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        The conventional method for treating epistemic uncertainty within a probabilistic model is to assign probability 
distributions to the uncertain parameters that express relative belief about the true state of the world. However, there are 
objections to the use of probability distributions in this way, including arguments that there are situations where there is not 
enough information to choose a distribution, and that a formalism that requires a distribution has the undesirable 
characteristic of forcing unwarranted assumptions into the analysis. This study explores some of the implications of 
characterizing some epistemic uncertainties as intervals, rather than as distributions, within an otherwise distribution-based 
model. It focuses on implications for decision making, looking into what an interval characterization means in terms of 
meaningful decision rules that can be brought to bear when selecting from different options. 
 

The probabilistic model used in this analysis is the ascent phase of a space launch vehicle with abort capability, where 
the mean abort lead time is epistemically uncertain over a specified interval. The decision used for this study is that of 
integrated vehicle health monitoring system selection, where the choice is between two options: Option A, which has a 
relatively low false positive error rate but is believed to provide relatively short abort lead times, leading to lower abort 
effectiveness given launch vehicle failure; and Option B, which has a relatively high false positive error rate but is believed 
to provide longer abort lead times and higher abort effectiveness. 

 
 The interval characterization of mean abort lead time propagates into the analysis, resulting in interval 
characterizations of key quantities of interest to decision makers, such as expected utility and value of perfect information. In 
cases where intervals overlap, rational decision making is thwarted by the inability to unambiguously rank options, i.e., in 
terms of their expected utilities. 
 
 Intervals used to characterize parameter uncertainty propagate into the statistical quantities that underpin rational 
decision making, necessitating the use of alternative decision rules. One such decision rule, which is consistent with a risk-
averse attitude, is to select the option for which the minimum possible expected utility is highest. Such a maximin decision 
rule focuses on minimizing the potential downside of a decision, without regard for the magnitude of the potential upside. 
The maximin rule may be most appropriate when striving to achieve some threshold utility, such as when some threshold 
level of performance is required of a system, so long as the minimum performance exceeds the required level. Other decision 
rules are possible, and can lead to different decisions. A decision rule that reflects a risk-seeking attitude might be to select 
the option with the highest maximum possible expected utility.  
 

 
I. INTRODUCTION 

 
 The conventional method for treating epistemic uncertainty within a probabilistic model is to assign probability 
distributions to the uncertain parameters that express relative belief about the true state of the world. However, there are 
objections to the use of probability distributions in this way, including arguments that there are situations where there is not 
enough information to choose a distribution, and that a formalism that requires a distribution has the undesirable 
characteristic of forcing unwarranted assumptions into the analysis. One such situation is the choice of a prior distribution to 
express belief about something for which there is not much hard evidence, in which case the analysis can potentially be 
sensitive to highly subjective opinions that can vary from one individual to another. The use of so-called non-informative 
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priors is often used to minimize the introduction of unwarranted assumptions, but even so there are issues, as discussed in 
Guarro1. 
 
 Ferson2 discusses a number of methods for addressing epistemic uncertainty in modeling, beyond the use of probability 
distributions. In particular, he discusses methods that involve characterizing epistemic uncertainty using intervals, in which 
statements are made concerning the minimum and maximum credible values of an epistemically uncertain parameter, but 
nothing is said about the relative probability that the true value of the parameter is at any particular location within the 
interval. 
 
 This study explores some of the implications of characterizing some epistemic uncertainties as intervals within an 
otherwise distribution-based model. It focuses on implications for decision making, looking into what an interval 
characterization means in terms of meaningful decision rules that can be brought to bear to select among different options. It 
also takes an initial look at how the concept of value of information (VOI) might be applied to a model that contains interval-
characterized epistemic uncertainties. 

 
II. THE MODEL 
 
 The probabilistic model used in this analysis is the ascent phase of a space launch vehicle (LV) with abort capability, 
where there is the possibility of LV failure resulting in loss of mission (LOM) if the abort is successful and loss of crew 
(LOC) if the abort fails.* Additionally, the abort system might mistakenly register LV failure (i.e., a false positive), in which 
case an abort is initiated from an otherwise functional LV, leading to LOM if the abort is successful and LOC if it is not. 
Figure 1 illustrates the situation in event tree form, showing the various paths leading to the three possible end states of LOC, 
LOM, and OK. 
 

 
 

Fig. 1. LV Ascent Event Tree 

 The probabilities of LOC, LOM, and OK are: 
 

   P(LOC) = PFP* PAF_F + (1 - PFP) * PLVF * PAF_T   (1) 
 
   P(LOM) = PFP * (1 – PAF_F) + (1 – PFP) * PLVF * (1 – PAF_T)  (2) 
 
   P(OK) = (1 – PFP) * (1 – PLVF)     (3) 
 

 where: 

   PLVF = Probability of LV failure  
   PAF_T = Probability of abort failure conditional on LV failure 
   PFP = Probability of false positive LV failure indication 
   PAF_F = Probability of abort failure conditional on a false positive LV failure indication 

                                                             
* LOC includes LOM in this analysis. 
† However, for abort lead times that exceed the nominal 3.0 second burn time of the abort motor, it is possible that a still-



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 
2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

3 

 
 The probability of LV failure, PLVF, was chosen equal to 0.003, which is considered to be in the range of ascent failure 
probabilities that have been calculated in recent years for human-rated LVs, such as those calculated in3. 
 
 To calculate abort failure probabilities PAF_T and PAF_F, the Dynamic Abort Risk Evaluator (DARE)4 was used. DARE 
models abort failure probability conditional on the occurrence of any of a number of user-selectable LV failure modes 
occurring at a user-specified time into ascent. For this analysis, DARE was modified to generically model abort failure 
probability given generic LV failure (which includes the potential for catastrophic LV failure and the resulting blast 
overpressure and fragmentation). In the case of a false positive, DARE was run using a failure mode with a benign abort 
environment (i.e., no overpressure or LV fragmentation). 
 
 In order to provide a quantitative basis for decision-making, utilities were defined for each of the three possible 
outcomes: a utility of one was assigned to OK; a utility of zero was assigned to LOC; and a utility of 0.9 was assigned to 
LOM. The basis for the OK and LOC utilities is convention – the range of utilities spans the interval [0, 1]. The LOM utility 
was chosen as 0.9 to reflect the value that it is much worse to lose the crew (and mission) than it is to lose the mission alone. 
Classical decision theory holds that the best decision is that which maximizes expected utility, E[U]. In the event tree of 
Figure 1, 
 

   E[U] = 1*P(OK) + 0.9*P(LOM) + 0*P(LOC) = P(OK) + 0.9*P(LOM) (4) 
 

III. THE DECISION 
 
 In DARE, one of the driving factors of abort effectiveness is abort lead time, i.e., the time interval between abort 
initiation and the production of any adverse abort environment by the failing launch vehicle. A longer lead time typically 
results in a greater distance between the crew vehicle and the point of origin of any blast wave or fragmentation cloud, 
thereby reducing any overpressure stress on the crew vehicle, as well as the probability that the crew vehicle will be hit by a 
launch vehicle fragment, leading to increased overall abort effectiveness.† 
 
 The decision used for this study is that of integrated vehicle health monitoring (IVHM) system selection, where the 
choice is between two options: 
 

• Option A, which has a relatively low false positive error rate (PFP = 0.001) but is believed to provide relatively short 
abort lead times, leading to lower abort effectiveness given launch vehicle failure; and 
 

• Option B, which has a relatively high false positive error rate (PFP = 0.01) but is believed to provide longer abort 
lead times and higher abort effectiveness. 

 
 As configured for this study, DARE models abort lead time as a random variable that varies uniformly over the interval 
[µALT – (ln( µALT + 1 ))/2, µALT + (ln( µALT + 1 ))/2], where the mean abort lead time µALT is epistemically uncertain over the 
interval [µMIN, µMAX]. In other words, abort lead time uncertainty has both an aleatory and epistemic component, with abort 
lead time varying uniformly from trial to trial around some unknown mean value, µALT, that is believed to lie somewhere 
between zero and a user-specified upper bound, µMAX. Figure 2 illustrates the situation. Option A was assumed to have a µALT 
range of [0s, 3s], whereas Option B was assumed to have a µALT range of [1s, 4s]. 

 
IV. THE ANALYSIS 
 
 Figure 3 shows graphs of E[U] over the ranges of possible values of µALT for Options A and B. DARE nominally treats 
µALT as being uniformly distributed between µMIN and µMAX. To investigate the implications of introducing an interval 
characterization of uncertainty into an otherwise distribution-based model, the distribution for µALT was substituted by an 
interval, with no commitments concerning where µALT is likely to lie within the interval. Calculations of E[U] were made for 
both the wholly distribution-based nominal ascent model, as well as for the modified model where µALT is treated as an 
interval, and the role of the results to support decision-making is discussed. 
 
                                                             
† However, for abort lead times that exceed the nominal 3.0 second burn time of the abort motor, it is possible that a still-
accelerating LV can close the gap between the LV and the aborting crew vehicle, increasing the probability of abort failure. 
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Fig. 2. Abort Lead Time Determination 
 
 

 
 

Fig. 3. E[U] vs. µALT for Options A and B 
 

 
IV.A. Modeling µALT as a Uniform Distribution 

 
 The case where µALT is modeled as a uniform distribution is consistent with a conventional treatment of epistemic 
uncertainty in probabilistic analysis. Distributions for PAF can be calculated that incorporate all the epistemic uncertainties in 
the abort model, including abort lead time uncertainty, as shown in Figure 4 for PAF_T. 
 
More importantly, the full ascent model can be used to calculate point values for E[U] for each of the two options. As 
mentioned previously, classical decision theory holds that the best decision is that which maximizes E[U]. The results are 
shown in Figure 5. The points labeled “Mean” are the values for E[U] for Options A and B, respectively. The fact that E[U] 
is greater for Option B than for Option A means that Option B is the better decision, given the current state of knowledge.‡,§ 
                                                             
‡ This study does not make any distinction between “risk-based” decision-making, in which the results of a risk analysis are 
used directly to make a decision, versus “risk-informed” decision-making where risk analysis are but one input to a 
subjective, deliberative decision-making process. 
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Fig. 4. PAF_T Distributions for Uniformly Distributed µALT 

 
  

 
 

Fig. 5. E[U] for Options A and B in the Case of Uniformly Distributed µALT 
 
 The error bars in Figure 5 show the variation of E[U] over the distribution for µALT. In other words, for each option, the 
bars show, with 90% confidence, the range within which E[U] would be calculated if µALT were known with certainty. The 
considerable overlap of these ranges between the two options suggests that although selecting Option B is a rational choice 
given current knowledge, it is not a robust choice, and it might be advantageous to obtain more information about µALT in 
order to reduce the overlap and the associated probability that Option A is actually the better choice. 
 
 Accordingly, some investigation is made into the value of obtaining additional information about mean abort lead time 
prior to selection of IVHM system. Specifically, this analysis investigates the value of perfect information (VOPI), i.e., the 
value, in terms of expected utility, of knowing with certainty what the expected lead times are for the two options.** The 
situation is shown graphically in Figure 6. In the figure, the curves of Figure 3 have been projected over the µALT_A - µALT_B 
plane to create two intersecting surfaces. It can be seen that there are regions over the µALT_A - µALT_B where which Option B 
has the higher expected utility, and regions where Option A has the higher expected utility. If the joint distribution f(µALT_A, 
µALT_B) has mass over both these regions then the decision is not completely robust. Specifically, the decision to select Option 
B might yield an inferior system, if the true values of µALT_A and µALT_B are on the right-hand side of the domain, e.g., at 2.5s 
and 0.5s, respectively. 

                                                                                                                                                                                                                   
§ The relatively small difference (~2%) between the minimum and maximum utilities on this graph is somewhat misleading. 
Because the consequences of failure (i.e., LOC, LOM) are so dire, there is a high desire to avoid these outcomes and even 
small probabilities are keenly felt. As such, the situation might be best appreciated in terms of disutility, i.e., 1 minus utility, 
which in this case varies by a factor of three along the vertical axis. 
** This study does not concern itself with the value of imperfect information, nor with the cost of obtaining additional 
information, perfect or otherwise.	
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Fig. 6. The "VOPI Surface" 
 
 Given perfect information about µALT_A and µALT_B, it would be possible to use Figure 6 to pick the option with the 
highest value of E[U] above the point (µALT_A ,µALT_B). We define the “VOPI surface” to consist of all such values of E[U], 
i.e., it is the outlined upper surface of the figure, which is a composite of the A and B surfaces. The value of perfect 
information about µALT_A and µALT_B is therefore the difference between the expected utility of the VOPI surface and the 
expected utility of the Option B surface: 
 

   VOPI = E[U]VOPI Surface – E[U]Option B Surface 
   = ∫∫ dµALT_A dµALT_B {E[U]VOPI Surface(µALT_A, µALT_B) 
   – E[U]Option B Surface(µALT_A, µALT_B)} f(µALT_A, µALT_B)   (5) 

 
 If this value exceeds the cost of obtaining the information, then the rational decision is to defer IVHM selection until 
after the information has been obtained, at which point a perfectly robust decision can be taken. 

 
IV.B. Modeling µALT as an Interval 

 
 Under an interval characterization of µALT, the preceding analysis can be mirrored but the implications for decision-
making are altered. Without probability distributions for µALT_A and µALT_B (or, more accurately, without a joint distribution 
f(µALT_A, µALT_B)), E[U] cannot be calculated and there is not necessarily a rational basis for decision-making. 
 
 Figure 7 shows abort failure probability results for Options A and B, analogous to Figure 4 above, but now expressed as 
probability boxes (p-boxes) rather than probability distributions. These p-boxes admit the possibility of any monotonically 
increasing probability distribution spanning a confidence from zero to one that fits within the box, which is equivalent to 
admitting the possibility of any distribution for µALT that fits within the interval [0, µMAX]. Similarly, an expected utility 
treatment of the options is possible, but each option can only be characterized as an interval over E[U], rather than a single 
value. Thus, the analogue of Figure 5 is Figure 8. 
 
 The most significant consequence of an interval characterization of E[U] is that it is insufficient for optimal decision, i.e., 
neither option maximizes E[U]. Instead, a different decision rule must be found. One such decision rule, which is consistent 
with a risk-averse attitude, is to select the option for which the minimum possible expected utility is highest. Such a maximin 
decision rule focuses on minimizing the potential downside of a decision, without regard for the magnitude of the potential 
upside. The maximin rule may be most appropriate when striving to achieve some threshold utility, such as when some 
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threshold level of performance is required of a system, so long as the minimum performance exceeds the required level. 
Other decision rules are possible, and can lead to different decisions. A decision rule that reflects a risk-seeking attitude 
might be to select the option with the highest maximum possible expected utility. It just so happens that Option B would be 
selected under both of these rules, but if Option B had the smaller maximum E[U] then Option A would be selected under the 
aforementioned risk-seeking decision rule. 
 

 
Fig. 7. PAF_T P-Boxes for Interval-Characterized µALT 

 
  

 
 

Fig. 8. E[U] for Options A and B in the Case of Interval-Characterized µALT 
 
 As in the case of the wholly-distribution-based model, a robust decision cannot be made due to the overlap of the E[U] 
intervals, so it is worth examining the extent to which additional information might be of value. Not surprisingly, given the 
absence of a joint distribution over (µALT_A, µALT_B), it is not possible to calculate the value of information, perfect or 
otherwise. Instead, like E[U] generally, the value of perfect information can be characterized as an interval. Figure 9, which 
is the analogue of Figure 6, illustrates the situation. 
 
 First, let it be stipulated that under the current state of knowledge, Option B is the preferred option (e.g., based on a 
maximin decision rule). It is easy to see that the VOPI is minimized for any point (µALT_A, µALT_B) where Option B has a 
higher E[U] than Option A, such as on the left-hand side of the figure. Here, the VOPI is zero since additional information 
would not change the decision. The VOPI is maximized at the point where the difference between the E[U] of Option A and 
that of Option B is greatest, namely at (3s, 1s) at the far right corner of the figure. In this case, the VOPI is E[U]A - E[U]B. 
Thus, the VOPI is expressed as the interval [0, max[E[U]A - E[U]B]]. 
 
 If, for any two options i and j, E[U]i and E[U]j are functions of the same interval-characterized uncertain parameter q, 
then the lower limit on the VPOI interval can be non-zero. This is seen in Figure 10, in which a maximin decision rule is 
applied to a choice between three options. Option C is the preferred option under the decision rule, but nowhere does it have 
the maximum E[U]. Consequently, the minimum VOPI is positive and the VOPI interval is expressed as: 
 

    VOPI = [VOPIMIN, VOPIMAX] 
    = [min[max[E[U]X] - E[U]P], max[max[E[U]X] - E[U]P]]  (6) 
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 where max[E[U]X] is the maximum E[U] from among the non-preferred options at the point of comparison to E[U]P, and 
E[U]P refers to the preferred option. 
 
 A situation where VOPIMIN > 0 is one where the preferred option would definitely not be selected under perfect 
information, and can therefore be considered a kind of hedge. 
 

 
 

Fig. 9. The Potential Value of Perfect Information (PVOPI) 
 
 
 

 
 

Fig. 10. A Decision Situation where VOPIMIN > 0 
 
 In cases where E[U]i and E[U]j are subject to separate, uncorrelated uncertainties, then the situation is more like that of 
Figure 9 and it would seem that reasonable preferred option must have the greatest E[U] somewhere over the (joint) interval, 
in which case the minimum possible VOPI is zero. Then the maximum possible VOPI is all that is needed to specify the 
interval, and we can define the potential value of perfect information (PVOPI) as that maximum: 
 

    PVOPI = max[E[U]A - E[U]B].     (7) 
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