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        Level-2 uncertainty propagation separates aleatory uncertainty and epistemic uncertainty and therefore receives 

significant interests in risk assessment. In this paper, a novel approach is developed for level-2 uncertainty propagation 

based on uncertainty theory. In the developed approach, aleatory uncertainty is characterized by probability distributions 

and epistemic uncertainty affecting the model parameters is described by uncertain variables. Therefore, the probability of 

interest becomes an uncertain measure in uncertainty theory. The uncertain distribution of the probability of interest is, then, 

calculated based on the operation law of uncertain variables or uncertain simulation method. Several metrics, e.g., the 

average probability, the quantile probability, etc., are defined and calculated to consider both types of uncertainty and assess 

the risk. The developed approaches are implemented in a benchmark case study of flood risk assessment. The results are 

compared to those that are obtained from some commonly-used level-2 uncertainty propagation methods, e.g., probability-

based method, evidence theory, etc., in order to highlight the strength and weakness of the developed approach.  

 

 

I. INTRODUCTION 

 

Risk has two main dimensions, consequences and uncertainty, and a risk description is obtained by specifying the 

consequences and using a description of the uncertainty 
1
. Thus, uncertainty analysis is one of the most important part of risk 

analysis. Broadly speaking, uncertainty can be categorized as aleatory uncertainty and epistemic uncertainty. Aleatory 

uncertainty refers to the uncertainty inherently exist in the physical behavior of a system, and epistemic uncertainty refers to 

the uncertainty caused by our lack of knowledge 
2
. In literatures, the separation of aleatory and epistemic uncertainty is 

encouraged 
3, 4

.  

Uncertainty analysis include two main steps: uncertainty modeling and uncertainty propagation. Uncertainty modeling 

means we need to choose a proper mathematical representation, which may be probabilistic or non-probabilistic, to describe 

the uncertainty of input parameters. Commonly, we use probability theory to model aleatory uncertainty, and epistemic 

uncertainty is described by Bayesian probability, evidence theory, fuzzy theory, etc 
5
. Once the uncertainty has been modeled, 

it must be propagated through the models used in the risk assessment. Depending on the type of uncertainty affecting the 

model input quantities, methods for uncertainty propagation can be classified into level-1 and level-2 methods 
6
. For a level-1 

uncertainty propagation setting, the input parameters are divided into two groups, i.e., one group is subject to aleatory 

uncertainty and the other is subject only to epistemic uncertainty. A level-2 uncertainty propagation setting will be used when 

the input parameters are subject to aleatory uncertainty described by probability theory with distribution parameters subject to 

epistemic uncertainty. 

Level-2 uncertainty propagation in risk assessment has drawn a lot of interests these years. Aven et al. 
1
 introduced level-

2 uncertainty propagation method in detail. They gave the algorithms for level-2 pure probabilistic uncertainty propagation 

and level-2 probabilistic-evidence theory uncertainty propagation, and both of the algorithms performed a two-level Monte 

Carlo simulation. Limbourg and Rocquigny 
6
 applied evidence theory to level-1 and level-2 uncertainty propagation, and give 

some difficulties and challenges when using level-2 uncertainty settings. A new benchmark risk assessment problem was also 

proposed to illustrate the evidence-theory-based method. Limbourg et al. developed an accelerate level-2 uncertainty 

propagation method, where the two-level Monte Carlo simulation is simplified by Monotonous Reliability Method (MRM), 

considering the monotonous properties of the model. Baraldi et al. 
7
 introduced hybrid Monte Carlo-evidence theory 

uncertainty propagation method in maintenance policy performance assessment. 

As pointed out in Ref. 8, uncertainty theory founded by Liu 
9
 can be used to describe the belief degree of events affected 

by epistemic uncertainty. Therefore, in this paper, we use uncertainty theory to model the level-2 uncertainty parameters, and 
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a novel level-2 uncertainty propagation method based on uncertainty theory is developed. We will also define some metrics, 

such as average probability and quantile probability, to further assess the risk. 

The remainder of this paper is structured as follows: Section II introduced some basic concepts about uncertainty theory. 

In Section III, level-1 and level-2 uncertainty models are first reviewed, and level-2 uncertainty propagation method for 

monotone risk index is then developed based on operation laws of uncertainty theory. Then the uncertain simulation method 

for level-2 uncertainty propagation is proposed. In Section IV, the developed approaches are implemented in a benchmark 

case study of flood risk assessment, and the results are compared to propagation methods based on evidence theory. 

 

II. PRELIMINARY ON UNCERTAINTY THEORY 

 

Uncertainty theory is founded by Liu 
9
 in 2007 and refined by Liu 

10
 in 2010 as a branch of mathematics for modeling 

uncertainties. A new measure, called uncertain measure, is defined in uncertainty theory based on the following four axioms
9
: 

Axiom 1. (Normality Axiom)   1   for the universal set  . 

Axiom 2. (Duality Axiom)     1c     for any event  . 

Axiom 3. (Subadditivity Axiom) For every countable sequence of events 1 2, ,...  , we have 

   
1 1

i i
i i



 

   . 

Axiom 4. (Product Axiom) Let   , ,k k kL  be uncertainty spaces for 1,2,...k  . The product uncertainty measure  is 

an uncertain measure satisfying 

   
11

k k
kk

 



   , 

where kL  are  -algebras over k , and k are arbitrarily chosen events from kL  for 1,2,...k  , respectively. 

As an extension of Axiom 4, Liu gives the uncertain measure of any events in the uncertainty space  , ,L , based 

on maximum uncertainty principle, i.e., if there are multiple reasonable values that an uncertain measure may take, then the 

value as close to 0.5 as possible is assigned to the event 
11

. Therefore, for each event L , we have  

  

 

 

 

 
1 2 1 2

1 2 1 2

1 1... ...

1 1
... ...

sup min ,  sup min 0.5

1 sup min ,    sup min 0.5

0.5,

c c

k k k k
k k

k k k k
k k

if

if

otherwise

          

   
       

   



     




 (1) 

According to Liu 
11

, a measurable function   from an uncertainty space  , ,L  to the set of real numbers is called 

an uncertain variable. Thus, the uncertainty distribution can be defined by    x x    for any real number x . For 

example, a linear uncertain variable  ~ ,a b  has an uncertainty distribution 

      1

0,  

,   ,

1,  

if x a

x x a b a if a x b

if x b




     
 

 (2) 

and a normal uncertain variable  ~ ,e   has an uncertainty distribution 

  
 

1

2 1 exp ,  .
3

e x
x x







   
      

  

 (3) 

An uncertainty distribution   is said to be regular if it is a continuous and strictly increasing with respect to x  at which 

 0 1x  , additionally  lim 0
x

x


   and  lim 1
x

x


  . A regular uncertainty distribution has an inverse uncertainty 

distribution, denoted as  1  , for  0,1 . It is clear that linear uncertain variables and normal uncertain variables are 

regular, and their inverse uncertainty distributions are (4) and (5), respectively. 
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    1

1 1 ,a b       (4) 

  1

2

3
ln

1
e

 


 

  


 (5) 

To calculate the uncertain distribution of function of uncertain variables, Liu gives an operational law (Theorem 1) for 

strictly monotone functions. 

Theorem 1. 
11

 Let 1 2, ,..., n    be independent uncertain variables with regular uncertainty distributions 1 2, ,..., n   , 

respectively. If  1 2, ,..., nf     is strictly increasing with respect to 1 2, ,..., m    and strictly decreasing with respect to 

1 2, ,...,m m n    , then  1 2, ,..., nf     has an inverse uncertainty distribution 

          1 1 1 1 1

1 ,..., , 1 ,..., 1 .m m nf               
 

 

III. LEVEL-2 UNCERTAINTY PROPAGATION BASED ON UNCERTAINTY THEORY 

 

In this section, we first introduce level-1 and level-2 uncertainty models in risk analysis in subsection III.A. In III.B, we 

develop a level-2 uncertainty propagation method for monotone interested index, and a simple example is given to illustrate 

the method. Considering the non-monotone situations, a level-2 uncertainty propagation method based on uncertain 

simulation is proposed in subsection III.C. 

 

III.A. Level-1 and level-2 uncertainty models in risk analysis 

 

In probabilistic risk analysis, the system output can usually be modeled by 

  ,z g x  (6) 

where g  is the system model and  1 2, ,..., nx x xx  denotes the vector of input parameters 
1
. We are interested in the 

probability that z  exceeds its threshold thz , which is denoted by  Pr thp z z  . 

In level-1 uncertainty models, the input vector can be separated into  ,x a e . Variables  1 2, ,..., mx x xa  represent 

parameters affected only by aleatory uncertainty, and are usually modeled by probability theory, i.e., the probability density 

function (pdf)  , , 1,2,...,i if x i m  , where i  is deterministic parameter of the pdf. Other variables 

 1 2, ,...,m m nx x x e  represent the parameters that are not subject to any kind of random variation, and are only affected by 

epistemic uncertainty due to lack of knowledge 
6
. Different paradigms can be used to describe e , such as evidence theory and 

fuzzy theory. For example, if evidence theory is preferred, then BPAs can be obtained to represent epistemic uncertainty, and 

if we choose fuzzy theory, the membership function will be used. Under level-1 settings, Monte Carlo simulation methods or 

fuzzy extension theorem is usually used to propagate uncertainty. Through the propagation method, the interval of p  can be 

calculated. 

Level-2 uncertainty models are derived based on level-1 uncertainty models. In these models, parameters which 

determine the aleatory uncertainty model are subject to epistemic uncertainty. Thus, i s in pdf  ,i if x   are no longer 

deterministic due to our lack of knowledge. In literatures, evidence theory is preferred to describe this kind of parameters, 

and two-levels Monte Carlo simulation is used for level-2 uncertainty propagation 
6
. 

 

III.B. Level-2 uncertainty propagation method for monotone interested index 

 

In this paper, we use uncertainty theory to describe the level-2 epistemically uncertain parameters. Let i  be 

uncertainty distributions of , 1,2,...,i i n  , and assume there is no level-1 epistemic uncertainty, and the interested 

probability can be explicitly expressed as  

  ,p h   (7) 

where  1 2, ,..., n     denotes the vector of level-2 uncertain parameters. If h  is strictly monotone with respect to  , 

the uncertainty distribution of p  can be obtained through Theorem 1 as follows: 
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           1 1 1 1 1

1 ,..., , 1 ,..., 1 .p m m nh                 (8) 

Take a simple fault tree (shown in Fig. 1) for example. We are interested in the probability of occurrence of top event A  

at time 0t . Assume that the failure time of 1B  and 2B  follow exponential distributions with parameters 1  and 2 , 

respectively. Therefore, the probability can be calculated as: 

 
 1 2 01

t
p e

  
   (9) 

A

B1 B2

 
Fig. 1. A simple fault tree for risk analysis 

Due to the effect of epistemic uncertainty, we cannot get precise values of 1  and 2 . Thus we assume the two parameters 

are all linear uncertain parameters with uncertainty distribution given in (2), that is,  1 1 1~ ,a b  and  2 2 2~ ,a b . 

According to Theorem 1, there is 

      1

1 2 0 1 2 01 exp 1 ,p a a t b b t             

which indicates that the uncertainty distribution of p  is 

  
   

   

1 2

0

1 2 1 2

1
ln 1

.

p a a
t

p
b b a a

   

 
  

 (10) 

 

III.C. Uncertain simulation method for level-2 uncertainty propagation 

 

In many situations, we cannot get a strictly monotone interested index with respect to the level-2 uncertain parameters. 

Therefore, an uncertain simulation method is introduced in this subsection to propagate level-2 uncertainty. 

Uncertain simulation method is proposed in Ref. 12 by Zhu, to calculate an appropriate uncertain measure of non-

monotone functions of uncertain variables. This method requires the corresponding uncertain vector ξ  is common. The 

definition of common is given in Definition 1. 

Definition 1 
12

. An uncertain variable   is common if it is from the uncertain space  , ,  to   defined by 

    , where  is the Borel algebra over  . An uncertain vector  1 2, ,..., n  ξ  is common if all the elements of 

ξ  are common. 

Based on (1), Zhu gives a theorem as a basis for uncertain simulation method. 

Theorem 2. 
12

 Let : nf    be a Borel function, and  1 2, ,..., n  ξ  be a common uncertain vector. Then the 

uncertainty distribution of f  is: 

 

    

 

 

 

 
1 2 1 2

1 2 1 2

1 2

1 1... ...

1 1
... ...

, ,...,

sup min ,  sup min 0.5

1 sup min ,    sup min 0.5.

0.5,

n n

c c
n n

n

k k k k
k n k n

k k k k
k n k n

x f x

if

if

otherwise

  

            

   
         

  

   



    




 (11) 

In (11)  1 ,f x   ,  iA  denotes a collection of all intervals of the form  ,a ,  ,b  ,   and  , and each 

 k k  is derived by (12): 
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  

 

 

 

 

1 1

1 1

inf , inf 0.5

1 inf ,   inf 0.5

0.5,

i i

c c
i i

i i
B A B A

i i

i i
B A B A

i i

A A

B A A

otherwise

 

 
 

 

 
 







  





 

   (12) 

where B , and 
1

i

i

B A




 . 

According to this theorem, an numerical algorithm is given in Ref. 12. Through the algorithm, we can theoretically 

calculate the uncertain measure  p c , where p  is the interested probability and c  is a constant. When c  ranges from 

the minimum of p to the maximum of p , the uncertainty distribution  p  can be obtained. However, since the uncertain 

measure given in this theorem satisfies the maximum uncertainty principle, the uncertain measures of p  at many possible 

values may be assigned to 0.5 due to the sever uncertainty in level-2 settings. Thus, the bounded uncertainty distribution may 

be more proper to describe the uncertainty of p . 

Actually, (12) gives the bound of each  k k  in (11). Let  
1

inf
i

i
B A

i

m A





  ,  
1

inf
c

i

i
B A

i

n A





  . It’s clear 

that m  and 1 n  are both reasonable value that  B  may take. Noting that 1m n   for any B , we can use m  

and 1 n  as the upper and lower bounds of  k k , respectively. Therefore, a numerical algorithm is developed to 

calculate upper bound UL  and lower bound LL  of  p c . 

Algorithm 1.  

Step 1. Set  1 0m i   and  2 0m i  , 1,2,...,i n . 

Step 2. Randomly generate  (1) (2) ( ), ,..., n

k k k ku     with  ( )0 1i

i k   , 1,2,...,i n , 1,2,...,k N . 

Step 3. From 1k   to k N , if  kf u c ,    1 1 1m i m i  , denote 
1

( ) ( )

( )

i i

m i kx  ; 

otherwise,    2 2 1m i m i  , denote 
2

( ) ( )

( )

i i

m i ky  , 1,2,...,i n . 

Step 4. Rank 
1

( )i

mx  and 
2

( )i

my  from small to large, respectively. 

Step 5. Set               
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 1 2 ( ) 1 ( )1 1 ... 1i i i i i i i

m i m i m ia x x x x x x            ; 

              
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 1 2 ( ) 1 ( )1 1 ... 1i i i i i i i

m i m i m ib y y y y y y            . 

Step 6. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2, 1 , , 1i i i i i i i i

U L U LL a L b L b L a      . 

Step 7. If 
(1) (2) ( )

1 1 1... 0.5n

U U U Ua L L L     , U UL a ; if 
(1) (2) ( )

2 2 2... 0.5n

U L L Lb L L L     , 1U UL b  ;  

otherwise, 0.5UL  . 

If 
(1) (2) ( )

1 1 1... 0.5n

L L L La L L L     , L LL a ; if 
(1) (2) ( )

2 2 2... 0.5n

L U U Ub L L L     , 1L LL b  ; 

otherwise, 0.5LL  . 

Through Algorithm 1, we have the bounded uncertainty distribution of interested probability, denoted by 

   ,L Up p    . To analyze the risk of an event, we define average probability based on the expected value of uncertain 

variable: 

 
   

0
1 .

2

L Up p
p dp

   
  

 
  (13) 

In addition, the quantile probability, such as 0.9 quantile, can be also calculated to reflect the uncertainty. In this method, the 

quantile probability is no longer a precise value, but an interval, denoted by    0.9 0.9,L UQ p Q p   . 
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IV. A NUMERICAL EXAMPLE 

 

In this section, the developed approach in III.C is implemented in a benchmark case study of flood risk assessment. 

Subsection IV.A will briefly introduce the benchmark problem. In subsection IV.B, the results are compared to those that are 

obtained from evidence-theory-based level-2 uncertainty propagation method, in order to highlight the strength and weakness 

of the developed approach. 

 

IV.A. The benchmark problem for uncertainty propagation 

 

The benchmark problem investigates flood risk of a residential area which is closely located to a river. In this area, a 

dike is constructed for prevention. Thus, we are interested in the probability that the annual maximum water level exceeds the 

dike height. 

The system is visualized in Fig. 2, and the maximal water level is calculated by 

  
 

3 5

, , , , , ,c

Q
Z g Q Ks Zm Zv l b Zv

Ks b Zm Zv l

 
   
    

 (14) 

where Zm  denotes the riverbed level at the upstream part of the river, Zv  denotes the riverbed level at the downstream part 

of the river, Ks  denotes the friction coefficient of the riverbed, Q  denotes the yearly maximal water flow, l  denotes the 

length of river, and b  denotes the width of river 
13

. 

 
Fig. 2. 13 Visualization of the system 

 

IV.B. Uncertainty propagation in a level-2 setting using different methods 

 

IV.B.1. Uncertainty theory 

 

According to Ref. 6, the input parameters are subject to two-level uncertainty. In this paper, we use probability to model 

level-1 uncertainty, and uncertainty theory to model level-2 uncertainty. For example, Q  follows Gumbel distribution 

 ,Gum   , and   is an normal uncertain variable whose uncertainty distribution  ,e    is given in (3). All the 

models or values of parameters are tabulated in TABLE I as follow. 

 

TABLE I. Models and values of Level-1 and Level-2 parameters 

Parameter Level-1 Level-2 

Q   ,Gum    
   1013,48  

   558,36  

Ks   2,Ks KsN    
Ks   22.3,33.3  

Ks   2.5,3.5  

Zm   2,Zm ZmN    
Zm   54.87,55.19  

Zm   0.33,0.57  

Zv   2,Zv ZvN    Zv   50.05,50.33  
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Zv   0.28,0.48  

l  5000 (constant) 

b  30 (constant) 

 

Here, we let the threshold of Zc , i.e. the dike height to be 55.5m . Through Algorithm 1, we have the bounds of 

uncertainty distribution of  Pr ,p Zc Zc th  , shown in Fig. 3. 

 

IV.B.2. Evidence theory 

 

Level-2 uncertainty propagation of the benchmark problem is also conducted using evidence theory in this paper. In this 

process, discretization method is used to obtain the basic probability assignment of input parameters, and a two-level Monte 

Carlo simulation is used to propagate the uncertainty. The belief function and plausibility function of interested probability is 

shown in Fig. 3. 

 
Fig. 3. Level-2 uncertainty propagation results based on uncertainty theory and evidence theory 

 

IV.B.3. Discussion 

 

Fig. 3 shows the results of level-2 uncertainty propagation based on uncertainty theory and evidence theory. It is clear 

that most belief function (Bel) and plausibility function (Pl) are covered by the uncertainty distribution bounds. This means 

that the results derived from uncertainty theory is more conservative, and the level-2 uncertainty affects uncertainty 

distribution bounds severer than Bel and Pl.  

We can also calculate average probability of the two distribution bounds. Through (13), the average probability is 

calculated to be 0.0161UTp  . In evidence theory, Bel and Pl are regarded to be lower and upper bounds of probability, 

respectively. In 
14

, the probability can be estimated by the average value of Bel and Pl. Thus, the average probability is 

   
0

1 0.0080.
2

ET

Bel p Pl p
p dp

  
   

 
  

The results mean that we believe the average probability of the occurrence of flood is 0.0161 in uncertainty theory, and be 

0.008 in evidence theory. In other words, if we want to control the risk to some fixed level, the dike should be higher 

according to uncertainty theory. Thus, the average probability also shows that the result of uncertainty theory is more 

conservative. As for 90% quantile probability, the result of uncertainty theory and evidence theory is  0.0073,0.0476  and 

 0.0175,0.0223 , respectively. In the perspective of decision maker, the first interval may be too large to make a decision, 

and this may be a shortcoming of the proposed method. 
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Therefore, when choosing the method in risk analysis from the proposed method and classical method, we need to 

consider the attitude of decision maker. For a conservative decision maker, the developed method may be better. In addition, 

the result of our method reflects that the uncertainty is much sever in level-2 uncertainty settings, and the uncertainty need to  

 

II. CONCLUSIONS 

 

In this paper, uncertainty theory is introduced to risk analysis and a new level-2 uncertainty propagation method is 

developed. For monotone interested risk indexes, we give the propagation method based on the operation laws of uncertainty 

theory. For the more common situations, an uncertain simulation method is developed to calculate bounds of interested 

probability. Average probability and quantile probability are defined to assess the risk. The developed approaches are 

implemented in a benchmark case study of flood risk assessment, and compared to the method based on evidence theory. The 

results show that the developed method is more conservative than the evidence-theory-based method. Propagating 

uncertainty in a level-2 setting is an interesting but challenging future research topic. In addition, the uncertainty controlling 

method should be considered in the future studies. 
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