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Urban areas are more at risk from heat waves than their rural surroundings for two main reasons. First, the urban heat 

island effect causes urban temperatures to be warmer than those of the rural surroundings, worsening the heat wave hazard. 

Second, the larger number of people in densely populated urban leads to greater heat wave exposure. To mitigate the 

negative consequences of extreme heat, city officials can conduct response activities such as the issuance of heat advisories. 

The issuance of targeted advisories to specific areas of a city can be guided by accurate spatio-temporal models of the heat 

hazard in the area, coupled with assessments of the spatial distribution of vulnerable populations. To support optimal heat 

advisory issuance in the urban area of Pittsburgh, Pennsylvania, this paper uses a) Gaussian process spatio-temporal 

probabilistic models of urban temperatures, b) temperature sensor placements informed by the value of information metric, 

and c) coarse resolution weather models and prior analyses of the daily temperature pattern in the urban area. Results 

indicate that a high value of information is provided by a few strategically selected measurements in supporting short-term 

decision-making for heat advisory issuance. 

 

I. INTRODUCTION 

High temperatures are well known to have adverse health impacts, which have been documented for recent heat waves in 

America, Europe, and Australia
1–3

. These impacts are felt with particular intensity in urban areas, due to a combination of 

factors. Firstly, the urban heat island (UHI) effect tends to increase daytime temperatures in urban areas by on average 

between 1 and  3°C with respect to surrounding rural areas
4–6

. Secondly, the heat-vulnerable populations in urban areas tend 

to be larger than in rural areas, due to higher population concentrations. Risk factors such as age, socio-economic status, and 

whether individuals live alone contribute to high temperature vulnerability
7–9

. Urban areas are more densely populated than 

rural areas and thus, assuming comparable demographic factors, will have more people exposed to high temperatures. This 

high hazard and vulnerability combine to create a large risk from high temperatures in urban areas. 

To mitigate the consequences of extreme heat in urban areas, heat advisories are sometimes issued to warn individuals to 

remain indoors and/or seek shelter in air conditioned spaces. Accurate location-specific predictions of temperature are a 

critical factor to ensuring that these warnings are issued to maximum effect
10

. Recent advances in fine resolution temperature 

modeling in urban areas, incorporating better representations of urban surface heterogeneity and hydrology, have led to more 

accurate simulation of the UHI effect with respect to remotely sensed temperatures
11–13

. However, the computational 

complexity of these models precludes their efficient use for near-term fine resolution temperature forecasting
14–16

. 

Previous work by the authors has developed a Gaussian process model for urban temperatures, allowing for efficient 

probabilistic forecasting
17

. This model makes use of a variety of information sources for conditioning the posterior 

temperature model, including forecasts from coarse resolution weather models for the region in question, prior analysis of 

fine resolution weather models to determine spatial patterns of heat distribution in urban areas, and local measurements of 

temperature obtained from weather stations in the region. This model was used by the authors, together with various sensor 

placement metrics, to optimize the location of sensors for supporting decision-making for the issuance of heat advisories
18

. 

One of these metrics is the value of information (VoI), a decision-theoretic measure assessing how additional information can 

reduce costs for managing an uncertain system, with respect to how the system would be managed without this additional 

information
19

. In general, evaluation of the VoI is computationally expensive; however, prior work by the authors has 
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identified certain assumptions on the problem structure under which this metric can be tractably computed, even in larger 

systems
20

. These assumptions were then used by the authors, together with a vulnerability assessment of the city of 

Pittsburgh, Pennsylvania conducted by an author
21

, to define a decision-making problem for heat advisory issuance, with 

associated consequences. This decision-making problem was used to evaluate the VoI metric for temperature measurements 

in the city supporting heat advisory issuance, proposing an optimal set of temperature sensor placements
18

. 

This paper extends the results of these previous papers in three ways. First, the optimal sensor placement set of the 

previous work was developed under the assumption that accurate assessments of the average temperature in the city (obtained 

using a coarse resolution weather model) and assessments of the spatial temperature patterns in the city (obtained from fine 

resolution weather simulations) were available in addition to the measurements of the local weather stations. In general, this 

additional information may not be readily available. In this paper, we analyze how the VoI of the optimized sensing set is 

affected if these data are not available, or only partially available. Furthermore, another sensor placement set is proposed, 

optimized under the assumption that none of this additional information is available. 

Second, in previous work, the VoI of the measurements was assessed assuming there was no lead-time for the forecasting, 

i.e. that data available up to and including a certain time were used to guide the issuance of heat advisories at that time. 

However, in general, these advisories may be issued ahead of time, and therefore a certain lead-time must be considered for 

model forecasting. In this paper, various lead-times are considered, and the effect of the prediction lead time on the VoI of a 

set of measurements is investigated. 

Third, the metric of weighted prediction error is used in previous work as an alternative to the VoI metric for optimizing 

sensor placement. In this paper, the relationship between these two metrics is further investigated. The VoI for sensor 

placement sets optimized by the weighted prediction error metric is computed, and vice versa, in order to determine how well 

the computationally efficient weighted prediction error metric might be used to approximately optimize sensors for 

supporting a decision-making problem in the context of urban temperature prediction and heat advisory issuance. 

II. SUMMARY OF URBAN TEMPERATURE MODELING AND OPTIMAL MONITORING 

This section summarizes the results of previous work
17,18

 in developing a Gaussian process model for urban temperatures 

and making use of this model to optimize the placement of sensors for temperature monitoring and model updating. We 

denote by 𝑇(𝐱, 𝑡) the surface temperature in degrees Celsius at location 𝐱 and time 𝑡 within an urban area. This temperature is 

decomposed into three components as follows: 

𝑇(𝐱, 𝑡) = 𝑇0(𝑡) + 𝑇1(𝐱, 𝑡) + 𝑇′′(𝐱, 𝑡)  (1) 

where 𝑇0(𝑡) is the average temperature in the region at time 𝑡, 𝑇1(𝐱, 𝑡) represents the spatially and temporally varying pattern 

of temperature that recurs following a daily cycle, and 𝑇′′(𝐱, 𝑡)  is the temperature residual. In the context of urban 

temperatures, 𝑇0(𝑡) can be interpreted as the average city-wide surface temperature, and 𝑇1(𝐱, 𝑡) as the expected systematic 

difference in temperature between this average and the local temperature at a given time of day due to the UHI effect 

(although other recurring patterns at finer scales, not only those related to the UHI, will also be incorporated into this term). 

Based on fine resolution simulations of the historical temperature patterns of Pittsburgh, obtained using the National 

Center for Atmospheric Research’s Weather Research and Forecasting – Advanced Research model
22

 together with the 

Princeton Urban Canopy Model
13

, Gaussian process models are created and calibrated for each component of the temperature 

listed in Eq. (1). A Gaussian process model generalizes the multivariate Gaussian distribution to a continuous spatial and/or 

temporal domain, and for any finite set of coordinates within this domain, defines a multivariate Gaussian distribution over 

the variables associated with these coordinates for a spatio-temporal random field
23

. The Gaussian process model for 

temperature is denoted as: 

𝑇(𝐱, 𝑡) ~ 𝒢𝒫 (M𝑇(𝐱, 𝑡), K𝑇(𝐱𝑖, 𝑡𝑖 , 𝐱𝑗, 𝑡𝑗))  (2) 

where M𝑇(𝐱, 𝑡) is the mean function of spatio-temporal coordinate {𝐱, 𝑡} and K𝑇(𝐱𝑖, 𝑡𝑖 , 𝐱𝑗, 𝑡𝑗) is the covariance function of the 

pair of spatio-temporal coordinates {𝐱𝑖, 𝑡𝑖} and {𝐱𝑗, 𝑡𝑗}. As the sum of Gaussian processes is itself a Gaussian process, the 

models calibrated for each of the components of temperature are summed to define this overall model.  

For a finite spatial domain 𝑋 = {𝐱1, … , 𝐱𝑛𝑋
} and temporal domain 𝜏 = {𝑡1, … , 𝑡𝑛𝜏

}, this Gaussian process model defines a 

multivariate Gaussian distribution for 𝐓, the vector of temperatures at each space-time coordinate in the domain: 

𝐓 ~ 𝒩(𝛍𝑇 , 𝐊𝑇)   (3) 
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where 𝛍𝑇  is the mean vector and 𝐊𝑇  the covariance matrix of the distribution, obtained by evaluating the mean and 

covariance functions respectively over the spatial and temporal domain. This distribution constitutes the prior temperature 

forecasting model for the region in question. 

II.A. Measurements and Model Updating 

The prior model for temperature may be updated to a posterior model following measurements of the temperature field or 

any of its component parts. Three potential types of measurements are considered here. First, a measure of the average 

temperature over the domain at a certain time, i.e. a measure of 𝑇0(𝑡), is considered. This measurement is modeled as:  

𝑌𝑇0
(𝑡) =

1

𝑛𝑋
∑ 𝑇(𝐱, 𝑡)𝐱∈X + 𝜖𝑇0

(𝑡)  (4) 

That is, the measurement can be expressed as the average of the temperature field at time 𝑡 over the spatial domain, plus a 

Gaussian random error 𝜖𝑇0
(𝑡). This error is modeled as a Gaussian random variable at each time. These measurements can be 

interpreted as estimates of the regional average temperature, obtained from coarse resolution weather simulation models, such 

as those used by the National Weather Service for forecasting. The estimated quality of these forecasts, along with any 

systematic bias due to a difference in spatial domain between the coarse resolution model and the region being modeled with 

this Gaussian process method, can be accounted for through proper definition of the distribution on the Gaussian random 

error; the reader is referred elsewhere for further details
23,24

. 

Second, measurements of the cyclic temperature pattern, 𝑇1(𝐱, 𝑡), are possible. These measurements may be obtained, for 

example, from previous simulations of temperatures by fine resolution models for the region in question, such as the 

simulations used to calibrate the Gaussian process model of the temperature field
17

. Such measurements can be expressed as: 

𝑌𝑇1
(𝐱, 𝑡cycle) =

1

𝑛cycle
∑ [𝑇(𝐱, 𝑡) − 𝑇0(𝑡)]{𝑡: 𝑡 mod Δ𝑡=𝑡cycle}∈𝜏 + 𝜖𝑇1

(𝐱, 𝑡cycle)  (5) 

That is, these measurements are obtained by averaging over 𝑛cycle days, at a specific time 𝑡cycle within the diurnal cycle of 

Δ𝑡 = 24 hours, the differences of the temperature field and the spatial average of the temperature at this time. This is then an 

estimate from data of the average (over multiple diurnal cycles) difference between the temperature at location 𝐱 and the 

average (over space) temperature, at a given time of day, where 𝑛cycle is the number of days in the data. Due to the definition 

of the Gaussian process model for the cyclic temperature pattern
17

, it is assumed that there is no long-term change in these 

temperature patterns. However, in practice, simulation results will become outdated as changes in the urban area or 

surrounding land use affect the spatial distribution of temperatures
25

. Error in these estimates resulting from insufficient data 

or lack of recent simulation results can be accounted for with appropriate definition of Gaussian error 𝜖𝑇1
(𝐱, 𝑡cycle) in these 

pattern measurements.  

Third, local measurements of the temperature field can be incorporated as noisy measurements of 𝑇(𝐱, 𝑡): 

𝑌𝑇(𝐱, 𝑡) = 𝑇(𝐱, 𝑡) + 𝜖𝑇(𝐱, 𝑡)  (6) 

where 𝜖𝑇(𝐱, 𝑡) is the Gaussian noise associated with the measurement of temperature at this location and time. Such data are, 

for example, available from temperature gauges and weather stations, which provide estimates of the local temperature at 

their locations.  

All of the above measurements can be expressed as linear combinations of elements of the temperature field 𝑇(𝐱, 𝑡) 

together with the noise of the measurements themselves. Let 𝑌 denote a set of measurements of the forms described above, 

with vector 𝐲 as the values of these measurements. This vector is expressed as: 

𝐲 = 𝛃𝑌𝐓 + 𝛜 𝛜  ~  𝒩(𝛍𝜖 , 𝐊ϵ)  (7) 

where, through appropriate definition of matrix 𝛃𝑌  and of the distribution for 𝛜, any of the above measurements can be 

expressed and included in set 𝑌. Note that each measurement error is assumed to be Gaussian, therefore the joint distribution 

of these errors is a multivariate Gaussian. As a linear combination of Gaussians, the distribution for 𝐲 is itself a Gaussian, 

with mean 𝛍𝑌 = 𝛃𝑌𝛍𝑇 + 𝛍𝜖 and covariance 𝐊𝑌 = 𝛃𝑌𝐊𝑇𝛃𝑌
T + 𝐊ϵ. Conditional to such a measurement, the prior distribution 

of the temperature field is updated to a posterior distribution: 

𝐓|𝐲 ~ 𝒩(𝛍𝑇|𝒚, 𝐊𝑇|𝑌)  (8) 
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The posterior mean and covariance are: 

𝛍𝑇|𝐲 = 𝛍𝑇 + 𝐊𝑇𝑌𝐊𝑌
−1(𝐲 − 𝛍𝑌) 𝐊𝑇|𝑌 = 𝐊𝑇 − 𝐊𝑇𝑌𝐊𝑌

−1𝐊𝑇𝑌
T   (9) 

where 𝐊𝑇𝑌 = 𝐊𝑇𝛃𝑌
T. Note that 𝐊𝑇|𝑌 is a function of measurement set 𝑌 only, while 𝛍𝑇|𝐲 is a function of the measurements 𝐲 

as well. In this manner, any measurement of the field described above can be combined with the prior model to yield an 

updated posterior model of the temperature field conditioned on measurements 𝐲. 

II.B. Sensor Placement 

Using the prior model and updating procedure described, pre-posterior optimization of sensing can be performed. Such 

optimization allows a set 𝑌  of measures to be selected that will best improve the model predictions under a specified 

performance metric. Two such metrics are considered in this paper: the weighted prediction error and the VoI. 

The weighed prediction error metric is defined based on the expected square error of using the posterior mean of the 

model, updated with set of measurements 𝑌, as an estimate of the temperature field. In a Gaussian process model, this error is 

a function of the posterior covariance of the model only, and so can be evaluated efficiently
26

. A weight matrix 𝛀 is also 

used, such that the prediction errors might be weighted, in order to more heavily penalize incorrect prediction of temperatures 

in certain areas. The optimal set of measurements, by this metric, is the set which minimizes the expected weighted posterior 

prediction error
18

: 

𝑌WPE
∗ = argmin𝑌 tr(𝛀𝐊𝑇|𝑌𝛀T)  (10) 

where tr(⋅)  denotes the matrix trace. For the purposes of this paper, the weighting for this metric is defined using an analysis 

of the spatially varying vulnerability of populations in the city of Pittsburgh to extreme heat
21

. This choice of a weighting 

function is based on the reasoning that accurate prediction of temperatures is more important where populations are more 

vulnerable, and so prediction errors should be more heavily penalized by the metric in more vulnerable areas. 

A second metric used for optimizing senor placements is the VoI, which quantifies the benefits that additional 

information can provide in terms of reducing costs or losses in a decision-making problem in an uncertain environment
19

.  In 

the context of urban temperatures, an example decision-making problem is analyzed for the issuance of location-specific heat 

advisories; for location 𝐱 and time 𝑡, an action 𝐴(𝐱, 𝑡) is undertaken as to whether or not to issue an advisory. If no advisory 

is issued, and the local temperature exceeds an upper limit of 𝑇𝑙𝑖𝑚𝑖𝑡  (set to 30℃ in this problem), a penalty of 𝐶𝑓(𝐱) is 

incurred for that location, corresponding to the consequences of failing to warn the population to take necessary precautions. 

If, on the other hand, an advisory is issued, a cost of 𝐶𝑟(𝐱)  is incurred regardless of temperature; this reflects the 

consequences of the warning itself, in terms of costs for opening heat shelters, loss of productivity, increased energy usage, 

etc. These costs are calibrated using the same vulnerability analysis used for the weighed prediction error metric
21

, with costs 

𝐶𝑓(𝐱) assumed to be proportional to the vulnerability, and 𝐶𝑟(𝐱) selected arbitrarily to be half the maximum value of 𝐶𝑓(𝐱) 

for all locations. Based on this problem statement, the local loss function is: 

L𝐱,𝑡(𝑇(𝐱, 𝑡), 𝐴(𝐱, 𝑡)) = 𝐶𝑓(𝐱)𝕀[𝑇(𝐱, 𝑡)(1 − 𝐴(𝐱, 𝑡)) > 𝑇𝑙𝑖𝑚𝑖𝑡] + 𝐶𝑟(𝐱)𝐴(𝐱, 𝑡)   (11) 

where  𝕀[⋅] is the indicator function, taking on value 1 when its argument is true and 0 otherwise (it is assumed that issuing a 

heat advisory corresponds to 𝐴(𝐱, 𝑡) = 1, while not issuing one corresponds to 𝐴(𝐱, 𝑡) = 0).  

Based on this loss function, the VoI metric is defined as
18,19

: 

VoI(𝑌) = ∑ ∑ [min𝐴 𝔼𝑇L𝐱,𝑡(𝑇(𝐱, 𝑡), 𝐴(𝐱, 𝑡)) − 𝔼𝑌 min𝐴 𝔼𝑇|𝐲L𝐱,𝑡(𝑇(𝐱, 𝑡), 𝐴(𝐱, 𝑡))]𝐱∈𝑋𝑡∈𝜏    (12) 

where 𝔼𝑇  denotes the statistical expectation with respect to the temperature field, and 𝔼𝑌 the expectation with respect to 

measurements of the set 𝑌. Namely, the VoI is the sum, across space and time, of the difference in expected value of the loss 

when actions are taken without and with knowledge gained through the measurement set 𝑌. Under the assumption that the 

loss can be expressed locally, as in Eq. (11), this metric can be evaluated in a relatively efficient manner
27

. Under this metric, 

the optimal measurement set is that which maximizes the VoI minus the cost of acquiring that information, denoted C(𝑌): 

𝑌VoI
∗ = argmax𝑌 VoI(𝑌) − C(𝑌)  (13) 

The optimization problems of Eqs. (10, 13) are examples of combinatorial problems, which are generally intractable to 

solve exactly in all but the smallest systems, due to the exponential growth in the number of possible observation sets 𝑌 
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which must be evaluated
28

. Because of this, approximate heuristics for optimization are often used. In this work, where these 

optimization problems are solved, we make use of the greedy optimization algorithm, defined as building the optimal set of 

measurements one element at a time by, at each step of the algorithm, adding the measurement to the set which most 

improves the objective. In general, there are no guarantees on the performance of this approach; however for the weighted 

prediction error metric, the property of submodularity satisfied by this metric provides a guarantee that the solution obtained 

by greedy optimization will be at least 63% of the optimal solution value
26

. Furthermore, for the VoI metric, although no such 

guarantees exist, prior work suggests this algorithm performs well for the type of loss function considered here
27

. 

III. ANALYSIS AND RESULTS 

This section expands on previous results for the optimal placement of sensors to support temperature prediction and 

decision-making for the city of Pittsburgh
18

. First, a comparison is made between the VoI provided by sets of local sensors 

with and without information on the average regional temperature and cyclic temperature pattern. Second, the effect of 

prediction lead-times on VoI is investigated. Third, a comparison is made between the VoI and weighted prediction error 

metrics. For the purposes of the investigation, error terms in Eqs. (4, 5, 6) are assumed to be negligibly small (on the order of 

0.02°C) and independent for different times and locations, except in the case of Section III.B, where the standard deviation of 

the error term in Eq. (4) for predictions of the future regional average temperature is assumed to increase with the prediction 

lead time. 

III.A. Optimal Sensor Placement With and Without Additional Information 

An optimal set of sensor placements in Pittsburgh is proposed based on the VoI metric
18

. This set is optimized under the 

assumption that additional information on the average temperature and cyclic temperature patterns and the data collected 

from local sensors would be available to support decision-making. All of these data sources may not always be available. 

Therefore, in this paper a second sensor set is proposed, following optimization using the VoI metric under the same 

decision-making problem, but without the assumption of information on the average temperature or cyclic temperature 

patterns being available. 

We denote by 𝑌𝑇0
 measurements of the regional average temperature, as in Eq. (4), and we denote by 𝑌𝑇1

 measures of the 

cyclic temperature pattern, as in Eq. (5), from the training temperature data simulated for this region
17

. The set of local 

temperature measurements, as in Eq. (6), optimized following Eq. (13) under the assumption that both 𝑌𝑇0
 and  𝑌𝑇1

 are also 

available, is denoted as 𝑌𝑇,𝐴
∗ . The alternative local measurement set, optimized assuming no other information is available, is 

denoted as 𝑌𝑇,𝐵
∗ . Both of these sets are indicated in Fig. 1. Finally, for comparative purposes, we denote by 𝑌𝑇 the set of all 

local measurements, i.e. the set of measurements taken at each of the discrete spatial locations in 𝑋. The VoI provided by this 

set of measurements, together with measures of the regional average and cyclic pattern, constitute the set of all possible 

measurements considered in this work and thus denote the value of complete information, an upper limit to the VoI provided 

by any of the other sets considered here.  
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Fig. 1. Optimized locations of local temperature measurements in Pittsburgh, PA. 

 

For the various measurement sets, VoI is computed (as listed in the second column of Table 1) and compared with the 

value of complete information (listed in the third column). Note that an accurate prediction of the regional average 

temperature alone provides 82% of the value of complete information, indicating that even this information is quite valuable 

by itself in supporting decision-making. This is useful since such regional-averaged temperatures are easily obtainable from 

regular weather forecasts. A prior assessment of the cyclic temperature pattern provides no value by itself, but when 

combined with the regional average temperature provides 95% of the value of complete information. These cyclic 

temperature patterns, unlike regional-averaged temperatures, require fine-scale modeling for that particular city, and so are 

more difficult to obtain. 

As expected, 𝑌𝑇,𝐵
∗  slightly outperforms 𝑌𝑇,𝐴

∗  in the absence of additional information on the regional average temperature 

and cyclic temperature pattern. Note that the set of local measurements 𝑌𝑇,𝐴
∗  can still be used by itself, even though it was 

optimized under the assumption that additional information from 𝑌𝑇0
 and 𝑌𝑇1

would also be available. Because 𝑌𝑇,𝐴
∗  is not 

being used as intended in this case, its performance is suboptimal; however, the set {𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐴
∗ } outperforms {𝑌𝑇0

, 𝑌𝑇1
, 𝑌𝑇,𝐵

∗ } 

when the additional information from 𝑌𝑇0
 and 𝑌𝑇1

 is available. This is likely because some information gathered as part of 

𝑌𝑇,𝐵
∗  becomes redundant when measures 𝑌𝑇0

 and 𝑌𝑇1
 are also available. Note in Fig. 1 that the spatial spread of 𝑌𝑇,𝐵

∗  is greater 

than that of 𝑌𝑇,1
∗ . In the absence of data on the regional average temperature provided by 𝑌𝑇0

, this spread of local 

measurements allows for an estimate of this average which is more robust against local perturbations than the more tightly 

grouped measures of 𝑌𝑇,𝐴
∗ . Furthermore, in the absence of prior information on the temperature pattern provided by 𝑌𝑇1

, the 

spread of 𝑌𝑇,𝐵
∗  allows this pattern to be learned from local data. However, when 𝑌𝑇1

 is available, this learning is unnecessary. 

Note, however, that the VoI provided by both measurement sets is nearly the same; this suggests that the VoI metric is not 

very sensitive to the placements of local sensors under the assumptions made here in defining the heat advisory decision-

making problem for the city of Pittsburgh. 

It should also be noted that both 𝑌𝑇,𝐴
∗  and 𝑌𝑇,𝐵

∗  provide 96% of the value of complete information, even without 𝑌𝑇0
 and 

𝑌𝑇1
. When these additional measures are added, VoI only increases slightly (up to 97% of the value of complete information). 

This shows that, on the one hand, the prior model updated with only local information can account for cyclic temperature 
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patterns and regional temperature trends without direct measurements of these. On the other hand, the direct measurements 

(i.e. 𝑌𝑇0
 and  𝑌𝑇1

) together provide 95% of the value of complete information, without any local temperature measures. These 

results demonstrate that the value provided by local measurements alone is comparable to that provided by an accurate 

predictive model of the regional temperature combined with a prior fine resolution analysis of the region.  

 

TABLE  I. Comparative results for VoI and weighted prediction error of various measurement sets 

Measurement Set VoI Percentage of Complete Information Weighted Prediction Error [°C] 

{𝑌𝑇0
} 21.31 82% 1.94 

{𝑌𝑇1
} 0.00 0% 162.49 

{𝑌𝑇0
, 𝑌𝑇1

} 24.67 95% 0.71 

{𝑌𝑇,𝐴
∗ } 25.02 96% 0.85 

{𝑌𝑇,𝐵
∗ } 25.03 96% 0.67 

{𝑌𝑇0
, 𝑌𝑇,𝐴

∗ } 25.06 96% 0.80 

{𝑌𝑇0
, 𝑌𝑇,𝐵

∗ } 25.04 96% 0.66 

{𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐴
∗ } 25.27 97% 0.31 

{𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐵
∗ } 25.13 96% 0.26 

{𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇} 26.10 100% 0.07 

    

{𝑌𝑇,𝐸
∗ } 24.86 95% 0.54 

{𝑌𝑇0
, 𝑌𝑇,𝐸

∗ } 24.90 95% 0.53 

{𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐶
∗ } 24.91 95% 0.21 

 

III.B. Value of Information with Prediction Lead Time 

In the previous section, VoI is assessed for same-time temperature prediction and warning issuance. That is, decisions 

about heat advisory issuance are made using information collected up to and including the time of the advisory. If decisions 

are instead made ahead of time, using a certain lead time, predictions will be less accurate, and therefore provide a lower VoI. 

Fig. 2 displays results for how the VoI is affected by the prediction lead time, up to 48 hours. Values are shown for two 

measurement sets; the optimal set without additional information, {𝑌𝑇,𝐵
∗ } , and the optimal set including additional 

information, {𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐴
∗ }. Here, 𝑌𝑇0

 represents a forecast for the future average temperature, the standard error of which is 

assumed to increase linearly with the lead time, such that for 12 hours ahead, the standard deviation of 𝜖𝑇0
 in Eq. (4) is 1℃. 

 

Fig. 2. VoI versus prediction lead time for two measurement sets. 
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As expected, VoI tends to decrease with prediction lead time. For measurement set {𝑌𝑇0
, 𝑌𝑇1

, 𝑌𝑇,𝐴
∗ }, this decrease is 

gradual, as relatively accurate predictions of the regional average temperature are available to the model, even up to two days 

ahead. However, without this future forecasting information provided by 𝑌𝑇0
, the VoI for measurement set {𝑌𝑇,𝐵

∗ } decreases 

more rapidly with time, dropping below half its initial value at 2 hours ahead, and is about a fifth of its initial value at one 

day ahead. Interestingly, while there is a high degree of correlation between temperature values at 24 hour intervals, due to 

cyclic temperature patterns and the daily temperature cycle throughout the region, the VoI does not increase at 24 hours 

prediction lead time. This is likely because of the temperature variance due to the residual 𝑇′′(𝐱, 𝑡), which exhibits very low 

correlation at time differences greater than about 12 hour. These results indicate how important accurate regional temperature 

predictions can be to ahead-of-time decision-making, as the value provided by local temperature measurements alone decays 

rather quickly with time. 

III.C. Comparison of Value of Information and Weighted Prediction Error Metrics 

To compare the VoI metric with the less computationally intensive weighted prediction error metric, a set of sensors of 

the same size as 𝑌𝑇,𝐴
∗  or 𝑌𝑇,𝐵

∗  is optimized by this latter metric, and denoted 𝑌𝑇,𝐶
∗ . Note that, while the VoI metric can be traded 

off against sensing cost as in Eq. (13) to determine the optimal number of measurements to include, the weighted prediction 

error metric will only decrease as more measures are included, and cannot be readily traded off against cost. Therefore, the 

number of measures to include in the set is arbitrary (in reality, it would be dictated by the available funds and resources for 

deploying more sensors). This set is indicated in Fig. 3. 

 

Fig. 3. Local temperature measurement locations optimized by the weighted prediction error metric in Pittsburgh, PA. 

 

At the bottom of Table 1, the VoI for this set of measurements is listed, with and without additional information about the 

average temperature and cyclic temperature patterns. Additionally, the weighted prediction error metric is evaluated for these 

sets, and is listed in the last column of Table 1. This weighted prediction error metric is presented in units of degrees Celsius 

and represents the average (in space and time) of the root mean square error of the temperature prediction multiplied by the 

local vulnerability index
21

 (ranging from 1 to 6). In this way, prediction errors in more vulnerable areas are weighted more 

heavily when computing the average. 
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These results show that, even though sensor placements optimized using the weighted prediction error metric provide less 

VoI that those optimized using that metric directly, their value is still comparable, corresponding to 95% of the value of 

complete information. This further supports the supposition that the VoI metric is not very sensitive to sensor placements in 

the case investigated here. Furthermore, the spread in prediction error for different sensor placements is much greater than 

that of the VoI metric. For example, while the difference between values of information provided by measurements 𝑌𝑇,𝐴
∗  and 

𝑌𝑇,𝐶
∗  is 0.6% (of the higher value), the difference in the weighted prediction error between these sets is 37%. Overall, these 

results indicate that, while sensor placements optimized under the weighted prediction error metric also perform fairly well 

under the VoI metric, the reverse does not hold. However, as the weighted prediction error metric is the more 

computationally efficient of the two, this result provides some support for the use of this metric as a proxy for VoI in 

supporting sensor placement over large areas. 

IV. CONCLUSIONS 

This paper investigates the VoI provided by various temperature measurements in the city of Pittsburgh for supporting 

decision-making concerning the issuance of extreme heat advisories. Results of this analysis indicate that a relatively high 

VoI is provided by accurate forecasts of the regional average temperature alone.  However, strategically selected local 

measurements can also provide a comparably high VoI, even without additional information on the regional average 

temperature and cyclic temperature patterns. When decision-making is done ahead of the latest data collection, VoI decreases 

with increased lead times, and this decrease can be drastic if accurate predictions of the regional average temperature are not 

available. Finally, the VoI provided by measurements optimized by the computationally efficient weighted prediction error 

metric is comparable to that provided by measurements optimized by the VoI metric directly. It should be noted, however, 

that all these results have been obtained for the analysis of the single urban area of Pittsburgh, under certain assumptions on 

the structure of the heat advisory decision-making problem considered, and may not generalize to other urban areas. 

Characteristics of certain urban areas, such as higher heterogeneity in temperatures and/or vulnerability of the population, 

may make the VoI in these areas more sensitive to different sources of information or to the placement of sensors for local 

temperature measurement.  
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