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In this paper, a novel framework is proposed, which allows us to systematically estimate HEPs (Human Error 

Probabilities) from the operational experience of domestic NPPs (Nuclear Power Plants). In addition, the feasibility of the 

proposed framework is investigated through several case studies based on the unexpected reactor trip events of domestic 

NPPs, which are caused by diverse human errors. As a result, it is expected that the proposed framework could be useful for 

estimating more realistic HEPs compared to those from simulated environments being collected from a full-scope training 

simulator.  

 

 

I. INTRODUCTION 

 

One of the working definitions on a socio-technical system refers to it as a system that requires the interaction between 

society's complex infrastructures and human behaviors in diverse workplaces. In this regard, it can be said that typical socio-

technical systems include NPPs (nuclear power plants), chemical/petro-chemical plants, railway systems, land transportation 

systems, and maritime transportation systems. For example, it is evident that an aviation industry belongs to the socio-

technical system because the operation of commercial airplanes requires intensive interactions between infrastructures (e.g., 

airports, air traffic control centers, and airplanes) and stakeholders (e.g., airport managers, air traffic controllers, and cockpit 

pilots). This means that one of the critical factors affecting the operational risk of socio-technical systems is the reliability of 

operating personnel who are actually running it. Therefore, it is unavoidable that the effect of operating personnel on the risk 

of socio-technical systems should be properly incorporated during its assessment. For this reason, a PSA (Probabilistic Safety 

Assessment) or PRA (Probabilistic Risk Assessment), which has been widely used for several decades, considers a diverse 

spectrum of human actions for quantifying the operational risk of NPPs. To this end, various kinds of HRA (Human 

Reliability Analysis) techniques were developed based on HRA data including not only HEPs (Human Error Probabilities) 

but also other information including the effect of error-forcing contexts (e.g., PSFs; Performance Shaping Factors or PIFs; 

Performance Influencing Factors) on the associated HEPs should be available to HRA practitioners. 

In this light, many researchers have spent huge amounts of effort in providing HRA data to HRA practitioners, of which 

the contents are collected from several sources of information such as (1) operational experience data based on event reports 

(e.g., maintenance reports, periodic test reports, near miss reports, and incident reports), (2) full-scope training simulators, (3) 

laboratory experiments based on partial-scope simulators or mockups, (4) expert judgments, and (5) interviews with subject 

matter experts [1-3]. However, since most initiating events being considered in the PSA have an extremely rare frequency, it 

is unrealistic to obtain sufficient HRA data from other information sources except full-scope training simulators [4-6]. 

Nevertheless, it is also true that HRA data obtained from the operational experience of NPPs are needed in parallel with those 

from full-scope training simulators. This is because the use of full-scope training simulators is an alternative solution to 

resolving a difficulty in extracting HRA data from operational experience data. In other words, if reliable operational 

experience data (e.g., near miss or incident reports) are sufficient, it is possible to secure more realistic HRA data reflecting 

actual working environments. 

In order to address this issue, in this paper, a novel framework is proposed, which allows us to systematically estimate 

HEPs from the operational experience of domestic NPPs. In addition, the feasibility of the proposed framework is 

investigated through several case studies based on the unexpected reactor trip events of domestic NPPs, which are caused by 
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diverse human errors. As a result, it is expected that the proposed framework could be useful for estimating more realistic 

HEPs compared to those from simulated environments. 

 

II. FULL-SCOPE TRAINING SIMULATOR AND OPERATIONAL EXPERIENCE AS HRA DATA SOURCES 

 

As briefly stated in the previous section, HRA practitioners need to have sufficient amount of HRA data that allow them 

to soundly estimate HEPs after understanding the characteristics of human errors. In this regard, Table I shows pros and cons 

in extracting HRA data from two kinds of representative information sources: operational experience (e.g., event reports) and 

a full-scope training simulator. 

 

TABLE I. Comparing pros and cons in extracting HRA data from event reports and full-scope training simulators; 

reproduced from Ref. [7] 

Data source Pros Cons 

Event reports  Enable to secure more realistic HRA 

data reflecting a real task environment 

 Free from the fidelity problem 

 Enable to obtain HRA data pertaining to 

routine tasks 

 Not easy to extract sufficient HRA data  

 Need a careful translation due to uneven contents 

and descriptions  

 Difficult to understand task contexts resulting in a 

human error 

Full-scope 

training 

simulators 

 Enable to simulate rare events  

 Enable to observe the variation of 

human performance with respect to 

diverse task contexts 

 Require a huge amount of resources (e.g., budget) 

 Not easy to secure sufficient times for using a 

training simulator  

 Need to consider the validity of simulation results 

 

As can be seen from Table I, full-scope simulators provide distinctive advantages in collecting HRA data, such as 

observing the variation of human performance with respect to diverse task contexts, which is usually not identifiable and/or 

accessible from event reports. Nevertheless, the collection of HRA data from event reports is very important because of at 

least two reasons. The first one is the reality (or fidelity) of HRA data. That is, from the point of view of supporting HRA 

practitioners, event reports seem to be more attractive because they tell us the actual responses of human operators who were 

faced with real events. Although the results of existing studies suggest that the overall tendencies of human behaviors as 

observed from simulated conditions are comparable to those from real conditions [8, 9], it is still evident that HRA data 

available from the analysis of event reports could be more realistic than those from full-scope training simulators. 

Another reason is that the event reports are still valuable source for collecting HRA data for routine tasks being 

conducted in a normal operating condition (e.g., periodic tests or calibrations). For example, the IAEA specified three kinds 

of task types that are needed to be emphasized from the PRA perspective [10]. They are (1) Type A tasks representing a 

maintenance and/or testing that can degrade the availability of a given system, (2) Type B tasks pertaining to the direct 

triggering of initiating events (e.g., an unexpected reactor trip caused by a periodic test), and (3) Type C tasks specifying 

crucial human actions for responding DBAs (Design Basis Accidents), which are usually prescribed in AOPs (Abnormal 

Operating Procedures) and EOPs (Emergency Operating Procedures). Unfortunately, since most full-scope training 

simulators are not able to be used for collecting HRA data for Types A and B tasks, the analysis of event reports is crucial for 

securing HRA data. From the above-mentioned reasons, it is very interesting to point out that the coverage of HRA data 

collection seems to be clearly distinguished as depicted in Fig. 1. 

 

 
Fig. 1. Current HRA data collection practices; adopted from Ref. [7]  

 

Under the current HRA data collection practice, it is very seldom to have HRA data pertaining to Type C tasks, which 

are extracted from event reports. This may imply that, from the point of view of HRA practitioners, this situation could 

become a source of uncertainties for estimating reliable HEPs. In other words, it would be careful for HRA practitioners to 
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directly use HRA data collection from full-scope training simulators because they are not able to make sure their fidelity 

compared to real situations. In this regard, as shown in Fig. 2, it will be very helpful to unravel this problem if we are able to 

collect HRA data for Type C tasks. In other words, if there is a framework that allows us to crop the HEPs of Type C tasks 

from event reports, it is possible to give more reasonable guidelines to HRA practitioners in using HRA data extracted from 

full-scope training simulators. For this reason, a novel framework is proposed in this study. 

 

 
Fig. 2. Bridge between two kinds of HRA data sources, adopted from Ref. [7]  

 

III. FRAMEWORK TO ESTIMATE AN HEP FROM THE REVIEW OF EVENT REPORTS 

 

The definition of a probability is “how likely it is that something will happen [11].” In terms of an HEP, therefore, it is 

very straightforward to use Eq. (1) to quantify it. 

 

     
  

  

                 

Here,      means the HEP of the     task. In addition,    and    denote the number of human errors observed and the 

number of trials for the performance of the     task (i.e., a demand of the     task). Actually, this formula is the direct 

reflection of a traditional assumption such that human operators will show similar HEPs if they have to accomplish identical 

tasks under a specific task environment [12, 13]. This implies that HEPs can be soundly estimated if the demand of a task can 

be counted in a systematic manner. In this regard, Table II shows an example about how to calculate an HEP from the review 

of event reports. 

 

TABLE II. Calculating an HEP from event reports; reproduced from Ref. [14]  

Information content Description from an event report 

Error description During an in-cave operation to load active material into waste flasks, 

a piece of highly active waste was places in the wrong flask. 

Operating history 4 years 

Task frequency 20 loading tasks were carried out per a week; 

Loading tasks have been done for 26 weeks per a year. 

 

As can be seen from Table II, an event report issued from a nuclear reprocessing facility described that a human error 

was observed during an in-cave operation because a human operator put radioactive materials into a wrong flask (e.g., a 

wrong flask selection). Accordingly, it is evident that   is 1. In addition, the operation history revealed that the task demand 

of a waste flask loading (i.e.,   ) is 2,080 because of: 20 (loading tasks/week)   26 (weeks/year)   4 (years). Therefore, the 

HEP of the wrong flask selection becomes 4.81E-4 (=1/2080). This means that there are two kinds of key challenges in 

calculating HEPs from event reports: (1) specifying the catalog of generic task types applicable to the analysis of event 

reports, and (2) determining the task demand of a given generic task type.  

 

III.A. Generic task types 

The first challenge is to develop the catalog of generic task types that can be used to properly distinguish the nature of a 

task to be carried out by human operators. To this end, task types and the associated human error modes proposed in Ref. [15] 

are adopted in this study (Table III). As can be seen from Table III, in total 23 task types belonging to 7 cognitive activities 

are summarized with the associated human error modes, such as EOO (Error of Omission) and EOC (Error of Commission). 

It is to be noted that an EOC can be subdivided into detailed categories including WDEV (Wrong Device selection), WDIR 

(Wrong Direction), and WQNT (Wrong Quantity), if necessary. That is, the WDEV and WDIR represent human errors 

caused by selecting a wrong device and selecting an inappropriate control direction, respectively. In addition, the WQNT 

denotes a situation when human operators put a wrong control input to a control device even if these selection were correct 

(e.g., adjust the openness of a valve to 20% instead of a full close position).  
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TABLE III. Generic Task types and the associated human error modes; modified from Ref. [15] 

Cognitive activity Task type Error mode 

Information gathering and 

reporting – checking discrete 

state 

Verifying alarm occurrence EOO, EOC 

Verifying state of indicator EOO, EOC 

Synthetically verifying information EOO, EOC 

Information gathering and 

reporting – measuring 

parameter  

Reading simple value EOO, EOC 

Comparing parameter EOO, EOC 

Comparing in graph constraint EOO, EOC 

Comparing for abnormality EOO, EOC 

Evaluating trend EOO, EOC 

Response planning and 

instruction  

Entering step in procedure EOO 

Transferring procedure EOO, EOC 

Transferring step in procedure EOO, EOC 

Directing information gathering EOO, EOC 

Directing manipulation EOO, EOC 

Directing notification EOO, EOC 

Situation interpreting without 

explicit guide of document 

Diagnosing EOO, EOC 

Identifying overall status EOO, EOC 

Predicting EOO, EOC 

Action – manipulation Manipulating simple (push button) control EOO, EOC (WDEV, WDIR) 

Manipulating simple (rotary) control EOO, EOC (WDEV, WDIR, WQNT) 

Manipulating dynamically EOO, EOC (WDEV, WDIR, WQNT) 

Action – notifying/requesting to 

the outside of the MCR 

Notifying to external agent EOO, EOC 

Other Unauthorized control – unguided response 

planning and instruction 

EOC 

Unauthorized control – unguided 

manipulation 

EOC 

 

III.B. Task demand 

Once the type of a task being related to the human error of a given event report is identified, the next step is to determine 

the number of trials for a given task type (i.e., task demand). To this end, it is necessary to consider two kinds of 

opportunities, such as a procedure opportunity and task opportunity. That is, in the case of Type C tasks, human operators 

have to carry out a series of tasks to cope with off-normal conditions in a timely manner. However, since the off-normal 

conditions can be caused by diverse failures (e.g., signal or component failures) and DBAs (Design Basis Accidents), human 

operators are apt to feel a significant workload in conducting required tasks. For this reason, most Type C tasks are prescribed 

in various kinds of procedures, such as AOPs and EOPs. This means that the determination of a task demand for a specific 

task type should start from how many times a procedure that contains it. For example, let us assume that a human error has 

occurred in verifying the initiation of an Alarm A that is included in an AOP1. According to Table III, the type of this task is 

„Verifying alarm occurrence,‟ and its error mode is EOO. In this case, the task demand of „Verifying alarm occurrence‟ can 

be estimated through multiplying the number of previous successes in conducting AOP1 without any human errors by the 

number of identical task types involved in the AOP1. More detailed explanations in calculating task demands for Type C tasks 

can be found from Ref. [7]. 

 

IV. CASE STUDY 

In order to investigate the applicability of the proposed framework, event reports being archived in NEED (Nuclear 

Event Evaluation Database) are reviewed in detail. NEED is one of the working databases operated by the nuclear regulatory 

body of Republic of Korea (KINS; Korea Institute of Nuclear Safety). NEED aims to provide valuable information that can 

be used to prevent the recurrence of similar incidents in NPPs [16]. From this purpose, when a safety significant incident has 

occurred, the KINS creates a special inspection team comprised of several subject matter experts along with the nature and 

importance of the incident. The primary role of the special inspection team is to identify the underlying causes of the incident, 

from which remedial actions (or countermeasures) for preventing the recurrence of similar incidents can be effectively 

suppressed. Since 2002, when an investigation is completed, the KINS has uploaded all kinds of investigation results to 

NEED, which is connected to the Internet. Thus, anyone can access detailed investigation results including the name of 



13
th

 International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org  

 

5 

investigators, the initiation and progression of an incident, and the catalog of remedial actions being proposed by the 

investigators. 

Here, it is very important to point out that NEED contains detailed event reports that could be used to estimate the task 

demand of a Type C task. In this vein, in total 193 incidents that have occurred in the period from January of 2002 to 

December of 2013 are reviewed. As a preliminary result, it is identified that ten human errors have occurred during the 

performance of Type C tasks. Table IV summarizes the characteristics of the human errors with respect to the associated task 

types and error modes.  

 

TABLE IV. Human errors identified during the performance of Type C tasks 

ID Task type Error mode 

1 Manipulating dynamically  EOC (WDEV) 

2 Manipulating dynamically  EOC (WQNT) 

3 Manipulating dynamically EOC (WQNT) 

4 Manipulating simple (discrete) control  EOC (WDIR) 

5 Manipulating simple (discrete) control  EOC (WQNT) 

6 Manipulating simple (discrete) control  EOO 

7 Unguided manipulation EOC 

8 Unguided manipulation;  EOC 

9 Unguided response planning and instruction EOC 

10 Unguided response planning and instruction EOC 

 

For example, according to NEED, a significant incident happened in Hanul Unit 4 in October 10, 2003, which was 

initiated by the abnormal event of Turbine generator trip [16]. Unfortunately, human operators working in the main control 

room (MCR) failed to properly control the feedwater flow of steam generators (SGs), which is one of the required tasks 

institutionalized in an AOP to be carried out under the situation of the Turbine generator trip. As a result, from this event 

report, it is possible to say that an EOC has occurred in the course of conducting a proceduralized task belonging to the 

category of Manipulating dynamically. In addition, the total number of task demands for Manipulating dynamically can be 

counted along with the proposed framework. As a result, Table V shows a part of preliminary HEPs for Type C tasks 

estimated from the analysis of domestic event reports. It is to be noted that the HEPs of EOOs and EOCs imply their 95 

percentile calculated by Bayesian update technique with Jeffery‟s non-informative prior for Beta distribution. 

 

TABLE V. A part of preliminary HEPs for Type C tasks estimated from domestic event reports 

Subtask type Task demand (                                  
Verifying alarm occurrence 195 0 0 9.900E-03 9.900E-03 

Verifying state of indicator 3598 0 0 6.001E-04 6.001E-04 

Comparing parameter 674 0 0 2.900E-03 2.900E-03 

Evaluating trend 316 0 0 6.101E-03 6.101E-03 

Entering step in procedure 713 0 0 2.800E-03 2.800E-03 

Manipulating simple (discrete) control 1034 1 2 3.700E-03 5.301E-03 

Manipulating dynamically 35 0 3 5.371E-02 1.883E-01 

 

V. DISCUSSION AND CONCLUSION 

 

It is evident that the contribution of human errors to the safety of socio-technical systems is very critical. For this reason, 

it is important for HRA practitioners to provide reliable HRA data including HEPs. Although a full-scope simulator can be 

used to collect valuable HRA data, it is still necessary to extract HRA data from the review of operational experience. If so, it 

is possible to expect several benefits, such as the use of HRA data gathered from the operational experience of domestic 

NPPs as reference information to clarify the appropriateness of those collected from full-scope simulators. 

It is true that the framework explained in this study still has several limitations. For example, as can be seen from Table 

IV, four human errors related to the category of the unauthorized control are identified from the analysis of event reports. 

This implies that human operators carried out inappropriate actions that are not prescribed in procedures (e.g., AOPs or 

EOPs). Unfortunately, in the case of the unauthorized control, it is not possible to determine the associated task demand 

because of its nature (i.e., unauthorized controls can happen whenever human operators want to do something based on their 

own decisions). Accordingly, it is necessary to come up with alternative solutions such as considering the occurrence rate of 

unauthorized controls (e.g., 2.00E-4/hr). 
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However, it is strongly anticipated that the uncertainty in determining the annual frequency of an abnormal event could 

become tolerable if we are able to use a reliable component failure database. In addition, the comparison of two kinds of 

HEPs, one from operational experience data and the other from full-scope simulators, could become a good source of 

information that allows us to clarify how to use simulator-based HRA data for conducting a practical HRA. From this 

perspective, the results of this study seem to be meaningful because they could be a technical basis for securing more reliable 

HEPs from event reports. 
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