partial failure modes (degradation) associated with pumps 
based on operating conditions and should be taken into consideration in traditional PRA. How do uncertainties associated 
with partial failure modes propagate to the top event? How to estimate those uncertainties? What is economic impact? Fig. 1 
illustrates a simple system in which these questions are associated. 
 

Water	
Tank	

Pump	A	

Pump	B	

Valve	C	

Reactor	

 
 

Fig. 1. An example of a simple system. 
 

Researchers at Idaho National Laboratory (INL) are currently working on a research project to seek answers for the 
above concerns. One of the research objectives presented in this paper is component importance considering cost (in addition 
to risk). In reliability engineering, risk importance measures are often used to determine which components of the system are 
the biggest contributors to the overall system risk measures. In nuclear power plants, risk importance measures are used to 
rank components for risk-informed in-service inspection (Ref. 9). Different risk importance measures are established and 
used in the nuclear industry (Ref. 10). Existing importance measures have paid little attention to the costs incurred by 
manipulating a system and its components in a given time period. In the current energy market, for the nuclear industry to be 
competitive when compared to other clean energy industries, it would be unrealistic to evaluate the importance of system and 
its components to improve their reliability without considering the cost. 
 

The rest of the paper is organized as follows: Section II presents brief overview of the online risk monitoring research. 
Different importance measures utilized in the nuclear industry are presented in Section III. Section IV discuss components 
importance considering cost, modeling assumptions, and model development. Section V presents a case study and compares 
the finding with the research presented in Ref. 11. Finally, Section VI summarizes the initial findings and discusses the path 
forward. 
 
II. BRIEF OVERVIEW OF THE ONLINE RISK MONITORING RESEARCH 
 

Online risk monitoring research is currently in progress at INL. The research is focusing on developing and enabling an 
approach to solidify risk monitors to provide time- and condition-dependent risk estimates. The approach was adapted to 
achieve online risk estimates and integrated traditional PRA methodologies and prognostic and health management (PHM) 
research, as shown in Fig. 2. Mathematically interpret it as a transition from {0,1} to [0,1]. In {0,1} only Boolean states are 
considered, whereas in [0,1] all the possible states between 0 and 1 (including 0 and 1) are considered. 
 

To achieve the research vision, systematic integration of PHM framework with PRA is essential to alleviate the 
conservatism in the traditional PRA. 
 

The PHM framework envisages online monitoring of precursor and feature extraction towards predicting degradation 
trend and the life of the component. The evaluation of remaining useful life for the monitored component or system and the 
use of insights from this evaluation is a crucial part of online risk-based/risk-informed applications. A prognostics-based 
approach, as an extension of a condition-monitoring approach, can address the surveillance and monitoring requirements of 
new as well as old nuclear plants (Ref. 6); its benefit analysis is presented in Ref. 12. Implementing a PHM framework 
requires three crucial steps: 
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1. Selecting the SSCs for monitoring 
2. Developing a diagnostic model enabling early detection of degradation in selected SSCs 
3. Developing a prognostic model to estimate expected remaining useful life. 

 

Traditional Fault Tree based Risk Analysis 

Online Risk Monitoring/Management 

Data  
Analysis 

Diagnosis 

Prognosis 

Prognostics and Health Management  
(PHM) 

 
 

Fig. 2. A schematic representation of research vision to achieve online risk monitoring. 
 
III. IMPORTANCE MEASURES 
 

Importance measure plays a critical role in prioritizing component importance in a system. The commonly used 
importance measures in nuclear industry are broadly categorized as risk significant and safety significant (Ref. 10). An 
extensive review of different importance measures and their applications is available in Ref. 10. The application of 
importance measures assumes that a component/system is non-repairable and has binary states (i.e., operating and failed). 
During the literature review, three importance measures (Barlow-Proscha measure [Ref. 13], Natvig measure [Ref. 14], and 
Joint Importance measure [Ref. 15]) were identified that could be extended to repairable systems with non-binary states. 
These measures are under investigation as part of the current research. With too much emphasis on risk and safety 
significance importance measures, little attention is paid to the cost incurred to maintain a system and its components within 
a given time period. This led to the investigation in component importance when considering cost. 
 
IV. COMPONENT IMPORTANCE CONSIDERING COST 
 

Following the discussion on importance measures in the previous section, risk has been the primary metric in 
prioritization/ranking of component significance in a system and optimization of inspection frequency (Refs. 9 and 16). In the 
current energy competitive market, it is important to consider cost when determining component importance for inspection or 
maintenance or for implementation of PHM technologies. 
 

Ref. 11 showed that the importance of a component depends on the cost of maintaining this component in a given time 
internal   (0,t)  and proposed a new importance measure that takes different costs into consideration. These costs are: 
 

• Cost 1 (  C1 ): Costs of improving component reliability. In a system, the cost of improving the reliabilities of 
different components is likely to be different in interval   (0,t) . 

• Cost 2 (  C2 ): Costs due to component failure. If a component fails, it needs to be repaired or replaced. This incurs 
costs. 

• Cost 3 (  C3 ): Cost of system failure. A system is usually designed and installed for completing a specific function. If 
a system fails, it can cause losses, such as loss of lives, damage to health, release of hazardous materials or other 
detrimental effects to the environment, or economic losses including repair or replacement of directly damaged 
structures as well as repair of collateral damage. 
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Ref. 11 in their analysis considered the operation of system and its component in binary state (i.e., functioning or failed). 

Also, they ignored the cost   C1  and considered only   C2  and   C3  to enable comparison between the Birnbaum importance 
measure and cost importance measure based on binary operational states. However, in practice, the system and its 
components are repairable before failure, thereby improving component reliability. For such system and components, the cost 

  C1  should be incorporated in the cost importance. In this paper, cost-based importance measure framework of Ref. 11 is 

utilized and modified to include cost   C1 . The cost   C1  for each component in a system is expressed in terms of reliability as: 
 

  
C1,k = f (Rk (t))   (1) 

 
where   Rk (t)  is the reliability of the   k − th  component and 

  
C1,k  is the cost of improving the reliability of the   k − th  

component. 
 
IV.A. Modeling Assumptions 
 

In this paper, following assumptions are made. 
 

1. A system is composed of  k  components. At time   t = 0 , all components are new. 
2. The system and its components are repairable. 
3. The behaviors of the components in the system are mutually statistically independent. 
4. Compared to the operating time, repair times are negligible. 
5. For each component in a system, the maximum and minimum reliability is same and predefined 

(i.e.,   Rk
max = Rmax = 0.95  and   Rk

min = Rmin = 0.1). 
6. The reliability of each component is constant for initial  m  cycles. Here, each cycle interval is 18 months. 
7. After  m  cycles, component reliability drops and component is repaired. After each repair, component reliability 

returns to maximum achievable reliability value for  n  cycles. 
8. After  m+ n  cycles, the component reliability decrease and component is repaired. After each repair, component 

reliability does not return to maximum achievable reliability value. Instead returns to a reliability value in the 
interval   [Rmax , Rmin ] . 

9. Component is considered failed when   Rk (t) < Rmin . This definition of failure is different from the one considered in 
Ref. 11. 

10. The degradation rate ( λ ) of each component in a system is mutually statistically independent. The reliability of 
each component is: 

  Rk (t) = e−λkt

  (2) 
 

Here  λk  is the degradation rate of   k − th  component. 
11. In simulation evaluation, the degradation is modeled as a Bernoulli distribution. 

 
IV.B. Cost Model Formulation 
 

Based on cost definitions and assumptions, a function expression for the cost   C1  in terms of reliability is developed in 

this section. The reliability of each component in a system changes over time interval   (0,t)  (i.e.,   Rk (t)∈[Rk
min , Rk

max ] ). A 
four-parameter model is presented in this paper, which is defined as: 
 

  
C1,k = ak ⋅G(t)+ b   (3) 

 
where  ak  is the maximum cost incurred in improving reliability of the   k − th component, which includes be labor hour, 
instrumentation cost, administrative cost, and system downtime cost;  b  is the fixed cost that is incurred every operational 
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cycle as a result of scheduled/planned maintenance and includes the cost of any PHM implementation on the   k − th  
component; and   G(t)  is the dimensionless quantity that represents the normalized survival function of the   k − th  component 
and has value in [0,1].   G(t)  is expressed as: 
 

  
Gk (t) =

Rk
max − Rk (t)

Rk
max − Rk

min   (4) 

 
In cost estimation of  ak , it is assumed that the system downtime does not impact the operation of the plant because a backup 
system would be engaged so that reactor operation is not impacted. However, at this point, probability of failure the overall 
system increases. Substitute Eq. (4) into Eq. (3), to obtain: 
 

  
C1,k = ak ⋅

Rk
max − Rk (t)

Rk
max − Rk

min + b   (5) 

 
The model in Eq. (5) has the following characteristics: 

 
1. If   Rk (t) = Rk

max , 
  
C1,k = b . This implies that the component is at its maximum achievable reliability; thereby no 

additional cost of improving component reliability is required. The minimum cost will be incurred due to scheduled 
maintenance activities (as expected). 

2. If   Rk (t) = Rk
min , 

  
C1,k = ak + b . This implies that the component is at its minimum reliability (close to failure based on 

modified definition used in this paper, see Assumption 9 above); thereby the cost associated with improving 
component reliability at that instance of time would be high. It is also a decision point, whether to repair or replace 
the component. 

3. As the value of   Rk (t)  monotonically decreases, the value of 
  
C1,k  monotonically increases as shown in Fig. 3. 
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Fig. 3. Characteristic of the model in Eq. (5). 
 

Given the expression for 
  
C1,k , the costs 

  
C2,k  and   C3  (as described in Ref. 11) is combined to obtain a cumulative cost in 

the interval   (0,t) . Note, that the definition of 
  
C1,k  in this paper is as per Assumption 9. The cost-based ordering of 

components achieved with 
  
C1,k  (in this paper) and without 

  
C1,k  (as in Ref. 11) is compared on series-parallel system 

architecture. 
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V. MODEL VALIDATION 
 

In this section, cost model 
  
C1,k  is validated by performing a MATLAB® simulation for a given scenario, and by 

comparing the cost-based ordering of components achieved by including 
  
C1,k  in the cumulative cost with the ordering report 

in Ref. 11. 
 
V.A. Scenario-based Cost 

  
C1,k  Model Validation via MATLAB® Simulation 

Based on assumptions in Section IV and parameter values in Table 1, a scenario is developed for model validation. In 
this scenario, the component reliability remains constant for   m = 6  cycles. Here each cycle interval is 18 months. After 
 m  cycles, the component degradation rate λ  is constant 15% for next   n = 5  cycles, thereby reducing component reliability. 
The component is repaired and it recovers completely such that   Rk (t) = Rk

max . After  m+ n  cycles (i.e., after 11 cycles 
combined) the component degradation is random and is uniformly distributed between 5% and 25%. The component is 
repaired, but the recovery is partial such that   Rk (t) < Rk

max . The time duration in the simulation is 22 cycles (equivalent to 

39 years and 6 months) or until   Rk (t) < Rk
min . If   Rk (t) < Rk

min  is achieved before 22 cycles, the simulation is terminated. The 
simulation was performed 1000 times to compute the expected value of the reliability and cost with respective standard 
deviations, as shown in Fig. 4, for the main shaft of the system architecture shown in Fig. 5. From Fig. 4, observe that the 
cost 

  
C1,k  model is in agreement with the mean simulated cost. 
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Fig. 4. Mean reliability and cummulative cost versus cost model for main shaft. 
 

TABLE I. Cost data and parameter values for scenario-based model validation. 

 
aMainShaft  ($)  b  ($) 

  Rk
min    Rk

min   
λMainShaft  after 11 cycles 

45887 200000 0.1 0.95    U ∼ [0.15,0.25]  
 
V.B. Comparison of Cumulative Cost with and without 

  
C1,k  in Component Importance Ranking 

 
The system architecture in Fig. 5 is representative of a 600-KW wind turbine. For evaluation purpose, the system 

architecture, cost data, and failure rate as reported in Ref. 17 are used (see Table II). For details on cumulative cost 
computation without 

  
C1,k , see Ref. 11. The component ordering based on cost without 

  
C1,k  in Ref. 11 and with 

  
C1,k  (in this 

paper) is presented in Table III. From Table III, observe that the component ordering based on cost has changed with and 
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without 
  
C1,k . From cost perspective main observations from Table III include (i) without 

  
C1,k , the gearbox was the most 

important component as per Ref. 11, and with 
  
C1,k , the main shaft is the most important component; and (ii) with or without 

  
C1,k , the bearing is still the least important component. Observation (ii) is as expected because Bearings A and B are in 
parallel and both bearings have to fail to cause system failure, whereas other components are in a series and if any one 
component fails, the system failure occurs. 
 

Bearing A 

Bearing B 

Main shaft Gear box Generator 

 
 

Fig. 5. Series-parallel system architecture (Ref. 11). 
 

TABLE II. Cost Data and Parameter Values for Model Comparison (Ref. 17). 
Component Gear Box Bearing Generator Main Shaft 

Cost ($) 70062 55548 65128 45887 
Probability of failure 0.3835 0.2104 0.5460 0.632 

 
TABLE III. Comparison of component ordering based on cost. 

 Without 
  
C1,k  (Ref. 11) With 

  
C1,k  

Component Ordering Gear box > Generator > Main shaft > Bearing Main Shaft > Generator > Gear Box > Bearing 
 
VI. CONCLUSIONS AND PATH FORWARD 
 

This paper presented a brief overview of an ongoing research effort at INL in the area of online risk monitoring. The 
paper focused on one of the research objectives of component ordering based on cost importance instead on only risk 
importance. A simple four-parameter cost model as function of reliability was developed. This cost model was able to capture 
the cost of improving component reliability with operational time. This cost was included with two additional costs to obtain 
cumulative cost. The four-parameter cost model was validated via a scenario based MATLAB® simulation. The impact of 
cumulative cost on component ordering with and without the four-parameter cost model was performed and compared with 
the results reported in Ref. 11. 
 

As part of future research, the model needs to be evaluated on a complex interconnected nuclear system with cost and 
failure data. 
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