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When designing safety critical systems there is a need for verification of safety properties while ensuring system
operations have a specific performance profile. We present a novel application of model checking to derive execution
strategies, sequences of decisions at workflow branch points, for a fragment of the Unified Modelling Language (UML)
statechart language which is extended to include modelling of workflows which exhibit stochastic behaviour. Strategy
generation is made possible by performing model checking on specific permutations of the set of possible actions
to generate adversaries which optimise a set of reward variables, while simultaneously observing constraints which
encode any required safety properties and accounting for the underlying stochastic nature of the system. By evaluating
quantitative properties of the generated adversaries we are able to construct an execution strategy which fully specifies,
from any state in the system, the actions needed for an actor to achieve the optimal values of the quantitative goals. We
show that our method is computationally feasible and apply it to an illustrative example featuring an industrial robot.
Our approach make it possible to readily test and debug a wide range of possible designs, thus creating a more effective
development of a safety critical system.

I. INTRODUCTION

Modern safety-critical systems are often characterised by the need to incorporate unreliable or unpredictable components
which are frequently composed to build complex concurrent behaviour, often while subject to various non-functional
performance requirements.1 Ensuring that these systems are both dependable and efficient poses a significant challenge.
By including quantitative data in system models, determination of bounds on the performance properties of such systems
becomes possible. Further, combined with analysis of stochastic behaviour, this approach is typically employed to analyse
unreliable or unpredictable systems.2 While verification is typically performed at each stage of system development; it is well
established that early detection of faults and design limitations is the key to limiting their impact and cost3 and recent years
have seen considerable progress in developing methods for the verification of such systems.4,5 However, safety critical systems
frequently combine the need for verification of safety properties while simultaneously requiring a specific performance profile.
To achieve these goals, such systems often require sophisticated execution strategies especially when the system involves
scholastic elements. Being able to synthesize a strategy for the optimal execution of such systems early in their design phase
allows for accurate determination of how the system will be employed, in the form of the sequence of actions performed by
elements of the system, and consequently holds the potential for the early identification and exclusion of inefficient designs.

There exists a wide range of system modelling languages of which the Unified Modelling Language (UML)6 is broadly
accepted as the de facto standard notation for the analysis and design of object-oriented software systems.7 The Statechart
formalism of UML is focused on organizing the way a device, computer program, or other (often technical) process works
such that an entity or each of its sub-entities is always in exactly one of a number of possible states and where there are
well-defined conditional transitions between these states. It has found widespread use as a early stage design tool with the
predominant approach being to employ UML to develop initial conceptual system models, which are then used as a basis for
development of a practical implementation.

I.A. Contribution

The focus of the paper is the generation of execution strategies from UML models, which unfortunately has an imprecise
and incomplete semantic definition. For this reason we have chosen to extend our previously developed methods,8 for the
analysis of models based on the BPMN modelling language, to accommodate the widely used UML language. Specifically,
UML Statecharts which we extend to accommodate both data annotations (rewards) and stochastic behaviour.
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Fundamentally, the addition of stochastic behaviour in a system of interest significantly complicates the application
of many traditional strategy approaches. In this case a strategy is potentially associated with many different executions,
which must be all taken into account in order when determining the effect of a specific sequence of actions on the overall
goal. We present an approach based on translation of UML models into Markov decision processes (MDPs)9 described
using the PRISM modelling language10 employed by the model checker PRISM.11 The choice of PRISM is motivated by the
great expressivity of its Probabilistic Computational Tree Logic (PCTL) query language, which makes it possible to express
probabilistic reachability problems. Within this paper a strategy will be defined as the sequence of actions to be taken from an
initial state in the system to obtain the optimum of one or more quantitative properties associated with a model. To allow
such problems to be solved using model checking we reformulate a static scheduling problem as a reachability problem that
can be subjected to model checking using PRISM. Employing the model checker PRISM to perform model checking on
specific permutations of a set of constraints to generate optimal adversaries which optimise (minimise / maximise) a reward
value while observing constraints which encode any required safety properties. By evaluating quantitative properties of the
generated adversaries within the full state-space of the UML model we are able to construct an execution strategy with the
desired safety and performance properties, if such a strategy exists. Moreover, by defining this translation, our work allows
the analysis to be done from a starting point expressed directly in widely used UML.

Fundamentally, our approach (fig. 1 show an overview), allows for systems designers to test a wide range of possible
designs, and to readily debug them, before committing to a specific practice, which achieves more effective development of
the system in question.

Central to the approach taken to strategy generation is to
exploit the generation of adversaries (see Section V), also
known as strategies, inherent in MDP model checking. The
generation of optimal adversaries in PRISM is determined
as part of computing a PCTL query for model and capture
the specific choice of actions, resolutions to points of non-
determinism, which ensure that a probability of reward query
are maximised or minimised. A novel and recently imple-
mented feature in PRISM, is that multi-objective properties
can defined for adversary generation.12,13 This allows a com-
bination of reward and probability queries to be combined
and a single adversary generated which optimises all of these
values. It should be noted that PCTL queries can also encode
required safety properties such that a generated strategy will
optimise the strategy goals while excluding strategies which
violate a safety requirement.
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Fig. 1. UML strategy generation via PRISM model check-
ing (grey show inputs needed and dark grey show user
choices).

The result of strategy generation is a Deterministic Time Markov Chain (DTMC)9 which encodes the specific sequence
of actions required to best approach the strategy goal. This DTMC is labelled so as to record the sequence of actions that
a strategy encodes and this can be mapped back to the original UML Statechart model so as highlight the specific choices
needed to execute the optimal strategy.

I.B. Related work

A number of proposals for the formalisation of UML Statecharts14,15 has been made, some of which also incorporate
formal methods based analysis of the model’s properties. The development which is the most similar to our work is the
approach taken by Jansen et al..16 Their work is also based on UML Statecharts, which are extended with probabilities in a
fashion similar to what is developed here. However, our work generalises the data added (in the form of rewards) to a UML
model, making it possible to analyse not just temporal properties, but also other resources consumed by a system.

The introduction of rewards allows for the determination of ideal strategies, and whereas multiple strategies may exist,
quantitative methods allows for the selection of strategies which optimise rewards of interest. Two similar approaches to
solving strategy problems using model checking are given by Wijs et al.17 and Basu et al..18 However, in both cases, the
construction of the model from which to generate a strategy is a manual process which requires considerable tuning.

While the traditional approach to employing model checking to solve strategy problems is mostly concerned with
resolving all points of nondeterminism so as to minimise or maximise one or more values of interest. A classic example of
this approach is that of Ruys19 and can be extended to account for costs, such as in the work of Behrmann et. al..20 However,
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the addition of stochastic behaviour in a system of interest significantly complicates the application of many traditional
strategy approaches. In this case a strategy is potentially associated with many different executions, which must be all
taken into account in order when determining the effect of a specific sequence of actions on the overall goal. Conceptually
similar to the approach taken here is the work of Giunchiglia and Traverso,21 where planning problems are seen as including
non-determinism not under the control of a planner, and a similar approach using model checking to efficiently explore the
resultant statespace is developed here.

II. UML STATECHARTS

UML Statecharts, also known as a UML state machines, are an enhanced realization of the concept of a finite automaton
expressed in UML notation. The description of how a process (e.g. a computer program or a business workflow) works is
organized so that an entity, or each of its sub-entities, is always in one of a number of possible states, and where there are
well-defined transitions between all states.

II.A. UML Statecharts Syntax

UML Statecharts consist of six basic elements :

Initial: These elements i, denote the start of a process and are the points at which execution of a UML Statecharts
begins. This is a so-called pseudo state, where the state has no variables describing it further and no associated
activities. For each UML Statechart there is one unique initial element.

Terminate: These elements ET, denote a final state of the system at which execution of a process halts. This ia a
pseudo state from which the state machine does not exit and nor does it perform any actions other than those
associated with the transition leading to the terminate state. A UML Statechart may have zero, one, or more
termination states.

State: These elements S, denote states of a process. Each state models a situation during which some, usually
implicit, invariant condition holds. The invariant may represent a static situation such as an object waiting for
some external event to occur. However, it can also model dynamic conditions such as the process of performing
some behaviour (i.e., the model element under consideration enters the state when the behaviour commences and
leaves it as soon as the behaviour is completed).

Choice: These elements GC, denote a decision point at which flow of execution of a process will proceed along
one of the outgoing flows from the element. Control flow is determined by the evaluation of the guards of its
outgoing transitions.

Fork/Join: These elements denote both forking and merging of execution of a process. Fork elements GF, serve
to split an incoming transition into two or more transitions. Join elements GJ, serve to merge several transitions.
The transitions from/to a fork/join vertex may not guards. Note this element may be drawn rotated, if desired, in
order to improve the readibility of a Statechart.

Transition: These elements F, denote a transition from one state to another, where l is an optional label for the
transition. A guard [g] can be added to a transition where the body g of the guard is a boolean expression which
when true indicates that the given transition may be performed.

It should be noted that the full specification of UML Statecharts6 also includes a number of other elements which provide
various syntactically useful constructs allowing for grouping elements in various ways, but these do not add further significant
features to the language in terms of the analysis developed. We will formally define a complete UML Statechart model as:

Definition 1 (UML Statechart Model) A UML Statechart is a tuple (N,F,L, lab) where N ⊆ S∪E∪G, is a set of nodes
composed of the following disjoint sets:

• States S, are the basic states of a given process.
• Events E⊆ i∪ET, where i is the unique initial state and ET represents termination states.
• Gateways G ⊆ GC ∪GF ∪GJ, where the disjoint sets GC, GF and GJ respectively represent choice, fork and join

elements.
F ⊆ N×N is a set of flow relations representing transitions, where aFb denotes a directed transition from a to b. L is a set of
unique labels and lab : F→ L is a labelling function which assigns labels to flows.
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The definition of a UML Statechart given in Definition 1 models processes by using elements of F to define a directed
graph with nodes which are elements of N. This definition allows for graphs which are unconnected, do not have start or end
elements or various other properties which place them outside what is implied to be permitted in standard UML models. The
UML specification alludes to well-formedness requirements for UML models6 and these take the form of constraints which
are textual rules which restrict usage of various elements, however these are ambiguously expressed. Likewise, to ensure that
a UML Statechart describes a meaningful process we will impose a number of well-formedness conditions. These conditions
are defined using the following functions:

• The input nodes of n ∈ N are given by the function in(n) = {x ∈ N|xFn}.
• The output nodes of n ∈ N are given by the function out(n) = {y ∈ N|nFy}.

Definition 2 (Well-formed UML Statechart) A UML Statechart is well-formed if the following conditions hold:
E1 i : in(i) = /0∧|out(i)|= 1
E2 ∀e ∈ ET : |in(e)|= 1∧out(e) = /0
T1 ∀s ∈ S : |out(s)|= 1
G1 ∀g ∈GC : |in(g)|= 1∧|out(g)| ≥ 2
G2 ∀g ∈GC : ∀s ∈ out(g) : lab((g,s)) 6=⊥
G3 ∀g ∈GF : |in(g)|= 1∧|out(g)| ≥ 2
G4 ∀g ∈GJ : |in(g)| ≥ 2∧|out(g)|= 1
F1 ∀n ∈ N : ∃(i,e) ∈ i×ET : iF∗n∧nF∗e where F∗ is the reflexive transitive closure of F.

Definition 2, is chosen such that the conditions defined impose the minimum semantic interpretation necessary to determine
the control flow of a model. A well-formed UML Statechart will thus have no more semantic interpretation than given in the
UML standard.6

II.B. Stochastic UML Statecharts Semantics

Since the UML standard only contains an informal description of how to execute UML Statecharts and a mathematically
precise semantic framework is required for automated analysis, we will employ the structured operational semantics for
UML Statecharts developed by Michael von der Beeck.22 These semantics define an execution of UML where each state in a
sequence of transitions is executed in turn. Forking constructs split the flow of execution so as to follow all paths of transitions
emanating from a forking gateway, with these separate flows of execution running concurrently and independently until a
merging gateway is encountered. A merging gateway functions as a point of synchronization where all incoming transitions
must reach the merge point before execution of the outgoing transition may take place. Progress between states is made under
a maximal progress assumption where a transition to an enabled state is performed as soon as it becomes possible. Note that
UML Statecharts have no notion of time, but are simply an ordering of events, where events contained in different parallel
flows may in fact take place concurrently.

To deal with the complexity of modelling large systems, we divide them into smaller sub-systems which interact by
message passing, in a fashion similar to the work of Jan Jürjens.23 The concept here is that a number of UML Statecharts are
made to interact by means of common labels on transitions. When a transition is encountered, in UML Statechart USCa, with
a label that is also used for a transition in USCb, execution of USCa halts until USCb reaches the transition with the same
label. At this point both systems simultaneously perform the specified labelled transition.

On choice gateways we will impose a semantic interpretation where we maintain the non-deterministic choice inherent in
the definition of UML Statechart gateways,6 but supplemented with probabilistic selection. At a choice gateway, execution
proceeds by non-deterministic selection of an outgoing transition from a choice gateway; these transitions are identified by
labels from the set L which are assigned to specific transitions by means of the function lab introduced in Definition 1. Note
that the well-formedness condition G2 ensures all transitions are labelled at these points. Several transitions may have the
same label and in this case the choice of a specific transition is made probabilistically. This effectively captures the behaviour
of a process which involves an actor making a deliberate choice, and selected choice has different possible outcomes not under
the control of the actor. We will assign probabilities to outgoing transitions from a choice gateway by means of the following
function:

Definition 3 (BPD Gateway Flow Probability Function) Given a BPD, a decision gateway probability function is a partial
function P : S×L→ [0,1] which for a node g ∈ GD and label l ∈ L, assigns probabilities to all outgoing sequence flows
(g,x), such that for a given l:

∑
∀x∈out(g)

P((g,x), l) = 1
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Recall that well-formedness condition G2 ensures that all transitions from a choice gateway are labelled. Several outflows
may, however, have the same label. Definition 3 ensures that all choice gateways have an associated probability and that the
sum of all probabilities for a given label l is 1.

For quantitative analysis of models, we add numerical data to our models by using a reward function which associates
positive real numbers with states in a UML Statechart.

Definition 4 (USC Task Reward Function) For a UML Statechart a reward function for a state s ∈ S is a partial function
R : T→ R≥0.

R captures the notion that certain nodes have some reward or cost associated with the state. There is no practical
distinction between costs and rewards, and we use these annotations to keep track of whichever quantities may be of interest
in a process, such as execution time or energy consumption. We may associate as many reward structures as we wish with a
given UML Statechart, so that a single task may have multiple different numerical properties which are incremented when the
task is performed, to achieve this we augment the R operator with a label.

III. MODELLING EXAMPLE

While the methods presented in this paper are applicable to a wide range of systems, we have chosen an example arising
from problems encountered by an industrial partner in the healthcare sector.

Figure 2 illustrates a simplified scenario where a strategy must be devised for the actions of a robot arm moving materials
for preparing drugs between different subcomponents. This system consists of 4 processes each represented as an individual
Statechart. The “pharmacy robot” process drives the operation of this system and makes a non-deterministic choice between
drugs which can potentially be manufactured. Manufacturing each drug involves a specific sequence of operations performed
by separate sub components; each of these performs steps which have delays which are stochastically chosen. Synchronization
between the different Statecharts is performed via the [label] constructs, in the fashion detailed in Section II.B. A number of
states are annotated with reward structures tracking time used and energy expended.

Note that this system has 2 key points where a non-deterministic choice must be made between several options. Namely
in the choice of which drug to manufacture and, when heating drugs, a choice between normal or low-power heating. In this
system there is a safety requirement that shaking must never occur while loading of a drug is taking place, as the vibrations
caused by shaking could lead the system to malfunction. Production of a specific batch of drugs (e.g. 2 doses of A, 1 of B and
3 of C) should be sequenced so that production takes place as quickly as possible and using the minimum amount of energy,
while observing the safety requirements.

IV. STOCHASTIC MODEL CHECKING

The goal of this work is to transform a UML model into a Markov decision process9 (MDP) which is amenable to formal
statespace analysis. These states represent possible configurations of the system being modelled with probabilistic state
transitions being combined with non-deterministic choices between several discrete probability distributions over successor
states. Model checking allows for the efficient exploration of the entirety of this space with a temporal logic employed to
select sets of states of interest, and offers the possibility of verifying many properties of a system. In this paper we will
specifically use this capability to select sets of paths through the state space that represent different strategies; each path is
then checked to ensure that given safety criteria are observed and the values of rewards of interest are computed.

IV.A. Translating a UML Statechart into PRISM code

In our approach, UML Statechart models are mapped directly into the guarded command language used by PRISM. The
mapping, which focuses on the control flow structure of the model, involves decomposing a UML Statechart into sub-processes
which are individually mapped to PRISM code, with appropriate synchronization constructs generated to maintain the same
control flow. For reasons of space the details on this approach are omitted, however they are highly similar to our previous
work with the BPMN language.8 Combined this approach has an has an upper complexity bound of O(n3). The soundness of
this algorithm can be shown by structural induction.
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Fig. 2. Annotated UML Statecharts of a pharmacy automation system and surrounding environment.

V. STRATEGIES

Within this paper a sstrategy is defined as the sequence of
actions to be taken from an initial state in the system to
obtain the optimum of one or more quantitative properties
associated with a model. This can be combined with
a set of constraints on the process. These constraints
would typically capture safety properties, but can be freely
defined using the logic PCTL to express properties that
must hold when executing the strategy.

For example suppose one was considering the medical
robot from Section III which is capable, by means of
making a non-deterministic choice, of producing either
drug A, B or C. In the case when three doses of drug A, two
doses of drug B and one dose of drug C are required. The
possibilities for sequencing these actions are illustrated in
in Figure 3, where each possible strategy is a path from
the root to a terminal node.
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Fig. 3. Illustration of the possible strategy possibilities for
a combination of 3 doses of drug A, 2 doses of drug B and
1 dose of drug C.

V.A. Strategy Specification

Generation of a strategy requires the resolution of the points of non-determinism under the control of agents in the model.
We will employ PRISM’s capability for adversary generation11 which generates an induced discrete time Markov chain
(DTMC)9 on the generated state-space that equates to evaluating the best- or worst-case choice of actions at all decision points
that satisfy a chosen Probabilistic Computation Tree Logic (PCTL)11 constraint. The PCTL property specification language
which is based on classical continuous stochastic logic extended to probabilistic quantification of described properties. An
implementation of the PCTL logic is employed by the PRISM model checker.11

While this logic allows reasoning about a wide range of system properties,5 we will employ PCTL queries to filter out
paths in the state-space generated by the PRISM model checker for a UML Statechart. Specifically, PCTL queries are used to
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define the safety properties which we require for the system and the specific tasks that we want performed as part of running
the system, and to determine the cumulative mean rewards values along that path. Determining an adversary, also known as a
strategy, for a model with non-deterministic choices as shown in Figure 3 determines the effect these possible sequences of
actions will have on the reward and probability values encoded in a PCTL query of interest. As PRISM quantifies over all
possible adversaries, i.e. all possible resolutions of nondeterminism in the model it is ensured that there exists within these
possible resolutions a set of resolutions for which a models associated reward and probability values which take on minimum
or maximum values. Given a set of tasks that must be executed as part of running the system, solving a strategy problem by
means of model checking involves determining which strategy optimises the execution of the system.

Adversary properties for a single objective are specified in the standard fashion for PRISM property queries described by
Forejt et. al. in.11 Multi-objective adversary properties are specified in PRISM 4.1 by means of the multi(...) keyword. This
keyword allows for a comma separated list of separate queries to be defined and may only be employed when specifying an
adversary. If a multi-objective property contains a single unbound ? objective then an adversary is determined which achieves
the minimum possible probability of reaching a Load state, from which the probability of reaching Error is less than 0.1, an
example of this goal, expressed in PCTL, is shown in eq. (1).

multi(Pmin=?[F Load],P< 0.1[F Error]) (1)

A C operator is allowed in adversary generation which calculates the total cumulative value of a reward structure in a
multi-objective property query. This value is the total of the reward value accumulated along all paths as opposed to simply
the specific path of the adversary as is the case with the F operator. For example eq. (2) expresses: which adversary ensures
that the expected cumulative value of the reward structure time is minimised while ensuring that the expected cumulative
value of reward structure energy is below 7.2.

multi(Rmin(time)=?[C],Rmin(energy)< 7.2[C]) (2)

Further, possibilities are for specification of multiple adversaries along with an extensive description of the computation
of adversaries is available in.13 Note that while individual adversaries are generated on the same basic state-space, PRISM
allows symmetry24 and partial order25 reduction to be employed when searching this space and allows our approach to
presently scale to the feasible verification of complex properties of large systems (up to 1010 states2).

V.B. Strategy Generation

The adversary generation feature in PRISM produces an induced DTMC over an MDP which optimises the properties of
interest by appropriate resolution of points of non-determinism in a model. This induced DTMC that equates to evaluating the
best- or worst-case choice of actions at all decision points that satisfy a chosen PCTL constraint. Having produced such a
DTMC the sequence of actions present in the DTMC record the strategy and can readily be mapped back to the source MDP,
and in turn UML model, to highlight the optimal strategy. Where multiple strategies may exist, quantitative MDP model
checking methods allow for the selection of an arbitrary optimal strategy. Finally, in the case where no possible strategy exists
checking will return an empty (zero state) DTMC.

The specific query to be produced to generate the possible strategies for a Core BPMN process involve defining a multiset
A of actions which must be performed as part of the strategy, with multiple occurrences of the same element encoding that the
action must be performed multiple times. Combined with a PRISM PCTL query C encoding constraints on the strategy, this
may possibly be empty if no additional constraints are defined. Given A and C, the strategy generation query is constructed
using Algorithm 1.

Algorithm 1 simply produces a PCTL query Q. When constructing Q each element a ∈ A is combined using the PCTL
until operators, if more than one occurrence of a is present in A, and using the PCTL finally operator in the case when a only
occurs once. For each a each of the sub-queries are combined using conjunction. Finally, each of the constraints c ∈ C are
combined with Q by means of conjunction. Note that Algorithm 1 omits the addition of square and rounded brackets need to
build PRISM queries and that in line 5 an additional U must be omitted on the final run of the for loop. Having constructed
the Q a PRISM adversary generation query can be constructed simply as a multi-objective adversary serach using a query of
the form multi( P1[Q],P2[Q], · · · ,Pm[Q]), where P1,P2, · · · ,Pm are the PCTL reward or probability operators for which the
adversary is to be optimised with respect to.

Note that developing a strategy involves resolving all point of nondeterminism so actions which could potentially be
included in the strategy but which are not included in the set A, i.e. A{, may, or may not, be included in the strategy, at any
point, depending on what produces the optimal adversary in terms of the strategy constraints. The complexity of Algorithm 1
is O(nm) where n is the cardinality of A and m is the is the cardinality of C.
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Algorithm 1: PCTL strategy query generation.
Input: A set A of actions and a set C of constraints.
Output: A PCTL query Q.

1 forall a ∈ A do
2 m← v(a) // where v(x) determines the multiplicity of x
3 if m > 1 then
4 for i← 0 to m do
5 Q← Q | a U // where | denotes concatenation

6 else
7 Q← Q | F a

8 Q← Q | ∧
9 forall c ∈ C do

10 Q← Q | ∧ c

11 return Q

VI. SCHEDULE GENERATION EXAMPLE

In the case of the medical robot from Section III we may wish to create a strategy for the robot arm that would produce
a sequence of drugs say three doses of drug A, two doses of drug B and one dose of drug C. This should be done while
observing the a single safety constraint C that there may never be any shaking taking place while a drug is being loaded, i.e.
no states where both of these properties are simultaneously true are traversed. This safety constraint set is expressed in PCTL
as: G!([Shake]∧ [Load]). Further, it should be noted that when producing A whether there is a choice between choosing
low-power or normal heating choices, each with a different time and energy use trade-off, we do not constrain these and allow
free choice between them in determining a strategy. The goal for the developed strategy is to observe these constraints while
minimising execution time and energy used, i.e. the accumulated value of the time and the energy rewards along the chosen
path are the smallest possible, with equal weight being given to minimising both rewards.

To determine the strategy, we take the annotated UML model and apply the translation approach of sketched in
Section IV.A to determine the statespace of the medical robot which is shown in annotation-free form in Figure 4. The initial
state is represent by the black dot and the statespace is characterised by 3 large loops which correspond to the manufacture of
each of the 3 drugs. The high complexity of the manufacture of drug B is clear in the larger number of nodes and transitions
that form this loop. Solution of strategy generation problems requires choosing the correct sequence of choices, marked by
black triangles, to reach the strategy goals.

Fig. 4. Generated statespace for Section III (Anno-
tations removed, 3080 States, 10999 Transitions).

Fig. 5. Generated minimal time/energy usage strategy for the
example from Section III (37.4 minutes, 98.3 kJ).

Next, to determine a strategy to meet the specific goals outlined in the previous we use PRISM to perform the following
query:

multi

(
Rmin(time)=?[(a U a U a)∧ (b U b)∧ (F c)∧ (F Fail X Reset)],

Rmin(cost)=?[(a U a U a)∧ (b U b)∧ (F c)∧ (F Fail X Reset)] )

)
(3)
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This query will explore the entire statespace shown in Figure 4, discarding patch which violate constraints or for which reward
values exceed already determined minimums. Hence this approach ensure that optimal adversaries with respect to all possible
orderings of the actions which must be performed as part of the strategy are generated. In this case there exists a unique
strategy shown in fig. 5 with an expected mean time to completion 37.4 minutes, using 98.3 kJ. In this solution the robot
chooses to begin production by manufacturing 1 dose of drug A and making use of the lower power heating setting in its
production. Once loading is complete for drug A, manufacture of drug C is started and repeated until the loading of the 3rd
dose of C. Then a second dose of A is started /suing normal power mode) and 2.4 minutes (the mean time needed to load B)
before this is completed, production of B is started.

VII. CONCLUDING REMARKS

Our work presents a method to allow the automatic derivation of the optimal actions a system should perform to achieve
desired goals. This can be crucial in forming system design as it suggests the fashion in which a system will be employed and
can help focus testing and verification efforts. When applied to existing systems, these methods can be employed to optimise
the systems’ behaviour.
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